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Outcome probability estimation via clas-
sical methods is an important task for val-
idating quantum computing devices. Out-
come probabilities of any quantum cir-
cuit can be estimated using Monte Carlo
sampling, where the amount of negativ-
ity present in the circuit frame representa-
tion quantifies the overhead on the number
of samples required to achieve a certain
precision. In this paper, we propose two
classical sub-routines: circuit gate merging
and frame optimisation, which optimise
the circuit representation to reduce the
sampling overhead. We show that the run-
times of both sub-routines scale polynomi-
ally in circuit size and gate depth. Our
methods are applicable to general circuits,
regardless of generating gate sets, qudit di-
mensions and the chosen frame representa-
tions for the circuit components. We nu-
merically demonstrate that our methods
provide improved scaling in the negativ-
ity overhead for all tested cases of random
circuits with Clifford+T and Haar-random
gates, and that the performance of our
methods compares favourably with prior
quasi-probability simulators as the number
of non-Clifford gates increases.

1 Introduction

Quantum computers promise to outperform their
classical counterparts [1, 2]. However, the exact
boundary between quantum and classical com-
putational power is far from being fully char-
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acterised yet [3–7]. Several works have demon-
strated the difficulty in simulating certain quan-
tum processes classically [7–17]. Such results hint
towards the ingredients that may be sufficient
to achieve quantum advantage. It is also pos-
sible to approach the boundary from the other
side, namely by finding efficient methods to clas-
sically simulate families of quantum circuits [18–
24], thereby providing insights on what ingredi-
ents are necessary for quantum advantage.

The question of efficient probability estimation
has recently received vast attention due to the on-
going rapid development of quantum devices aim-
ing to supersede classical capabilities (e.g. [25–
28]). Aided by powerful error mitigation tech-
niques [29–33], noisy intermediate-scale quantum
(NISQ) [34] devices aim to deliver computational
advantages, therefore fast and accurate outcome
probability estimation is a necessity for quanti-
tative benchmarking of the devices [33, 35, 36].
For example, Google’s recent experimental reali-
sation of a quantum speed-up [26] relies on classi-
cal estimation methods to predict statistical fea-
tures of the outcome probabilities.

It is expected that exact classical simulation
of arbitrary quantum systems is inefficient, as
the resource overhead exponentially grows with
the size of the system. Nevertheless, there are
restricted classes of quantum circuits for which
exact classical simulation is possible [37]. The
most notable example is given by circuits com-
posed only with stabilizer states and gates in the
Clifford group, which can be efficiently simulated
classically via the Gottesman-Knill theorem [38].

Probability estimation methods are varied and
aim to explore the efficiency of circuit sampling
or simulation beyond the regime of quantum cir-
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cuits that admit tractable classical representa-
tions. The estimation methods we mention in our
work can be classified under one of two leading
approaches [39, 40]. The first involves stabilizer
rank-based simulators [41–47], which rely on ap-
proximating the circuit components by stabilizer
operators. Every state or operation is assigned
an exact or approximate stabilizer rank [43] in-
dicating the number of stabilizer operators re-
quired to perform an exact or approximate de-
composition of that component. If a circuit com-
ponent is non-classical, its stabilizer rank grows
large thus inducing an exponential runtime cost
for the estimation of the outcome probability.
Algorithms based on stabilizer decompositions
have been very successful in estimating outcome
probabilities of circuits dominated by Clifford
gates and supplemented by a few types of magic
states [39, 41, 42]. These Clifford simulators are
generalised from pure to noisy settings by the re-
cently proposed density-operator stabilizer-rank
simulator [40]. Furthermore, computing the sta-
bilizer rank of arbitrary gates appears to be an
intractable problem in the general case, so re-
cent improvements on computing stabilizer rank
bounds for specific non-Clifford states enhance
runtimes significantly [48].

The other family of estimation methods re-
lies on quasi-probabilistic representations of cir-
cuit components [36, 40, 49–52] and such meth-
ods are in principle directly applicable to any
quantum circuit without the need for state de-
compositions, in particular circuits with induced
noise. They are based on the notion of a frame
representation for the components of the cir-
cuit [53, 54]. Specifically, all components are
represented by quasi-probability distributions in
a certain frame and sampling on these distribu-
tions can be performed. Since any state or gate
admits such a representation, quasi-probability
simulators naturally apply to arbitrary circuits
with noise. Many such frames have been stud-
ied [51, 53–58], and the runtime depends on
the total negativity that is present in the cir-
cuit representation [49]. A notable frame sim-
ulator is the dyadic frame simulator [40] which
relies on operator decompositions into stabilizer
dyads |L〉 〈R|, where |L〉 and |R〉 are pure sta-
bilizer states. This method assigns dyadic nega-
tivity to non-classical elements, which quantifies
the extent to which the operator’s optimal linear

decomposition into stabilizer dyads departs from
a convex combination. The dyadic simulator is
a state-of-the-art quasi-probability frame simula-
tor for qubits, as demonstrated by its low runtime
scaling O(40.228t) with t non-Clifford gates [40].
However, optimising the decomposition of an op-
erator in dyads is computationally challenging.

Stabilizer rank simulators generally offer two
advantages over estimation methods based on
frame representations. Firstly, they can be used
for sampling the circuit output probabilities,
which can be viewed as a stronger notion of simu-
lation than probability estimation. Frame repre-
sentation methods produce probability estimates
with additive precision, which does not suffice for
sampling [17, 42]. Secondly, the stabilizer-rank
algorithms developed in [40–42] are quadratically
faster as they achieve a scaling of O(20.228t) in
the asymptotic limit. However, specialised simu-
lators (e.g. [41, 42]) suffer from additional poly-
nomial runtime factors, which tend to be more
significant compared to the exponential runtime
for the experimentally relevant case of big cir-
cuits with a low number of non-Clifford elements.
Recently, an algorithm of additive precision [39]
has also been shown to asymptotically outper-
form the methods of [41, 42], at least in certain
parameter regimes.

In this paper, we focus on quasi-probability
estimation methods based on frame representa-
tions and look for a way to improve the perfor-
mance of outcome probability estimation. Re-
cently, there has been a proposal of a Monte
Carlo sampling algorithm which allows for quasi-
probability estimation of circuits that contain a
bounded amount of negativity in their represen-
tation [49]. For classes of circuits in which neg-
ativity grows only polynomially in the number
of input states, this estimation algorithm is effi-
cient. The negativity of the circuit therefore in-
dicates the hardness of the probability sampling
problem. Although the negativity scales expo-
nentially with the number of non-Clifford gates,
the scaling factors hugely depend on the frame
choice. Until now, however, the same fixed repre-
sentation has been applied on every circuit com-
ponent and the flexibility on reducing negativity
has been limited.

Our aim is to explore the extent to which vary-
ing the frame representations of the components
in a given circuit can lead to a reduction in the
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total circuit negativity. To this end, we propose
a pre-processing routine for any general quan-
tum circuit, which aims at reducing the negativ-
ity overhead required for probability estimation.
Our proposed routine consists of two distinct sub-
routines:

1. Circuit gate merging: We introduce the idea
of merging gates together into new n-qudit
gates for fixed n in the context of reduc-
ing sampling overhead. This sub-routine
reduces the negativity of the entire circuit
and is independent of the estimation method
used.

We demonstrate numerically that the aver-
age negativity reduction over a random en-
semble of circuits is greater as the number
of non-Clifford elements, e.g., T gates, in-
creases and is comparable to recent asymp-
totic negativity bounds [40, 59, 60]. Our rou-
tine does not depend on the specifics of the
circuit gate set and can therefore be used in
cases of gates which are hard to decompose,
e.g., Haar-random gates.

2. Frame optimisation: We introduce the idea
of using different frames to represent the in-
put and output phase spaces of the gates
in the circuit. This is inspired by work in
continuous variables [61], but our approach
is novel in the context of discrete quasi-
probability sampling methods.

We argue that this sub-routine compliments
gate merging as an additional source of neg-
ativity reduction when merging is no longer
efficient. We then demonstrate numerically
that instances of Clifford+T circuits and cir-
cuits with Haar-random gates admit signif-
icant negativity reductions by introducing
additional frames in the circuit representa-
tion.

We note that a polynomial runtime for these clas-
sical sub-routines with respect to the circuit size
should be guaranteed to effectively reduce the
overall runtime of the sampling method. As proof
of principle, we provide explicit algorithms in the
main text that ensure this condition for each sub-
routine.

This paper is organised as follows. In Section 2,
we review the frame representation and the esti-
mation algorithm using quasi-probability repre-

sentations of a given quantum circuit. In Sec-
tion 3, we outline our results within the context
of the current state of quasi-probability simula-
tor research. In Section 4 and 5 we describe the
two sub-routines in more detail, before providing
a summary in Section 6.

2 Preliminaries

2.1 Frame representation of quantum circuits

We first give a brief overview on classical circuit
sampling based on the method of frame repre-
sentation. Suppose that an N -qudit quantum
circuit C is composed of the initial state prepara-
tion ρ, sequential quantum gates U1, U2, . . . , UL
and the measurement effect E. The out-
come probability of the quantum circuit pC =
Tr[UL . . . U2U1ρU

†
1U
†
2 . . . U

†
LE] can be estimated

by describing the quantum state ρ as quasi-
probability distributions over phase space points
λ ∈ Z2N

d and the quantum operations Ui as the
transition matrices of the distributions. More
specifically, a phase space can be constructed
from a frame defined as a set of operators F :=
{F (λ)} and its dual G := {G(λ)} [53, 54], such
that any operator O is expressed as

O =
∑
λ

Tr[F (λ)O]G(λ). (1)

For a given frame, the outcome probability can
be expressed in terms of the representation as

pC =
∑

λ0,...,λL

WE(λL)
[
L∏
l=1

WUl
(λl|λl−1)

]
Wρ(λ0),

(2)
where we define

Wρ(λ) = Tr[F (λ)ρ], (3)
WU (λ′|λ) = Tr[F (λ′)UG(λ)U †], and (4)
WE(λ) = Tr[EG(λ)]. (5)

In the case where 1) ρ and E are products of
local initial states and measurement effects, 2)
Wρ(λ0) and WE(λL) are classical probability dis-
tributions, and 3) WUl

(λl|λl−1), for ` = 1, . . . , L,
are classical conditional probability distributions
for all l, efficient classical simulation is possible,
where the sampling runtime scales polynomially
with N and L [62]. The simulation is performed
by sampling the trajectories of (λ0, . . . ,λL) from
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the initial distribution P (λ0) = Wρ(λ0) and
the transition matrix at each step Pl(λl|λl−1) =
WUl

(λl|λl−1), which leads to the probability es-
timate, p̂C = WE (λL). Taking an average over
M probability estimates converges to the Born
probability as M increases.

2.2 Overhead of classical simulation
Non-classicality in the quantum process is rep-
resented by negativities in Wρ(λ) or WU (λ′|λ),
which gives rise to quasi-probabilities. In general,
Wρ(λ) and WU (λ′|λ) consist of real components
that can attain negative values, while satisfying
the normalisation conditions,∑

λ∈Z2N
d

Wρ(λ) = 1 and (6)

∑
λ′∈Z2N

d

WU (λ′|λ) = 1 for all λ ∈ Z2N
d . (7)

Despite the presence of negativities in the distri-
butions and update matrices, Monte Carlo meth-
ods can still be used with adjustments as intro-
duced by Pashayan et al. [49] in order to per-
form probability sampling. This can be done by
sampling over P (λ0) = |Wρ(λ0)|/

∑
λ0 |Wρ(λ0)|

for the initial state preparation and tak-
ing the transition matrix of Pl(λl|λl−1) =
|WUl

(λl|λl−1)|/
∑
λl
|WUl

(λl|λl−1)| for the quan-
tum gate, while keep track of the signs. In this
case, the probability estimate is modified to

p̂C = Sign
(
Wρ(λ0)

L∏
l=1

WUl
(λl|λl−1)

)
×

Nρ

(
L∏
l=1

NUl
(λl−1)

)
WE(λL),

(8)

where we have defined

Nρ :=
∑
λ0

|Wρ(λ0)| (9)

NUl
(λl−1) :=

∑
λl

|WUl
(λl|λl−1)| . (10)

In order to converge to the Born probability,
one can similarly take the average of increasingly
many probability estimates sampled over trajec-
tories (λ0, . . . ,λL) using distributions P (λ0) and
Pl(λl|λl−1).

This directly relates the total amount of cir-
cuit negativity to the computational overhead:
the larger the negativity in the circuit, the more
samples required for an accurate estimation.

Observation 1 (Pashayan et al. [49]). The out-
come probability pC of the quantum circuit C can
be estimated by p̂C from the number of samples

M ≥M(ε, δ) = 2
ε2
N2
C ln(2/δ), (11)

with at least probability 1− δ of having error less
than ε. Here,

NC = Nρ×
[
L∏
l=1

max
λ0,...,λL−1

NUl
(λl−1)

]
×max

λL

|WE(λL)| ,

(12)
is the (maximum) circuit negativity.

As is clear by Eq. (11), the negativity of the cir-
cuit acts as an overhead for the convergence time
of the sampling algorithm, therefore it is desir-
able to reduce it before executing the sampling
by considering different frame choices.

3 Main results

In this work, we develop a pre-processing rou-
tine to reduce the negativity of the circuit, which
in turn reduces the number of samples required
to estimate the outcome probability of the cir-
cuit. Our routine is applicable to any general
circuit consisting of a product input state and
product measurement, but independently of the
input state dimension, the gate set (e.g. Clifford
unitaries or Haar-random gates) and adaptive op-
erations based on intermediate measurement out-
comes.

3.1 Frame parametrisation

The central focus of our work is to consider frame
parametrisations that are allowed to vary across
the circuit. It is clear from the definitions that
the circuit negativity of a given circuit in Eq. (12)
depends on the choice of the frame F and its dual
G. Note that F and G are uniquely defined by
each other for phase space dimension equal to
d2, where d is the qudit dimension. We there-
fore make the dependence clear by labelling the
representation functions by G:

W Gρ (λ) = Tr[F (λ)ρ], (13)

W
G′|G
U (λ′|λ) = Tr[F ′(λ′)UG(λ)U †], and (14)
W GE (λ) = Tr[EG(λ)], (15)
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Figure 1: Sketch of routine on a toy circuit. The first step (a) → (b) is gate merging, here implemented with n = 2.
Gates that share input and output wires merge in the schematic way depicted in the figure. The second step (b)
→ (c) is frame optimisation, here implemented with ` = 2 in a block B comprising the three merged gates. The
optimisation results into updated frames G′

4,G′
7, while the remaining frames that connect the block B to the rest of

the circuit components are left unchanged at this optimisation cycle.

where we used different frames, G and G′, for the
input and output wires respectively in the defi-

nition of W
G′|G
U .

In order to ensure that the number of frames
does not grow exponentially with the number of
qudits N , we restrict to product frames that are
constructed as tensor products of single qudit
frames. This allows us to parametrise each single
qudit phase space separately, rather than the en-
tire N -qudit phase space. Therefore, we reserve
the label G for denoting single qudit frames and
the boldface symbol G for denoting a set of sin-
gle qudit frames. The negativity of each circuit
component can now be expressed as

NG
ρ =

∑
λ

∣∣∣WG
ρ (λ)

∣∣∣ , (16)

NG′|G = max
λ

[∑
λ′

∣∣∣WG′|G
U (λ′|λ)

∣∣∣] , and (17)

NG
E = max

λ

∣∣∣WG
E (λ)

∣∣∣ , (18)

where G,G′ contain elements from the complete
set of frames required to represent the circuit. In
practice, each circuit component is parametrised
only via the frames that correspond to its input
and output wires. For example, in Fig.1(b), when
parametrising the first gate in the sequence, we
can simply consider G as the set {G1,G2} and G′
as the set {G3,G4}. If only a unique frame rep-
resentation G is used for all circuit components,
then G = G′ = {G} in the expressions above and
the label can be dropped, simplifying to the nota-
tion of the previous section. The total negativity
of the parametrised circuit can now be expressed
as a function of the circuit frame set G:

NC(G) = NG
ρ ×

[
L∏
l=1

N
G′|G
Ul

]
×NG

E . (19)

We note that Observation 1 still holds by replac-
ing NC with the more general form NC(G). Our
main objective is to study the reduction of this
circuit negativity by tuning G.

3.2 Examples of frame parametrisations
While our results are general and applicable to
any family of parametrised frames, in this work
we provide two examples of explicit, product
frame parametrisations: (i) parametrised Wigner
frames and (ii) rotated Pauli frames.

Parametrised Wigner frames employ the con-
ventional phase space of the discrete Wigner
function [54, 55]. Let us define the discrete dis-
placement operator for a d-dimensional system
as

D(p, q) = χ(−2−1pq)ZpXq, (20)
where χ(q) = ei(2π/d)q. For a qubit system (d =
2), this takes the form D(p, q) = ipqZpXq. It can
be generalised to an N -qudit system as

D(λ) =
N⊗
i=1

D(pi, qi) , (21)

where λ := (p1, q1, p2, q2, . . . , pN , qN )T ∈ Z2N
d

denotes a phase space point of the whole
system. We then define the frame F =
{F (λ)} := {D(λ)F0D

†(λ)} and its dual frame
G = {G(λ)} := {D(λ)G0D

†(λ)} using the fol-
lowing reference operators:

F0 = 1
d

∑
λ

[ 1
g(λ)

]
D(λ) (22)

G0 = 1
d

∑
λ

g(λ)D(−λ) , (23)

where we introduced the parametrisation func-
tion g(λ). Note that the following relation holds:

g(λ) = Tr [G0D(λ)] , (24)
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so the parametrisation function g(λ) : Z2N
d 7→

C\{0} can be fully characterised by the reference
operator G0. In order to impose that W Gρ (λ) is

real-valued and that
∑
λW

G
ρ (λ) = 1, we need

the additional conditions g∗(ω) = g(−ω) and

g(0) = 1, which are equivalent to G†0 = G0 and
Tr[G0] = 1 respectively. By taking g(λ) = 1
for all λ, the conventional discrete Wigner func-
tion [55] is recovered. One can calculate the
quasi-probability distributions of circuit elements
via Eq. (13)-(15) using the defined frame and
dual frame. In odd dimensions, the parametrised
Wigner frame is a good choice for Clifford dom-
inated circuits as Clifford gates do not possess
any negativity in the conventional Wigner distri-
bution. Therefore, g(λ) = 1 is already optimal
for most circuit elements when considered in iso-
lation and constitutes an obvious starting point
for frame optimisation.

In the qubit case, it is known that the
Hadamard and CNOT gates have non-zero neg-
ativity even in the conventional Wigner distri-

bution [63], which motivates us to introduce the
next frame parametrisation, valid only for qubits:
the rotated Pauli frames.

Rotated Pauli frames are based on the Bloch
decomposition of a quantum operator. Consider
the set of displacement operators for a single
qubit {D(λ)} as defined in Eq. (20) for λ ∈ Z2

2 =
{(0, 0), (0, 1), (1, 0), (1, 1)}. The usual Bloch vec-
tor for a single-qubit state ρ can be written as

Wρ(λ) = 1
2Tr [ρD(λ)] , (25)

and this defines a valid quasi-probability distri-
bution with frame {1

2D(λ)}. We can define a
new frame by applying a rotation to the space of
the Bloch vector. Let us consider a rotational an-
gle vector θ := (θX , θY , θZ) and a corresponding
rotation operator R(θ) := R(θZ)R(θY )R(θX),
where R(θX) := e−iθX/2 and similarly for Y,Z.
Applying this to the Bloch vector in Eq. (25) re-
sults in a set of rotated displacement operators,
parametrised by θ:

Dθ(0, 0) := 1
21 (26)

Dθ(0, 1) :=
(
− sin θY e−iθX cos θY

e+iθX cos θY sin θY

)
(27)

Dθ(1, 0) :=
(

cos θY cos θZ e−iθX (sin θY cos θZ + i sin θZ)
e+iθX (sin θY cos θZ − i sin θZ) − cos θY cos θZ

)
(28)

Dθ(1, 1) :=
(

cos θY sin θZ e−iθX (sin θY sin θZ + i cos θZ)
e+iθX (sin θY sin θZ − i cos θZ) − cos θY sin θZ

)
. (29)

Then, we define the frame F = {F (λ)} and its
dual frame G = {G(λ)} as

F (λ) := 1
2ND

θ(λ), (30)

G(λ) := Dθ(λ) , (31)

which provide a parametrised frame representa-
tion for a qubit. This can be generalised to an
N -qubit system via

Dθ(λ) =
N⊗
i=1

Dθi(λi) (32)

with θ = (θ1,θ2, . . . ,θN ), where θi is the rota-
tional angle vector for the i-th qubit. The rotated

Pauli frames possess the desired property that
all stabilizer states and Clifford gates have zero
negativity in the conventional Bloch frame repre-
sentation with θ = (0, 0, 0). Thus, when a given
qubit circuit is dominated by Clifford gates, it
can be advantageous to employ the rotated Pauli
frame.

3.3 Pre-processing routine for negativity re-
duction

The central idea of our pre-processing routine for
negativity reduction can now be expressed by the
following lower bounds on gate negativity.
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Theorem 1. For two consecutive gates U and
V , the following bounds on negativity hold:

N
G|G
V N

G|G
U ≥ min

G′
N

G|G′
V N

G′|G
U ≥ N

G|G
V U , (33)

where G and G′ are frame sets that represent
gates U, V and UV .

Proof. The first inequality holds since G is one
specific choice of the optimisation variable set G′.
The second inequality is due to Observation 2 in
the next section.

Theorem 1 motivates us to introduce two sub-
routines applicable to any quasi-probability esti-
mation algorithm with runtime cost determined
by the circuit negativity.

The second inequality in Theorem 1 suggests
that merging two gates into one is generally ad-
vantageous in minimising the total negativity.
This leads to the first pre-processing sub-routine,
gate merging. The inequality is independent of
the specific frame parametrisation and can be di-
rectly extended to an arbitrary number of gates.
The trade-off is that the merged gate may be of
a larger size. For example, if U and V are 2-
qudit gates sharing one wire between them, gate
V U will be a 3-qudit gate. The dimension of the
merged gate increases exponentially as the num-
ber of qudits involved becomes larger, hence one
should truncate the maximum number of qudits
acted on by the merged gates, which we define as
the spatial parameter n.

The first inequality in Theorem 1 states that,
unless the frames between two gates in sequence
are already optimal, we can always reduce the
total negativity of the two gates by optimising
the frames they share. This leads to the second
sub-routine, frame optimisation. The optimisa-
tion can be directly generalised to a circuit block
B containing a sequence of ` frames G by simul-
taneously optimising all the frames in the block,
minG NB(G). The temporal parameter ` is the
number of frames to be optimised in one optimi-
sation cycle. The optimisation takes place itera-
tively in the sense that every optimisation cycle
optimises the frames within a block, taking as an
initial state the optimised frames obtained from
the previous cycle. This ensures that negativity
cannot increase above its initial value, no matter
how many optimisation cycles occur.

Given fixed values for the truncation parame-
ters n, `, we show in the following two sections

that the total runtime τ of our routine is polyno-
mial in the number of circuit components,

τ = O(N,L2). (34)

In general, larger n or ` give larger negativity
reduction at the cost of additional classical com-
putation.

We note that gate merging yields lower nega-
tivity than any frame optimisation between the
gates. However, fixing n < N prevents us from
merging gates indefinitely, so frame optimisation
can then be used for further negativity reduction.

Algorithm 1 Outcome Probability Estimation
with Merging and Optimisation

Input: An N -qudit quantum circuit C with
a product input state ρ = ρ1 ⊗ · · · ⊗ ρN , the
list of gates U = {U1, ..., UL}, and the prod-
uct measurement operator E = E1⊗· · ·⊗EN ;
the spatial parameter n; the temporal param-
eter `; the desired accuracy ε.

1: Run gate merging (Sub-routine 1) with the
input gate sequence and n and return the
merged gate sequence {V1, ..., VL′} with L′ ≤
L consisting of gates acting on at most n qu-
dits.

2: Run frame optimisation (Sub-routine 2) with
the merged circuit and ` and return the op-
timised frame sequence Gopt.

3: Run a sampling algorithm to achieve the in-
put accuracy ε according to Eq. (11) using
the quasi-probability representations of the
merged circuit obtained with the optimised
frame sequence Gopt.
Output: pest, the estimated outcome prob-
ability.

We present an algorithm for Born proba-
bility estimation, including our complete pre-
processing routine and sampling, in Algorithm 1
and illustrate its implementation on a toy cir-
cuit in Fig. 1. In the following two sections, we
discuss in more detail how the two sub-routines,
gate merging and frame optimisation, can be im-
plemented. For clarity, we focus on qubit circuits
and on the frame parametrisations introduced in
the previous section, although our methods are
general.
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4 Gate merging
The central idea of our first sub-routine, gate
merging, is that the sampling cost of a merged
circuit block consisting of multiple quantum
gates is in general lower than sequential sam-
pling of each gate. More precisely, this can be
summarised as the following observation:

Observation 2. Let {U1, U2, . . . , Uk} be a se-
quence of quantum gates. The negativity of the
merged gate U = Uk . . . U2U1 is always less or
equal to the product of the individual negativities,
i.e.,

NG
U ≤

k∏
i=1

NG
Ui
, (35)

for any frame set G assigned to the gate sequence.

Proof. It is sufficient to prove the statement for
two gates U and V . By noting that the quasi-
probability of the merged gate is expressed as

WG
V U (λ3|λ1) =

∑
λ2

WG
V (λ3|λ2)WG

U (λ2|λ1),

(36)
the negativity of the gate can be bounded as

NG
V U = max

λ1

∑
λ3

∣∣∣WG
V U (λ3|λ1)

∣∣∣
= max

λ1

∑
λ3

∣∣∣∣∣∣
∑
λ2

WG
V (λ3|λ2)WG

U (λ2|λ1)

∣∣∣∣∣∣
≤ max

λ1

∑
λ2

∣∣∣WG
U (λ2|λ1)

∣∣∣∑
λ3

∣∣∣WG
V (λ3|λ2)

∣∣∣
≤ NG

U max
λ2

∑
λ3

∣∣∣WG
V (λ3|λ2)

∣∣∣
= NG

V N
G
U .

(37)
We then apply this argument iteratively to any
sequence of quantum gates {U1, U2, . . . , Uk} to
obtain Eq. (35), which completes the proof.

Such a negativity reduction can be exemplified
by considering the Toffoli gate, which can be op-
timally decomposed into four T gates [64] along
with Clifford gates and Pauli measurements. We
compare the negativity of the Toffoli gate itself
and its decomposed gate sequence using the Pauli
frame, where the negativity only comes from non-
Clifford gates. One can readily observe that the
Toffoli gate negativity NPauli

Toffoli = 2 is lower than
the total negativity of the decomposed gate se-

quence
[
NPauli
T

]4
= 4.

The idea of reducing the negativity of quan-
tum gates by merging (Eq. (35)) can be compared
to the submultiplicativity of magic state negativ-
ity characterised by the robustness measure (R),
which obeys R(ρ1 ⊗ ρ2) ≤ R(ρ1)R(ρ2) [59]. In
particular, the robustness of the T state is equiva-
lent to the negativity of the T gate from the sam-
pling cost viewpoint, as one T gate can be “gad-
getised” via Cliffords and a single T state [41].
In Ref. [59], the asymptotic negativity per single

T gate is limt→∞
[
R
(
|T 〉⊗t

)]1/t
≈ 20.272 which

provides a lower bound on their sampling runtime
Ω(40.272t).

In order to compare this with the gate merging
method, we consider an n-qubit block consisting
of Clifford+T gates (see Fig. 2(f) for an example
with n = 5). This can be compared to consid-
ering n T states in the robustness measure, hav-
ing the same number of qubits (i.e., the size of
Hilbert space) in the block to evaluate the neg-
ativity. Figs. 2(a-d) show the distribution of the
negativity of 1000 random n-qubit blocks consist-
ing of 100 Clifford gates and t T gates. We ob-
serve that the negativity per T gate after merging
the gate sequences in a random n-qubit block can
be occasionally lower than the robustness mea-
sure of n T states [59]. We also note that the
negativity reduction works efficiently when the
number of T gate in the block, t, increases. For
example, when n = 5 and t = 15, 95% of the ran-
domly chosen merged blocks yield negativity per
T state lower than the robustness measure. We
also plot in Fig. 2(e) the average negativity per
T gate versus t, demonstrating that it is decreas-
ing, which implies that our appoach can prove
efficient when the structure of the gate block con-
sidered becomes more complicated.

The main advantage of our approach is that
it is not limited to a particular type of gate set,
e.g. Clifford+T circuits, but can be directly ap-
plied to any types of quantum gates. The afore-
mentioned approaches using stabilizer rank, ro-
bustness and generalised robustness rely on the
gadgetisation of a non-Clifford gate using magic
states. Therefore, evaluating the classical over-
head should be preceded by finding an optimal
Clifford gadget with minimum resource of magic.
On the other hand, gate merging does not have
such a limitation, so it can be useful when the ef-
ficient decomposition of a quantum circuit into
non-stabilizer states and Clifford gates is non-
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Figure 2: Histograms of 1000 random Clifford+T cir-
cuits with N = 5 consisting of 100 1-qubit and 2-qubit
Clifford gates, supplemented by t T gates and merged
using spatial parameter n = 5. The leftmost (blue) solid
line with the gray region depict the average and standard
deviation of each histogram. The brown and green solid
lines (from right to left) represent the higher averages
of the corresponding histograms for n = 3 and 4 respec-
tively. Vertical dashed lines provide some state-of-the art
scalings, more specifically from left to right: O(20.228t)
of the Bravyi-Gosset algorithm from [41] based on the
stabilizer rank, O(40.228t) of the dyadic frame simula-
tor from [40] and the lower bound Ω(40.272t) based on
the robustness of magic from [59]. As t increases, we
observe a higher frequency of circuits with log negativ-
ity squared per T gate lower than the robustness lower
bound: (a) 71%, (b) 81%, (c) 89%, (d) 95%.
(e) Histogram average for n = 3, 4, 5 against t.
(f) Example 5-qubit merged gate U made up from Clif-
ford gate (CNOT s and H) and T gates.

trivial. We also highlight that merging gates re-
duces the negativity independently of the choice
of frames.

We now describe the gate merging method for
a generic N -qubit quantum circuit with L gates.
This can be done by grouping the quantum cir-
cuit into n-qubit blocks (see Fig. 1(a)→(b)), then
Observation 2 guarantees that the negativity of
each block is reduced after merging the gate se-
quences in it. There are various ways of grouping
the circuit into n-qubit blocks, but we introduce
the iterative Sub-routine 1 for concreteness. The
broad idea of the sub-routine is to iteratively con-
nect any yet unmerged (disjoint) gates. All gates
remain in the set Udisj until they either finally

act on n qubits or cannot connect to other gates
anymore, when they are move to the output set
Umerged.

Sub-routine 1 Gate merging
Input: List of gates U = {U1, ..., UL} in

qudit quantum circuit C and spatial
parameter n.

1: Define list of merged gates Umerged ← {}, and
list of disjoint gates Udisj ← {}

2: for Ui ∈ U do
3: Set target gate Utarget ← Ui
4: for V ∈ Udisj do
5: if Utarget shares a wire with V then

Remove V from Udisj.
6: if rank(UtargetV ) > dn then

Add V to Umerged.
7: else if rank(UtargetV ) ≤ dn then

Utarget ← UtargetV .
8: Add Utarget to Udisj.
9: for Ui ∈ Umerged do

10: Set target gate Utarget ← Ui
11: for V ∈ Udisj do
12: if rank(UtargetV ) ≤ dn then

Utarget ← UtargetV .
13: Add Utarget to Udisj.
14: Append Udisj to Umerged.

Output: Umerged.

At every step, a target gate Utarget, the algo-
rithm searches through the disjoint gates to find
the next one that is connected to Utarget. We
therefore require to search less than L gates for
every Utarget, while the cost of merging two gates
(i.e., multiplying) is O(22n), a constant as we fix
n < N . So the full gate merging sub-routine
scales as O(22nL2). The computational cost to
compute the transition matrix WG

U for n-qubit
unitary U and its negativity also exponentially
scales with n as there are O(22n) possible phase
space points for a n-qubit system.

As we can observe from the scaling, the limit-
ing factor of gate merging is the spatial parame-
ter n, which stems from the exponential growth
of the dimension of Hilbert space by increasing
the number of qubits. We find numerically that
a practical choice for the spatial parameter n is
n ≤ 5. As this is a fundamental property of
a quantum system, a similar issue arises in the
robustness measure as evaluating the robustness
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of R(|T 〉⊗n) and finding its optimal decomposi-
tion among O(2n2) stabilizer states is in general
a challenging task for a large n [59].

Due to the computational need to truncate the
spatial parameter n < N , a question arises of
whether there exist new methods of manipulating
the circuit frames and further reducing the total
negativity, after gate merging is completed. We
provide a positive answer to this question in the
following section, where we describe our second
sub-routine, frame optimisation.

5 Frame optimisation

Frame optimisation aims to reduce the total cir-
cuit negativity by optimally choosing frames for
different circuit components. As we discussed
in Section 3.1, we can introduce specific frame
parametrisations, such as parametrised Wigner
frames or rotated Pauli frames, and iteratively
choose the frames throughout the circuit.

Sub-routine 2 Frame optimisation
Input: Quantum circuit C and temporal

parameter `.
1: Determine the total number of frames, |Gopt|,

in the circuit C.
2: Define the set of reference frames,

Gopt ← {G1, . . . ,G|Gopt|}.
3: Fix the number of optimisation cycles c.
4: for i = 1, . . . , c do
5: Choose a subset G(i)

target ⊂ Gopt with at
most ` frames.

6: Find a circuit block B containing the
frames in G(i)

target.
7: Find G(i)

target = argminG(i)
target

NB
(
G(i)

target

)
.

8: Update the corresponding frames in Gopt

with G(i)
target.

Output: Gopt.

In principle, the best strategy in terms of
achieving the highest negativity reduction would
be to carry out global optimisation over all cir-
cuit frames, requiring that the number of param-
eters to be optimised should scale with the num-
ber of qubits N and circuit length L. In this
work, we show that a local optimisation, with
only a fixed number of parameters, is sufficient
to achieve considerable negativity reduction and

scales only linearly in N and L. This optimisa-
tion sub-routine is implemented by dividing the
circuit into blocks containing at most ` frames to
be optimised, for a fixed temporal parameter `.

To perform the frame optimisation on a quan-
tum circuit C consisting of an input state ρ, a
gate sequence {U1, ..., UL} and a measurement
effect E, we need to start from an initial frame
parametrisation. We denote this parametrisation
as Gopt = {G1, . . . ,G|Gopt|}, where |Gopt| is the
number of frames to be optimised. The proce-
dure is outline in Sub-routine 2 and explained

here. We take a subset G(1)
target ⊂ Gopt with up to

` frames (either sequentially or randomly) and
create the block B of circuit components which
are attached to those ` frames. Keeping all other
frames in the block B fixed with the correspond-
ing frames in Gopt, we want to minimise the to-
tal negativity of the block NB over all possible
choices for Gtarget, so that the minimum

min
Gtarget

NB(Gtarget). (38)

occurs at G(1)
target allowing us to update the cor-

responding frames in Gopt, which is the end of
the first cycle in our frame optimisation. We
repeat this process c times by choosing another

set of ` frames as the new G(i)
target, i = 1, . . . , c.

The number of optimisation cycles c can be cho-
sen arbitrarily, for example it can be chosen as
c ≥ |Gopt|/`, with the aim of optimising all
frames in the circuit at least once. The order
in which frames are optimised can also be chosen
arbitrarily and can potentially result in a differ-
ent overall negativity reduction.

We demonstrate the local frame optimisation
method with an example. Let us consider the
initial part of a simple general circuit depicted
in Fig. 3 for the case of n = 2 and ` = 2. To
perform the (i)-th optimisation cycle we consider

G(i)
target = {G1,G2}, we consider the corresponding

block B1 = {ρ1, ρ2, U1, U2}, which is a set of all
circuit components connected to the frames in

G(i)
target. Then, the explicit optimisation we per-

form is

min
G(i)

target

NB1

(
G(i)

target

)
=

min
{G1,G2}

Nρ1(G1)Nρ2(G2)NU1(G2)NU2(G1), (39)

where NX(GX) is the negativity of component
X as a function of GX with all other frames

Accepted in Quantum 2021-09-27, click title to verify 10



Figure 3: Example of how to form a block when Gtarget
is given in the case of n = 2 and ` = 2. Only rel-
evant frames are shown. When Gtarget = {G1,G2},
the corresponding block B1, which contains all cir-
cuit elements connected to the frames in Gtarget, is
B1 = {ρ1, ρ2, U1, U2}. When Gtarget = {G3,G4}, then
the corresponding block is B2 = {U2, U3, U4}.

fixed to the corresponding ones in Gopt. As an
additional example, we could have considered

the set G(i)
target = {G3,G4} corresponding to the

block B2 = {U2, U3, U4} in Fig. 3. Then, the

block negativity we optimise is NB2(G(i)
target) =

NU2(G3)NU3(G4)NU4(G3,G4).
Note that at each optimisation step, previously

optimised frames in Gopt are used in the next op-
timisation cycle. This ensures that the negativ-
ity never increases compared to the initial frame
choice {G1, . . . ,G|Gopt|} between optimisation cy-
cles.

The presented local optimisation method is ef-
ficient in the number of circuit components. Con-
sider an N -qubit circuit of length L where each
of L gates acts on at most n qubits. Then, there
are at most N + nL different frames to be opti-
mised. Since ` is fixed, each optimisation cycle
takes a constant amount of time O(1). Therefore,
the frame optimisation of the entire circuit scales
as (N + nL) × O(1) = O(N,L). Note that the
exact value depends on truncation parameters n
and ` as well as the specifics of the circuit and its
frame parametrisation.

Fig. 4 shows the performance of the frame op-
timisation for a circuit with N = 6 and L =
15 consisting of 2-qubit Haar-random unitaries,
which are in general difficult to be simulated with
stabiliser-based simulators because they do not
admit efficient decompositions. In Fig. 4(a), we
use rotated Pauli frames as our frame parametri-
sation and initialised each frame in the circuit
to the set of standard qubit Pauli operators. In

Figure 4: Plots showing negativity reduction of a circuit
consisting of 2-qubit Haar-random gates with N = 6 and
L = 15 after each frame optimisation cycle with different
spatial and temporal parameters, n and `. The optimi-
sation is carried out sequentially from the first frame to
the last frame. Optimisation is performed via the basin-
hopping algorithm as introduced in [65]. (a) Results
after frame optimisation with rotated Pauli frames. The
reference frame is the standard Pauli operators. The
total negativity continuously decreases as we optimise
more frames. (b) Results after frame optimisation with
parametrised Wigner frames. The reference frame is the
conventional phase-space operators for the Wigner func-
tion. The most of negativity reduction occurs near the
initial states and the measurements.

Fig. 4(b), we choose parametrised Wigner frames
as our frame parametrisation and initialise each
frame in the circuit to the set of conventional
phase-space operators corresponding to g(λ) = 1
(see Sec. 3.2). We can observe that the largest
negativity reduction comes from gate merging
with higher n, but the frame optimisation also
achieves a significant negativity reduction. In
general, larger ` results in lower negativity af-
ter optimisation of all frames with fixed n. In
the case of parametrised Wigner frames, together
with gate merging, we could considerably de-
crease the initial log-negativity from ∼27.3 to
∼8.9 with truncation parameters n = 4 and
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Figure 5: Histograms of the deviation of estimated prob-
ability pest from actual outcome probability psim (as cal-
culated by Qiskit [66]) for 500 circuits consisting of 2-
qubit Haar-random gates with N = 3, L = 8 and ` = 1.
The number of samples taken for each circuit is 106,
which took around 10 seconds on a standard computer.
The plot shown is truncated at |pest − psim| = 4.0 to
demonstrate the advantage of our routines clearly. The
advantage is amplified as N and L increase.

` = 5, which means that we need ∼ 22×18 times
less samples to reach a given accuracy for proba-
bility estimation.

We demonstrate the practical significance of
our routine, by sampling 500 circuits consisting
of Haar-random gates, with the results presented
in Fig. 5. Unmerged circuits represented entirely
by Wigner frames do not show any signs of con-
vergence to the actual probability distribution.
Merged circuits clearly converge a lot better, es-
pecially when their frame representation is opti-
mised.

6 Conclusion
We introduce two classical sub-routines, gate
merging and frame parametrisation, which re-
duce the total negativity in the quasi-probability
representation of a quantum circuit, hence lead-
ing to sampling overhead reduction. We em-
phasise that our methods are very general; they
are not restricted to specific choices of frames or
frame parametrisations, and can be applicable to
any circuit independently of generating gate sets
or the purity and dimension of its input qudits.
Both sub-routines are efficient in the sense that
the runtime scales polynomially in the circuit size
N and number of gates L.

We numerically demonstrate that both meth-
ods improve the exponential scaling of the circuit
negativity by testing them on Clifford+T circuits
and circuits with Haar-random gates. Specifi-
cally, gate merging is shown to compete on aver-
age with the quasi-probability simulators based
on dyadic frames and the robustness of magic.
Frame optimisation can further compliment gate
merging in reducing negativity, when merging
gates in the circuits is no longer practical due
to the growing size of the gates.

A clear direction for our work is to improve the
classical optimisation performed for the frame
representation. Our parametrisation resembles
variational techniques used in near-term quan-
tum algorithms [67], although our cost func-
tion, circuit negativity, is calculated classically.
Our optimisation could therefore potentially ben-
efit by research on variational techniques, such
as identifying “good” circuit-inspired ansatze
for initialising frames or investigating barren
plateaus in order to improve optimisation con-
vergence. Such methods could shed light on what
families of circuits are hardest to sample from us-
ing quasi-probability techniques.

One can also investigate the possibility of per-
forming frame optimisation analytically, at least
for particular classes of quantum circuits. Ad-
ditional assumptions will likely be required for
the circuit structure, but finding optimal frames
analytically would eliminate the hidden constant
runtime costs of “black-box” classical algorithms
currently employed for the optimisation. For ex-
ample, it would be particularly useful to investi-
gate the existence of a finite set of frames as a
function of circuit components resulting in mini-
mum negativity for Clifford+T circuits.
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