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Quantum computing is believed to be particularly useful for the simula-
tion of chemistry and materials, among the various applications. In recent
years, there have been significant advancements in the development of near-
term quantum algorithms for quantum simulation, including VQE and many
of its variants. However, for such algorithms to be useful, they need to over-
come several critical barriers including the inability to prepare high-quality
approximations of the ground state. Current challenges to state preparation,
including barren plateaus and the high-dimensionality of the optimization
landscape, make state preparation through ansatz optimization unreliable.
In this work, we introduce the method of ground state boosting, which uses
a limited-depth quantum circuit to reliably increase the overlap with the
ground state. This circuit, which we call a booster, can be used to aug-
ment an ansatz from VQE or be used as a stand-alone state preparation
method. The booster converts circuit depth into ground state overlap in a
controllable manner. We numerically demonstrate the capabilities of boost-
ers by simulating the performance of a particular type of booster, namely
the Gaussian booster, for preparing the ground state of N2 molecular sys-
tem. Beyond ground state preparation as a direct objective, many quantum
algorithms, such as quantum phase estimation, rely on high-quality state
preparation as a subroutine. Therefore, we foresee ground state boosting
and similar methods as becoming essential algorithmic components as the
field transitions into using early fault-tolerant quantum computers.
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1 Introduction
Quantum computing holds the promise to solve previously intractable problems in quan-
tum chemistry and materials [1, 2]. Essential to this promise is the ability of a quantum
computer to efficiently encode and process wave functions that represent the quantum
system of interest. This system is encoded on the quantum computer via a qubit
representation of the Hamiltonian. An important step of many quantum algorithms
for quantum chemistry and materials is to prepare on the quantum computer an ap-
proximation to the ground state of this Hamiltonian [1, 3]. The performance of many
quantum algorithms relies on the performance of the ground state preparation step
[4, 5, 6]. In the realm of “far-term” quantum algorithms, the runtime of quantum phase
estimation and related techniques scales as O(1/p2), where p is the quality, or fidelity, of
the input ground state approximation [5, 6]. Improved methods [7] reduce this runtime
to O(1/p) and recent work [14] improves this runtime scaling to O(1/√p) at the cost of
a O(1/√p) factor increase in circuit depth. More “near-term” quantum algorithms, such
as the variational quantum eigensolver (VQE), aim to estimate the ground state energy
by directly preparing an approximation to the ground state; the quality of the energy
estimate is limited by the quality of the ground state preparation [8, 9]. The benefit
of near-term quantum algorithms like VQE is that they have the potential to prepare
good approximations to the ground state, while using relatively little circuit depth.
The relatively low circuit depth limits the accrual of error in the state preparation task.
While such techniques may serve as a good “head start” in approximate ground state
preparation, recent numerical studies suggest that the approximations achievable with
these techniques are insufficient for outperforming state-of-the-art classical methods
[10, 11, 12].

This challenge motivates the use of further quantum circuitry, beyond heuristic
parameterized quantum circuits to improve, or “boost”, the ground state preparation
subroutine in near-term quantum algorithms. Such techniques are likely needed to
achieve quantum advantage for chemistry with early fault-tolerant quantum computers.
While there do exist methods for improving the approximation of ground states [13, 14]
and excited states [15], these methods are designed to be performant with an idealized
quantum computer. With early fault-tolerant quantum computers, we should design
algorithms which accommodate the build-up of error during the quantum computation.

This motivates the need for quantum algorithms which reliably increase the over-
lap with the ground state of a target Hamiltonian using limited circuit depth. One
such method is developed in Ref. [16]. This approach, suited for few-body interacting
Hamiltonians, gives a low-depth quantum circuit which ensures a fixed energy reduc-
tion. However, it is not clear how to futher reduce the energy or increase the ground
state overlap beyond this initial amount. If a particular energy reduction or overlap is
required, the reduction ensured by this method might not be sufficient. Furthermore,
the performance of the method is inversely related to the locality of the Hamilto-
nian and its degree of interaction, which limits its application to quantum chemistry
Hamiltonians. Nevertheless, the method may provide a good input to additional state
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preparation methods. Another such method is the quantum imaginary time evolution
(QITE) algorithm, introduced in Ref. [17]. QITE aims to prepare an approximation to
a low-temperature thermal state of a Hamiltonian. By choosing a sufficiently low tem-
perature, the output state is a good approximation to the ground state. The advantage
of the QITE algorithm compared to previous imaginary time evolution algorithms [18]
is that the performance of the method does not rely on the quality of a proposed ansatz
circuit. Rather, this iterative method constructs the best approximation to each imag-
inary time evolution by making local tomographic estimates of the current state. One
disadvantage of the QITE algorithm is that its favorable runtime requires the system
of interest to have local interactions; many systems of interest, including the electronic
structure of molecules are most-conveniently represented with non-local interactions.
Another disadvantage of the QITE algorithm is that it is unclear how the method will
perform when subject to error in the quantum circuit. A worry is that error will accrue
unfavorably through the iterative process. The reliability of the method in the presence
of error for large-scale calculations is still an open question.

More recently, Amaro et al. [19] proposed a near-term ground state filtering method.
Drawing inspiration from the ground state filtering of Ref. [5], instead of applying
the filter operator to the initial state, they emulate the action of the filter operator
by using a parameterized quantum circuit (PQC) and optimizing the parameters to
minimize the Euclidean distance between the PQC-prepared state and the filter-applied
state. They carry this out in an iterative fashion until termination criteria are reached.
They investigate several filters (function types) and demonstrate the performance with
QAOA. While this work does use similar concepts of filtering that we make use of, their
method relies on a heuristic parameterized circuit optimization. Accordingly, this filter
does not admit performance guarantees and is likely to suffer from the same reliability
issues as VQE.

In this context our work addresses the following question: using limited circuit
depth, how can we increase the overlap with the ground state in a way that works
efficiently for all Hamiltonians and gives reliable performance? We develop the method
of state preparation boosting for reliably improving the overlap with a target state while
using quantum circuits of limited circuit depth. In contrast to the optimization of
parameterized quantum circuits, state preparation boosters reliably convert precious
quantum circuit depth into overlap with the target state. Moreover, ground state
boosters can be appended to an already-optimized VQE circuit to reliably increase
its overlap with the target state. Alternatively, one could append a state preparation
booster to a parameterized quantum circuit throughout the VQE optimization.

In Section 2 we introduce the concept of state preparation boosters and introduce
several methods for designing them. In Section 3 we analyze the performance of boosters
for a small molecular system and show that the boosters reliably convert circuit depth
into overlap with the ground state. We conclude with a discussion on future work for
state preparation boosters and an outlook on their use in helping to achieve quantum
advantage. Several important technical details are included in the appendix.

While preparing this paper, we came across a recent work [20] presenting the Gaus-
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sian filter method similar to a particular type of booster investigated in this work. They
present a hybrid quantum-classical method that estimates the ground state energy but
does not prepare the ground state. Their fully quantum method, which prepares the
ground state, is well-suited for qubit-qumode quantum processors, but the authors do
not address how to prepare the ground state on a qubit-based quantum computer,
which is the focus of our work. Furthermore, our work extends beyond Gaussian fil-
ters or boosters; we present a general framework that can be used to design low-depth
boosters for preparing ground states.

After an earlier version of this paper was posted on arXiv, Dong et al. [21] proposed
two algorithms for approximately preparing the ground state of a given Hamiltonian on
early fault-tolerant quantum computers. They aim to achieve a fidelity close to one in
the output state, and hence the costs of their algorithms are relatively high. Precisely,
one of their algorithms has query depth Õ(1/∆) and query complexity Õ(1/(∆γ2)), and
the other has query depth Õ(1/(∆γ)) and query complexity Õ(1/(∆γ)), where ∆ and
γ are the spectral gap and initial ground state overlap, respectively. Although these
algorithms could be modified to have lower circuit depth at the cost of producing a
worse approximation 1, this idea is not explored in their paper.

In contrast, here we aim to improve heuristic ground state preparation methods like
VQE by using limited amount of resources. Our circuit depth can be tuned based on
our need and hardware constraints, and using deeper circuits leads to steady increase
of the ground state overlap. Although our method can be also used to prepare an
extremely-accurate approximation of the ground state, this requires quite deep circuits
and is not the main focus of the paper. We leave it as future work to compare the
resource costs of our scheme and the one of Ref. [21].

2 Constructing state preparation boosters
In this section, we describe the methodology of state preparation boosters for improving
ground state preparation. Our basic idea is that, given any ansatz circuit for approxi-
mately preparing the ground state of a Hamiltonian H, we compose it with a shallow
circuit that implements a function of H, so that the extended circuit yields a state
that has larger overlap with the ground state of H. The appended operation, denoted
by f(H), suppresses the high-energy eigenstates of H and hence effectively boosts the
low-energy ones for any input state. Thus we refer to these operations as boosters.

Formally, let H = ∑D
j=1 λj |λj〉 〈λj| be a Hamiltonian with eigenvalues λj’s and

1Ref. [21] uses a technique called quantum eigenvalue transformation of unitary matrices (QET-U)
which enables the implementation of certain polynomials of cos(H/2), where H is the Hamiltonian of
interest. For ground state preparation, the polynomial approximates a threshold function so that the
QET-U circuit approximately implements a projective measurement onto the low-energy and high-
energy subspaces of H. The depths of the resulting circuits are proportional to the degree of this
polynomial. One might use a different polynomial with lower degree to construct a shallower circuit
which generates a worse approximation of the ground state.
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eigenstates |λj〉’s, where a ≤ λ1 ≤ λ2 ≤ · · · ≤ λD ≤ b for some a, b ∈ R. Suppose
|ψ〉 = ∑D

j=1 µj |λj〉 is the state produced by an ansatz circuit such that µ1 6= 0. We will
find a function f : R → C such that |f | decreases monotonically on the interval [a, b].
Then performing the operation f(H) on the state |ψ〉 yields the unnormalized state

f(H) |ψ〉 =
D∑
j=1

µjf(λj) |λj〉 , (1)

whose normalized version is

f(H) |ψ〉
‖f(H) |ψ〉‖ =

D∑
j=1

µ′j |λj〉 = 1√
Z

D∑
j=1

µjf(λj) |λj〉 , (2)

where Z = ∑D
j=1 |µjf(λj)|2 and µ′j = µjf(λj)/

√
Z. By the assumption on f , we have∣∣∣ µif(λi)

µjf(λj)

∣∣∣ ≥ ∣∣∣ µi
µj

∣∣∣, ∀i ≤ j. It follows that
∣∣∣µ′j∣∣∣ ≥ |µj| for j = 1, 2, . . . , k, for some 1 ≤ k ≤ D.

In other words, the amplitudes of the lower-energy eigenstates of H in f(H)|ψ〉
‖f(H)|ψ〉‖ are

larger than their counterparts in |ψ〉. In particular, the overlap between f(H)|ψ〉
‖f(H)|ψ〉‖ and

the ground state of H is larger than the one for |ψ〉. We note that although monotonic-
ity can ensure some degree of performance, a non-monotonic booster may be favorable
if it can be implemented with shorter-depth quantum circuits. For example, the “trun-
cated Gaussian boosters” that we explore later are technically non-monotonic (due to
the truncation), but their corresponding functions have steeply decreasing envelopes,
making them nonetheless performant.

Although in principle every function f that satisfies the monotonicity condition leads
to a booster, the cost of implementing the operation f(H) vary significantly for different
f ’s. Furthermore, in general, f(H) is non-unitary and hence we cannot implement it
with certainty. So we need to choose f carefully to achieve a balance among three
factors:

• To what extent can f(H) increase the overlap with the ground state (or the
low-energy eigenstates) of H?

• What is the depth of the circuit for implementing f(H)?

• What is the probability of this circuit successfully implementing f(H)?

Before addressing this issue in Section 2.2, we first describe a method to physically
implement f(H) once f is determined.

2.1 Implementing the booster operation
Suppose the booster function f is known. We implement the booster operation f(H) by
obtaining a Fourier approximation of f and applying the linear combination of unitaries
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(LCU) method to it. Specifically, let f̂ be the Fourier transform of f , i.e.

f̂(ξ) =
∫ ∞
−∞

f(x)e−i2πxξdx, (3)

f(x) =
∫ ∞
−∞

f̂(ξ)ei2πxξdξ. (4)

We convert the RHS of Eq. (4) into a finite sum by truncating the integral to the region
[−T, T ] for some T > 0 and then discretizing the integral on that region. Specifically,
let

fT (x) =
∫ T

−T
f̂(ξ)ei2πxξdξ, (5)

and for any N ∈ Z+, let

fT,N(x) = T

N

N−1∑
j=−N

f̂ (ξj) ei2πxξj , (6)

where ξj = (j + 1/2) T
N

for j = −N,−N + 1, . . . , N − 1. We would like to choose some
T and N such that f ≈ fT ≈ fT,N . Note that

εT := max
x∈R
|f(x)− fT (x)| (7)

= max
x∈R

∣∣∣∣∣
∫ −T
−∞

f̂(ξ)ei2πxξdξ +
∫ ∞
T

f̂(ξ)ei2πxξdξ
∣∣∣∣∣ (8)

≤
∫ −T
−∞
|f̂(ξ)|dξ +

∫ ∞
T
|f̂(ξ)|dξ. (9)

We will focus on the case where |f̂ | decays exponentially on R, i.e., there exists constant
c > 1 such that |f̂(ξ)| = O(c−|ξ|) as ξ → ±∞. Then Eq. (9) implies that εT =
O(c−T ) as T → +∞. As a consequence, choosing some T = O(log(1/ε)) ensures that
maxx∈R |f(x)− fT (x)| ≤ ε, for arbitrary ε > 0. Meanwhile, in Appendix B, we show
that when f satisfies certain (weak) conditions, choosing some N = Õ(1/ε) ensures
that maxx∈[0,1] |fT (x)− fT,N(x)| ≤ ε, for arbitrary ε > 0. Then for such T and N , we
have ∣∣∣∣∣∣f(x)− T

N

N−1∑
j=−N

f̂ (ξj) ei2πxξj
∣∣∣∣∣∣ ≤ 2ε, ∀x ∈ [0, 1]. (10)

This gives a Fourier approximation of f on the interval [0, 1], which is sufficient for our
purpose.

Now suppose we have a Fourier approximation of the booster function f :

f(x) ≈
K∑
j=1

αje
itjx (11)
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for some αj ∈ C\{0} and tj ∈ R. Then we have a Fourier approximation of the booster
operation f(H) as well:

f(H) ≈
K∑
j=1

αje
itjH . (12)

That is, f(H) is close to a linear combination of the unitary operations eitjH ’s. This
prompts us to use the LCU method to implement f(H) approximately and probabilis-
tically. Specifically, suppose we want to implement a linear operation A = ∑K

j=1 αjUj
on a Hilbert space H, where αj ∈ C \ {0} and Uj is a unitary operation on H for each
j. The LCU method requires a K-dimensional ancilla and a unitary operation V on
the ancilla such that

V |0〉 = 1√
|−→α |1

K∑
j=1

√
|αj| |j〉 , (13)

where |~α|1 := ∑K
j=1 |αj|. Moreover, let O be a unitary operation on the joint system

such that

O =
K∑
j=1
|j〉〈j| ⊗ αj

|αj|
Uj. (14)

Then a direct calculation verifies that

〈0| (V † ⊗ I)O(V ⊗ I) |0〉 |ψ〉 = A |ψ〉
|~α|1

(15)

for all |ψ〉 ∈ H. That is, after applying V on the ancilla, O on the joint system and V †
on the ancilla, we measure the ancilla in the standard basis, and if the measurement
outcome corresponds to |0〉, the state of the main system becomes A|ψ〉

‖A|ψ〉‖ , and this event

happens with probability ‖A|ψ〉‖
2

|~α|21
. Figure 1 illustrates the quantum circuit for the LCU

method.

|0〉 V

O
V †

|ψ〉

Figure 1: The LCU circuit for implementing a linear operation A =
∑K
j=1 αjUj probabilistically.

Here V and O are given by Eqs. (13) and (14) respectively.

Now we apply the LCU method to Eq. (12) in which αj and tj are given by Eq. (10).
Then we obtain a quantum circuit for implementing the booster operation f(H) ap-
proximately and probabilistically. This circuit uses O(logN) ancilla qubits and needs
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to evolve the Hamiltonian H up to time O(T ). When the LCU procedure succeeds, it
produces the quantum state

fT,N(H) |ψ〉
‖fT,N(H) |ψ〉‖ ≈

fT (H) |ψ〉
‖fT (H) |ψ〉‖ ≈

f(H) |ψ〉
‖f(H) |ψ〉‖ (16)

and this event happens with probability

psucc(fT,N) :=
〈ψ| f †T,N(H)fT,N(H) |ψ〉(

T
N

∑N−1
j=−N

∣∣∣f̂ ((j + 1/2) T
N

)∣∣∣)2 (17)

≈ 〈ψ| f
†
T (H)fT (H) |ψ〉(∫ T

−T
|f̂T (ξ)|dξ

)2 (18)

≈ 〈ψ| f
†(H)f(H) |ψ〉(∫ ∞
−∞
|f̂(ξ)|dξ

)2 . (19)

In particular, if f̂ is real and even, then f is also real and even. In this case, if f̂ is
also non-negative, then the denominator on the RHS of Eq. (19) can be simplified by
noting that ∫ ∞

−∞
f̂(ξ)dξ = f(0). (20)

Consequently, the success probability of the LCU method in this case is

psucc(fT,N) ≈ 〈ψ| f
2(H) |ψ〉
f 2(0) . (21)

2.2 Designing the booster function
It remains to design the booster function f . To this end, we need certain prior infor-
mation about the eigenvalues of the Hamiltonian H and the overlaps between the input
state |ψ〉 and the eigenstates of H. Specifically, we assume without loss of generality
that H has eigenvalues between 0 and 1 2. Furthermore, to facilitate the construction
of f , we use models for the spectrum of H and the overlaps between H’s eigenstates
and |ψ〉. Specifically, we approximate H as

H =
∫ 1

0
z 1S(z) |z〉 〈z| dz, (22)

2If H has eigenvalues between λmin and λmax, then we transform it into H̄ := (H−λminI)/(λmax−
λmin) which shares the same eigenstates with H, and apply our method to H̄.
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where S ⊆ [0, 1] consists of H’s eigenvalues, {|z〉 : z ∈ S} are orthonormal states, 1S is
the indicator function of S, and we approximate |ψ〉 as

|ψ〉 =
∫ 1

0
ψ(z) |z〉 dz, (23)

and q(z) := |ψ(z)|2 is a probability distribution on [0, 1] such that q(z) = q(z) 1S(z) (i.e.
q(z) = 0 for all z 6∈ S).

In practice, we often deal with quantum systems with finite-dimensional Hilbert
spaces. For such a system, H has a finite number of eigenvalues and eigenstates, and
1S should be replaced by a sum of Dirac delta functions, and q(z) should be a discrete
distribution. However, if we treat q(z) this way, many properties of f(H) |ψ〉 that we
are interested in will be expressed as functions of a discrete sum over exponentially
many terms which is difficult to compute. To mitigate this issue, we approximate q(z)
with a continuous distribution so that those properties of f(H) |ψ〉 can be approximated
by functions of a continuous integral which is often easier to calculate. This makes the
design of the booster function f more convenient, as will be seen later.

Let us consider the impact of the booster operation f(H) on the input state |ψ〉.
Applying f(H) on |ψ〉 yields the unnormalized state

f(H) |ψ〉 =
∫ 1

0
f(z)ψ(z) |z〉 dz, (24)

whose squared norm is

‖f(H) |ψ〉‖2 = 〈ψ| f †(H)f(H) |ψ〉 =
∫ 1

0
|f(z)|2q(z)dz. (25)

The expectation of H with respect to f(H) |ψ〉 is

〈ψ| f †(H)Hf(H) |ψ〉 =
∫ 1

0
z|f(z)|2q(z)dz. (26)

Thus, the energy of the normalized state f(H)|ψ〉
‖f(H)|ψ〉‖ with respect to H is

E(f) := 〈ψ| f
†(H)Hf(H) |ψ〉

〈ψ| f †(H)f(H) |ψ〉 =

∫ 1

0
z|f(z)|2q(z)dz∫ 1

0
|f(z)|2q(z)dz

. (27)

Meanwhile, for arbitrary λ ∈ [0, 1], let

P≤λ =
∫ λ

0
1S(z)|z〉〈z|dz (28)
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be the projection operator onto the subspace spanned by the eigenstates of H whose
energies are at most λ. We are interested in the total overlap between the state f(H)|ψ〉

‖f(H)|ψ〉‖
and such eigenstates of H, i.e.

O≤λ(f) := 〈ψ| f
†(H)P≤λf(H) |ψ〉

〈ψ| f †(H)f(H) |ψ〉 =

∫ λ

0
|f(z)|2q(z)dz∫ 1

0
|f(z)|2q(z)dz

, (29)

where in the second step we use the fact that q(z) = q(z) 1S(z) for all z ∈ [0, 1].
One can see that if |f | decreases monotonically on [0, 1], then E(f) ≤ 〈ψ|H |ψ〉 and
O≤λ(f) ≥ 〈ψ|P≤λ |ψ〉. In other words, f(H) reduces the energy of the input state with
respect to H while increasing its overlap with the low-energy eigenstates of H.

Ideally, we want |f | to decay as fast as possible on the interval [0, 1], so that the
high-energy eigenstates of H get suppressed to a large extent. On the other hand, steep
|f | often means that f ≈ fT only for large T , and hence it is expensive to implement
f(H) using the LCU method. Furthermore, we need to make sure that f(H) can be
realized with sufficiently high probability, as it is non-unitary and cannot be realized
with certainty. Our goal is to find a function f that achieves the balance among these
factors.

Let us first mention a strategy that attempts to directly optimize fT,N (as defined in
Eq. (6)). Recall that the LCU method allows us to implement fT,N(H) probabilistically.
Given prior information S and q(x) about the Hamiltonian H and the input state |ψ〉,
as well as T (which affects the maximal evolution time of H in the LCU circuit) and
N (which determines the number of ancilla qubits in the LCU circuit), we find a high-
quality fT,N by solving the following optimization problem:

max
{f̂j}

O≤λ(fT,N),

s.t. psucc(fT,N) ≥ p0, (30)

where the variables are {f̂j := f̂((j+ 1/2)T/N) : j = −N, . . . , N − 1} (which are com-
plex numbers), fT,N is given by Eq. (6), λ is an upper bound on the ground state energy
of H, O≤λ is given by Eq. (29), psucc is given by Eq. (19), and p0 is the minimum desired
success probability. This is a high-dimensional continuous and constrained optimization
problem, so in principle it can be solved by any well-established optimization algorithm
on a classical computer. However, given the large number of complex variables and
the non-convexity of the objective function and the constraint in these variables, this
approach takes a long time and hence is impractical.

To circumvent the above issue and make our scheme practical, we confine f̂ to a
class of parameterized functions f̂~θ (e.g. Gaussian functions), where ~θ = (θ1, . . . , θk)
are the parameters, and find the optimal solution of Problem (30) within this class of
functions. This way we only need to solve a low-dimensional optimization problem,
which does not take much time on a classical computer.
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Formally, let f~θ be the inverse Fourier transform of f̂~θ, i.e.

f~θ(x) =
∫ ∞
−∞

f̂~θ(ξ)e
i2πxξdξ. (31)

To make the booster operation f~θ(H) perform well and easy to implement, we demand
that f~θ and f̂~θ satisfy the following requirements:

• |f̂~θ| needs to decay exponentially on R, so that we can guarantee that∥∥∥f~θ(H)− f~θ;T (H)
∥∥∥ ≤ ε by choosing some T = O(log(1/ε)) as ε→ 0, which implies

that f~θ(H) can be approximately implemented by a limited-depth circuit.

• |f~θ| needs to decrease monotonically on [0, 1], so that f~θ(H) suppresses the high-
energy eigenstates of H. In fact, we want |f~θ| to decrease as fast as possible on
[0, 1], so that f~θ(H) suppresses the high-energy eigenstates of H to a large extent.

Here we recommend two classes of functions that meet these conditions: Gaussian and
hyperbolic secant. Both of them also have the nice property that the Fourier transform
returns a function of the same form as the input function. That is,

• Gaussian function and its Fourier transform:

fa(x) = e−ax
2 ↔ f̂a(ξ) =

√
π

a
e−

(πξ)2
a ; (32)

• Hyperbolic secant (hsec) function and its Fourier transform:

fa(x) = sech (ax)↔ f̂a(ξ) = π

a
sech

(
π2

a
ξ

)
. (33)

By contrast, the exponential function fa(x) = e−a|x| can be an effective booster choice
for suppressing the high-energy eigenstates, but its Fourier transform decays more
slowly (i.e. quadratically), resulting in a higher-depth circuit for some fixed a.

We acknowledge that the optimal choice of the parameterized functions depends on
the specific situation (including S and q(x)), and leave it as future work to develop a
method for this task.

Once we determine the class of parameterized functions f~θ, we find the optimal
parameters ~θ by solving the following optimization problem:

max
~θ

O≤λ(f~θ),

s.t. psucc(f~θ) ≥ p0,∫ −T
−∞
|f̂~θ(ξ)|dξ +

∫ ∞
T
|f̂~θ(ξ)|dξ ≤ δ,∣∣∣f~θ(0)

∣∣∣ = 1. (34)
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Here psucc(f~θ) is defined as

psucc(f~θ) :=
〈ψ| f †~θ (H)f~θ(H) |ψ〉(∫∞

−∞ |f̂θ(ξ)|dξ
)2 . (35)

In Problem (34), the second constraint is simply "RHS of Eq. (9) ≤ δ", where δ > 0 is
determined by the method in Appendix C. The idea here is that when δ is small, Eq. (9)
implies that f~θ ≈ fT ;~θ and hence O≤λ(f~θ) ≈ O≤λ(fT ;~θ). In other words, this constraint
guarantees that the objective function O≤λ(f~θ) accurately captures the quality of the
real booster implemented by the LCU circuit. Appendix C gives a detailed relationship
between δ and |O≤λ(f~θ)−O≤λ(fT ;~θ)| from which an appropriate δ can be derived. From
now on, we will refer to δ as the implementation error, as it is an upper bound on∥∥∥f~θ(H)− fT ;~θ(H)

∥∥∥. Meanwhile, the last constraint
∣∣∣f~θ(0)

∣∣∣ = 1 is not strictly necessary,

but we add it to normalize f~θ, as δ depends on |f~θ(0)| = maxx∈[0,1]

∣∣∣f~θ(x)
∣∣∣. Then

provided that N is sufficiently large, we have f~θ ≈ fT ;~θ ≈ fT,N ;~θ. It follows that
O≤λ(f~θ) ≈ O≤λ(fT ;~θ) ≈ O≤λ(fT,N ;~θ) and psucc(f~θ) ≈ psucc(fT ;~θ) ≈ psucc(fT,N ;~θ). In other
words, the actions of f(H), fT (H) or fT,N(H) on the input state |ψ〉 will be similar.
Note that if f̂~θ is real and even, then f~θ is also real and even. In this case, if f̂~θ is also
non-negative, then psucc(f~θ) can be approximated by the RHS of Eq. (21).

2.3 Example: Gaussian booster
Now we demonstrate our method on a simple example. Suppose H = ∑D

j=1 λj |λj〉 〈λj|
has eigenvalues λj’s and eigenstates |λj〉’s, where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λD ≤ 1 and the
λj’s spread almost uniformly between 0 and 1. Moreover, suppose |ψ〉 = ∑D

j=1 µj |λj〉 is
the state produced by an ansatz circuit, where γj := |µj|2 decays almost exponentially
in j. In this case, we set S = [0, 1] and q(x) = βe−βx/(1− e−β) for some β > 0 in our
framework.

We confine the booster function f to Gaussian functions fa(x) = e−ax
2 and find the

optimal parameter a as follows. By direct calculation, we get

〈ψ| f 2
a (H) |ψ〉 = β

1− e−β
∫ 1

0
e−2ax2−βxdx (36)

=
√
πβeβ

2/(8a)
√

8a(1− e−β)

[
erf(
√

2a+ β/
√

8a))− erf(β/
√

8a)
]
, (37)

and

〈ψ| fa(H)P≤λfa(H) |ψ〉 = β

1− e−β
∫ λ

0
e−2ax2−βxdx (38)

=
√
πβeβ

2/(8a)
√

8a(1− e−β)

[
erf(λ

√
2a+ β/

√
8a))− erf(β/

√
8a)

]
. (39)
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In addition, we have∫ −T
−∞
|f̂a(ξ)|dξ +

∫ ∞
T
|f̂a(ξ)|dξ = 1− erf(πT/

√
a). (40)

Also, note that fa(0) = 1. So we solve the following optimization problem:

max
a>0

RHS of Eq. (39)
RHS of Eq. (37) ,

s.t. RHS of Eq. (37) ≥ p0,

RHS of Eq. (40) ≤ δ, (41)

where λ ∈ R is the best known upper bound on λ1, and δ > 0 is determined by the
method in Appendix C.

This optimization problem can be solved efficiently on a classical computer as fol-
lows. Note that RHS of Eq. (37) is a monotonically decreasing function of a, and RHS
of Eq. (40) is a monotonically increasing function of a. Let a1 and a2 be the solutions
of RHS of Eq. (37) = p0 and RHS of Eq. (40) = δ, respectively. Both a1 and a2 can
be computed (within high accuracy) quickly on a classical computer via binary search.
Then the set of feasible solutions to Problem 41 is (0,min(a1, a2)]. Meanwhile, we
claim that the objective function RHS of Eq. (39)

RHS of Eq. (37) is a monotonically increasing function of
a. This implies that the optimal solution to Problem 41 is a = min(a1, a2). To prove
this claim, note that

RHS of Eq. (39)
RHS of Eq. (37) =

∫ λ
0 e
−2ax2−βxdx∫ 1

0 e
−2ax2−βxdx

= g(a)
g(a) + h(a) , (42)

where g(a) :=
∫ λ
0 e
−2ax2−βxdx and h(a) :=

∫ 1
λ e
−2ax2−βxdx. For arbitrary a, ζ > 0, we

have

g(a+ ζ)
g(a) =

∫ λ
0 e
−2(a+ζ)x2−βxdx∫ λ

0 e
−2ax2−βxdx

≥ e−2ζλ2 ≥
∫ 1
λ e
−2(a+ζ)x2−βxdx∫ 1
λ e
−2ax2−βxdx

= h(a+ ζ)
h(a) , (43)

which implies

g(a+ ζ)
g(a+ ζ) + h(a+ ζ) ≥

g(a)
g(a) + h(a) , (44)

as claimed.
Once we find the optimal parameter a, the corresponding booster operation fa(H)

is implemented by the LCU method based on the equation:

fa(x) =
√
π

a

∫ ∞
−∞

e−
(πξ)2
a e2πixξdξ ≈ fT,N ;a(x) = T

N

√
π

a

N−1∑
j=−N

e−
(πξj)2

a e2πixξj , (45)
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where ξj = (j+1/2)T/N , and N is sufficiently large so that fa(x) ≈ fT ;a(x) ≈ fT,N ;a(x)
for all x ∈ [0, 1]. Detailed analysis of Gaussian boosters is given in Appendix D.

We follow the methodology in Section 2.1 to construct the quantum circuit for
implementing fT,N ;a(H) probabilistically. For ease of implementation, we choose N to
be a power of 2, i.e. N = 2n for an integer n ≥ 1. The circuit for fT,N ;a(H) is a special
instance of the circuit in Figure 1, where V is an (n+ 1)-qubit unitary operation such
that

V
∣∣∣0n+1

〉
= 1√∑2N−1

k=0 αk

2N−1∑
k=0

√
αk |k〉 (46)

in which αk := T
N
f̂a(ξk−N) = T

N

√
π
a
e−

(πξk−N )2

a = T
N

√
π
a
e−

π2(k−N+1/2)2T2

aN2 , and O is a unitary
operation on the joint system such that

O =
2N−1∑
k=0
|k〉〈k| ⊗ U2k−2N+1 (47)

in which U := eiπHT/N . Here we have used the fact that αk is real and positive for each
k in defining V and O. Note that O is similar to the unitary operation in quantum
phase estimation (QPE) and can be implemented as follows:

O = U−2N+1OnOn−1 · · ·O0, (48)

where

Op := |0〉〈0| ⊗ I + |1〉〈1| ⊗ U2p+1 (49)

acts on the p-th ancilla qubit (which corresponds to kp assuming k = ∑n
j=0 kj2j for

k0, k1, . . . , kn ∈ {0, 1}) and the main system, for p = 0, 1, . . . , n. Figure 2 illustrates
a circuit for implementing O in the case n = 2. Note that the final time evolution
operation U−2N+1 applied to the main system can be dropped because it does not alter
the ground state overlap of the output state.

2.4 Simplified optimization scheme for the Gaussian booster
In the asymptotic regime of large T , we expect that the optimized booster will produce
an output state with weight concentrated mostly on the ground state and the small
remainder on the first excited state. This allows us to forgo using a weight model of the
input state (e.g. the exponential decay model described above) in the optimization.

Furthermore, we will remove the constraints on the success probability p0 and im-
plementation error δ in the optimization. The success probability is removed so as to
focus on the quality of the prepared state instead of the time (in repetitions) needed
to implement it. While the implementation error is ignored as a constraint, we will
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O =

U2 U22
U23

U−(23−1)

Figure 2: The quantum circuit for implementing the unitary operation O for Gaussian boosters in
the case n = 2 has the same structure as the quantum phase estimation (QPE) circuit. The final
time evolution U−7 on the system register can be removed because it does not alter the weights
of the eigenstates.

modify the cost function so that the implementation error plays a direct role in the
optimization.

We consider maximizing a lower bound on the ground state overlap that can be
evaluated independently of the input state,

O≤E0(fT ;a) = |〈ψ| fT ;a(H) |λ1〉|2

〈ψ| f 2
T ;a(H) |ψ〉

= |〈bT ;a |λ1〉 |2

≥ (Re (〈bT ;a |λ1〉))2

=
(

1− 1
2 ‖|λ1〉 − |bT ;a〉‖2

)2

≥
(

1− 1
2 (‖|λ1〉 − |ba〉‖+ ‖|ba〉 − |bT ;a〉‖)2

)2
, (50)

where we’ve defined |bT ;a〉 ≡ fT ;a(H)|ψ〉
‖fT ;a(H)|ψ〉‖ . This lower bound to the cost function is

maximized by minimizing the sum of the two quantities in Eq. (50): the ideal ground
state preparation error, ‖|λ1〉 − |ba〉‖, and the truncation error, ‖|ba〉 − |bT ;a〉‖. As de-
scribed in Appendix D.1, each of these quantities can be upper bounded by expressions
involving the Gaussian parameter a, the energy gap ∆, the initial ground state overlap
γ, and the truncation level T . The upper bound for the ideal ground state preparation
is:

‖|λ1〉 − |ba〉‖ ≤ 2e−a∆2
/γ, (51)

and the upper bound for the truncation error is:

‖|ba〉 − |bT ;a〉‖ ≤ 2
(
1− erf(πT/

√
a)
)
/γ. (52)
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Putting this together, the simplified optimization strategy finds the a which minimizes
the sum of these upper bounds on the state preparation error and the truncation error.
Noticing that the initial overlap does not impact the optimization, the optimal a is
obtained from:

min
a

(
e−a∆2 − erf(πT/

√
a)
)
. (53)

In the following section we assess the performance of the resulting boosters through
numerical simulation on a specific small molecule example. For these numerics we use
the simplified version of the optimization problem described above, which is suited to
the asymptotic performance of the Gaussian booster as described in Appendix D.1.

3 Numerical Simulations
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Figure 3: Evaluating the performance of the Gaussian booster for preparing the ground state of
the N2 molecular system.

In this section, we provide numerical simulations of the Gaussian booster described
in Section 2.3 using the optimization strategy described in Section 2.4. We consider
the task of preparing the ground state of the N2 molecular system, considering 6 active
electrons in 12 spin-orbitals or qubits in an adapted basis [22] at a bond length of 2.0 Å.
We prepare a mean-field state as the initial state |φ0〉, in which the initial ground
state overlap, γ ≡ | 〈λ1|φ0〉 |, is 0.72. The ground state fidelity is thus γ2 = 0.52.
Alternatively, there are methods which ensure better overlap with the ground state
using short circuit depth (e.g. SPA [23]). If we applied boosters to such initializations,
compared to boosting the Hartree-Fock state, we would expect to be able to achieve
better overlap.

Accepted in Quantum 2022-09-25, click title to verify. Published under CC-BY 4.0. 16



To determine which Gaussian boosters to use in this setting, as described in Section
2.4 we choose a based on the optimization problem of Eq. (53). In our simulations,
we set the spectral gap to 80% of its value (i.e. 0.8∆) to reflect that in practice, the
spectral gap is estimated with limited accuracy.3

Once an optimal a is determined, the performance of the booster can be charac-
terized using several metrics: (1) the ground state overlap ratio, defined as |〈λ1|bT ;a〉|2

|〈λ1|ψ〉|2 ,
where |bT ;a〉 is the normalized state after applying the Gaussian booster and |λ1〉 is the
ground state, (2) the error in energy, i.e. 〈φ|H|φ〉 − λ1, and (3) the success probability
of implementing the booster. In Fig. 3, we plot the three quantities as a function of
T , the truncation level in the truncated Fourier expansion of f(H), or fT (H). We
also consider T as a proxy for the circuit depth as it defines the maximum evolution
time in the LCU circuit. The circuit implementing the Gaussian booster, as described
in the end of Section 2.3, involves the same accumulated time evolution duration as
the operation c-exp (4πiHT ). Therefore, measured in terms of number of accumulated
c-exp (2πiH) operations, the circuit depth is 2T . For any fixed compilation scheme
applied to this controlled time evolution of depth D, the circuit depth used in the state
preparation booster will be 2TD.

From our results, we observe that the booster converts circuit depth into overlap, in
which a greater value of T corresponds to a greater ground state overlap ratio or lower
error in estimating the ground state energy. We emphasize that this reliable depth-to-
overlap conversion is not a feature of near-term ground state preparation algorithms
such as VQE. Using the error function as our objective, the resulting optimal values of
a are on the order of 106 for the values of T we consider. At such large values of a, for
ideal boosters, the ground state overlap ratio saturates to 1/γ2 ≈ 1.93 and the success
probability saturates to the initial ground state probability γ2 = 0.722 ≈ 0.52. This
latter value is shown in Fig. 3b as a red horizontal line. For the implemented boosters
(i.e. with truncation T ), we observe that for low values of T , the success probabilities
are significantly lower than the ideal value. This is because at low values of T , the
actual booster function applied deviates significantly from the ideal booster function of
the form e−ax

2 as shown in Fig. 4. As T increases, the success probability approaches
the ideal value. We also note that the success probability can be further increased by
using fixed-point amplitude amplification [24] at the cost of increased circuit depth.

Next, we plot the relationship between T and the ground state infidelity τ ≡ 1 −
| 〈λ1|φ〉 |2 in Fig. 5. We show in Appendix D.1 that it is sufficient to choose some
T = Õ(log(1/ε)) where ε and τ are related by some constant factor. We compare the
numerical results from this specific example with the analytical predictions by fitting
the same functional form in Fig. 5 and observe a good fit. While it might be possible
to achieve better performing boosters using a more refined optimization strategy, our
results demonstrate the systematic increase in overlap or decrease in error as T increases.

We briefly provide a back-of-the-envelope calculation comparing the relative cost

3The spectral gap, the difference between the lowest and second-lowest energy, is 0.021 Ha before
re-scaling.
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Figure 4: Comparing ideal versus implemented booster functions at two different values of T .

102

Depth proxy, T

10 5

10 4

10 3

10 2

10 1

100

=
1

|
1|

|2

data
T = p * log(q/ )

Figure 5: Ground state infidelity τ , as a function of the depth proxy T . We fit the function of the
form T = plog(q/τ), with p ≈ 46.72 and q ≈ 0.023, shown using a solid line.

of the Gaussian booster to that of the Quantum Phase Estimation algorithm (QPE).
As explained in the end of Section 2.3, the circuit operation O used in the Gaussian
booster has the same structure as the phase estimation circuit used in QPE. Therefore,
we can compare the depths of these two algorithms in terms of the number of c-e2πiH

applications they accumulate. Assuming that H has eigenspectrum between 0 and
1, QPE uses 2q+1 applications of c-e2πiH to obtain a q-bit precision estimate of the
phase with high probability. To compare the circuit depths of the state preparation
booster with QPE, we consider the same N2 molecule analyzed above and calculate the
number of c-e2πiH operations needed by QPE to get a chemically-accurate estimate of
an eigenenergy. Chemical accuracy is roughly 10−3 mHa and the spectrum of the 12-
qubit N2 molecule ranges over roughly 10 mHa. Therefore, after shifting and rescaling
the Hamiltonian such that its spectrum lies within 0 to 1, an energy estimate to within
chemical accuracy requires q = − log2(10−3/10), or more than 13 bits of precision. The
number of c-e2πiH needed is therefore roughly 20,000. The Gaussian boosters considered
in Figure 3 use up to T = 500, which, as described earlier, is roughly the circuit depth
of 2T = 1000 sequential applications of c-e2πiH .
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Further investigation is necessary for a more precise comparison of the two methods.
For example, the number of ancilla qubits used in the Gaussian booster is greater than
that used in QPE (c.f. Appendix D). However, our rough calculation suggests the
circuit depth, required for implementing a booster is expected to be a small fraction
of the depth needed for QPE. This gives evidence that state preparation boosters are
suited for improving quantum algorithms in the era of early-fault tolerant quantum
computers.

4 Discussion and Outlook
In this work, we present a framework for improving state preparation with limited
quantum circuit depth. The method of state preparation boosters reliably converts
circuit depth into ground state overlap. This can be used to boost the performance
of the variational quantum eigensolver algorithm on early fault-tolerant devices as well
as the more far-term method of quantum phase estimation. We leave for future work
an analysis of how state preparation boosters can be used to improve the performance
of ground state energy estimation. We give a detailed treatment of the specific case
of Gaussian boosters, motivated by the performance they achieve while keeping circuit
depth relatively low. We carry out simulations of the method on a small (12 qubit)
example of the molecule N2. These show that the truncated Gaussian boosters can
reliably increase the ground state overlap as circuit depth is increased and they also
exhibit the asymptotic scaling derived in Appendix D.1. Below we outline several
important future directions to explore in order to better understand and assess the
capabilities of boosters.

First, we have focused on the specific case of Gaussian boosters using controlled-
time-evolution circuit primitives (i.e. c − exp (iHt)). It is worth investigating the
performance of alternative booster functions and alternative circuit primitives (e.g.
block-encoded Hamiltonians U =

[
H ·
· ·

]
). Also, it might be possible to refine the booster

design process, informed by further numerical investigations.
Along similar lines, it may be worth investigating alternative performance metrics

for state preparation. While boosters reliably convert circuit depth into ground state
overlap, particular classes of booster functions may yield better conversion rates than
others. That is, it may be informative to derive a notion of “efficiency” of boosters, e.g.
amount of overlap gained per unit depth of a booster. Such an efficiency metric may
provide a way to assess and compare general state preparation methods such as VQE
or QPE.

To properly assess the performance of state preparation boosters in practice, we
should incorporate the impact of circuit error. One potential way to account for noise
is to consider the circuit depolarizing model as was considered in Ref. [25]. Using this
model, the output state is a mixture of the noiseless output state and the completely
mixed state. So far we have fixed the circuit depth (or truncation level T ) of the
boosters. But, by incorporating a model of noise, we might arrive at an optimal choice
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of booster circuit depth where ideal overlap is balanced with the decay of the quantum
coherence.

In addition to circuit depth, another metric associated with boosters is the success
probability. In the case of ideal boosters (not the truncated boosters analyzed in Fig.
3), the more that a booster suppresses high-energy eigenstates, the lower the success
probability will be. In our numerical simulations, we had not designed boosters to
accommodate success probability. But, in practice the success probability will lead to a
time overhead of O(1/psuccess) when the booster is used in an algorithm. One solution,
as considered in Section 2.2, is to design boosters which yield a success probability above
a fixed threshold. In some cases, this approach may not yield boosters with sufficiently
high success probabilities. In such cases, an alternative strategy is to boost the success
probability using amplitude amplification [24]. Such techniques cost additional circuit
depth and we leave it to future work to analyze the cost-benefit trade-off in the setting
of state preparation boosters. In general, there appears to be a trade-off between the
booster depth and success probability. Depending on the constraint on the circuit
depth, it may be preferable to apply multiple rounds of shallower boosters in sequence
rather than applying a deep booster, with a higher overall success probability, once.
Further studies are necessary to better understand the trade-off and identify when each
strategy is preferable.

Our proposed booster method can be extended to prepare excited states. Using
existing near-term methods for estimating low-lying excited states [26, 27, 28, 29, 30],
one can obtain an initial state that approximates an excited state. Then, with the
estimated excited state energy, call it x̃, one can construct a shifted Gaussian booster
f(x) = e−a(x−x̃)2 such that the booster function peaks (approximately) at the excited
state energy. We note that many of the steps to implement the booster method for
ground state preparation carry over for excited state preparation, including energy
re-scaling.

In many applications, we need to estimate the expectation value of an observable
O with respect to the ground state of a Hamiltonian H. Our method can be used to
improve the accuracy of the estimate of this quantity. Alternatively, one can use the
method in Ref. [31] to estimate this quantity without explicitly preparing the ground
state. It would be interesting to know which approach is more efficient in practice.

Boosters provide a reliable depth to overlap conversion, which is lacking in near-
term state preparation approaches. In particular, Gaussian boosters suppress high
energy eigenstates while maintaining a relatively low depth, compared to other booster
functions. Based on our theoretical and empirical analysis, boosters have the potential
to become a useful and efficient subroutine for various quantum algorithms, aiding in
the quest for quantum advantage.
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A List of symbols
f Booster function
λ An upper bound on ground state energy of H
T Truncation limit; depth proxy
N Number of points in discretization in approximation

of f
∆ Spectral gap
a Width parameter of the Gaussian booster function
δ Target booster implementation error
p0 Target success probability
β Parameter for modeling initial state weights using a

beta distribution
γ Initial overlap with the ground state, |〈λ1|ψ〉|
ε Lower bound on the error between the ground state

and the implemented boosted state

B Bounding the distance between fT and fT,N
It is clear from Eqs. (5) and (6) that fT,N → fT as N → ∞. A concrete bound
on the convergence speed can be obtained as follows. Assume that f̂ is differentiable
on R. Let ξj = (j + 1/2)T/N for j = −N,−N + 1, . . . , N − 1. Then for arbitrary
ξ ∈ [jT/N, (j + 1)T/N ], the mean value theorem implies that

f̂(ξ) = f̂(ξj) + f̂ ′(η)(ξ − ξj) (54)

for some η between ξ and ξj. Consequently, we have∣∣∣f̂(ξ)− f̂(ξj)
∣∣∣ ≤ |ξ − ξj| max

ξ∈[−T,T ]

∣∣∣f̂ ′(ξ)∣∣∣ , (55)
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and hence for arbitrary x ∈ [0, 1],∣∣∣f̂(ξ)ei2πxξ − f̂(ξj)ei2πxξj
∣∣∣ ≤ ∣∣∣f̂(ξ)ei2πxξ − f̂(ξj)ei2πxξ

∣∣∣+ ∣∣∣f̂(ξj)ei2πxξ − f̂(ξj)ei2πxξj
∣∣∣
(56)

=
∣∣∣f̂(ξ)− f̂(ξj)

∣∣∣+ ∣∣∣f̂(ξj)
∣∣∣ ∣∣∣ei2πxξ − ei2πxξj ∣∣∣ (57)

≤ |ξ − ξj|
(

max
ξ∈[−T,T ]

∣∣∣f̂ ′(ξ)∣∣∣+ 2π |x| max
ξ∈[−T,T ]

∣∣∣f̂(ξ)
∣∣∣) (58)

≤ T

N

(
max

ξ∈[−T,T ]

∣∣∣f̂ ′(ξ)∣∣∣+ 2π max
ξ∈[−T,T ]

∣∣∣f̂(ξ)
∣∣∣) , (59)

where in the third step we use
∣∣∣ei2πxξ − ei2πxξj ∣∣∣ ≤ 2π |x| |ξ − ξj|, and in the last step we

use |ξ − ξj| ≤ T/N and |x| ≤ 1. It follows that

|fT (x)− fT,N(x)| =

∣∣∣∣∣∣
∫ T

−T
f̂(ξ)ei2πxξdξ − T

N

N−1∑
j=−N

f̂ (ξj) ei2πxξj
∣∣∣∣∣∣ (60)

=

∣∣∣∣∣∣
N−1∑
j=−N

∫ (j+1)T/N

jT/N
f̂(ξ)ei2πxξdξ − T

N

N−1∑
j=−N

f̂ (ξj) ei2πxξj
∣∣∣∣∣∣ (61)

≤
N−1∑
j=−N

∣∣∣∣∣
∫ (j+1)T/N

jT/N
f̂(ξ)ei2πxξdξ − T

N
f̂ (ξj) ei2πxξj

∣∣∣∣∣ (62)

≤
N−1∑
j=−N

∫ (j+1)T/N

jT/N

∣∣∣f̂(ξ)ei2πxξ − f̂ (ξj) ei2πxξj
∣∣∣ dξ (63)

≤
N−1∑
j=−N

∫ (j+1)T/N

jT/N

∣∣∣f̂(ξ)ei2πxξ − f̂ (ξj) ei2πxξ
∣∣∣ dξ (64)

+
N−1∑
j=−N

∫ (j+1)T/N

jT/N

∣∣∣f̂(ξj)ei2πxξ − f̂ (ξj) ei2πxξj
∣∣∣ dξ (65)

=
N−1∑
j=−N

∫ (j+1)T/N

jT/N

∣∣∣f̂(ξ)− f̂ (ξj)
∣∣∣ dξ (66)

+
N−1∑
j=−N

∫ (j+1)T/N

jT/N

∣∣∣f̂(ξj)
∣∣∣ ∣∣∣ei2πxξ − ei2πxξj ∣∣∣ dξ (67)

≤ 2T 2

N

(
max

ξ∈[−T,T ]

∣∣∣f̂ ′(ξ)∣∣∣+ 2π max
ξ∈[−T,T ]

∣∣∣f̂(ξ)
∣∣∣) , (68)

where the third, fourth and fifth steps follow from the triangle inequality, and the
seventh step follows from∣∣∣f̂(ξ)− f̂ (ξj)

∣∣∣ ≤ |ξ − ξj| · max
ξ∈[−T,T ]

∣∣∣f̂ ′(ξ)∣∣∣ ≤ T

N
· max
ξ∈[−T,T ]

∣∣∣f̂ ′(ξ)∣∣∣ (69)
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and ∣∣∣ei2πxξ − ei2πxξj ∣∣∣ ≤ 2π |x| |ξ − ξj| ≤
2πT
N

. (70)

Now let R := maxξ∈[−T,T ](|f̂(ξ)|+ |f̂ ′(ξ)|). Then we have

max
x∈[0,1]

|fT (x)− fT,N(x)| = O

(
RT 2

N

)
. (71)

So for arbitrary ε > 0, by choosing some N = O(RT 2/ε), we guarantee that |fT (x) −
fT,N(x)| ≤ ε for all x ∈ [0, 1].

Recall that we require that |f̂ | decays exponentially on R, so that maxx∈R |f(x) −
fT (x)| ≤ ε for some T = O(log(1/ε)). In this case, f̂ is bounded on R, i.e., there
exists a constant R1 > 0 such that |f̂(ξ)| ≤ R1 for all ξ ∈ R. If we require that f̂ ′

is also bounded on R, i.e., there exists a constant R2 > 0 such that
∣∣∣f̂ ′(ξ)∣∣∣ ≤ R2 for

all ξ ∈ R, then R ≤ R1 + R2 = O(1). In this case, it is sufficient to choose some
N = O(T 2/ε) = Õ(1/ε) to ensure that maxx∈[0,1] |fT (x) − fT,N(x)| ≤ ε, as claimed.
Note that many exponentially-decaying functions (e.g. f̂(ξ) = e−a|ξ|

b for some a > 0
and b ≥ 1) have bounded derivatives and hence satisfy this additional requirement.

C Choosing an appropriate δ in Problem (34)
Here we describe how to set the parameter δ in Problem (34). For better readability,
we drop the subscript ~θ throughout this section. We aim to choose δ properly so that
fT is close to f , which implies that O≤λ(fT ) is close to O≤λ(f), i.e., the total overlap
between the real boosted state and the low-energy eigenstates of H is close to the one
for the ideal boosted state.

By Eq. (9), we know that the second constraint of Problem (34) ensures that

‖f(H)− fT (H)‖ ≤ δ, (72)

which implies that

‖f(H) |ψ〉 − fT (H) |ψ〉‖ ≤ δ. (73)

Note that ‖f(H) |ψ〉‖ ≤ 1 since |f(x)| ≤ 1, for all x ∈ [0, 1]. So we have ‖fT (H) |ψ〉‖ ≤
1 + δ.

Lemma 1. Suppose |ψ1〉 and |ψ2〉 are two vectors such that ‖|ψ1〉‖ , ‖|ψ2〉‖ ≤ a and
‖|ψ1〉 − |ψ2〉‖ ≤ b for some a, b > 0, and A is a linear operator such that ‖A‖ ≤ 1.
Then

|〈ψ1|A |ψ1〉 − 〈ψ2|A |ψ2〉| ≤ 2ab. (74)
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Proof. Using the triangle inequality, we obtain

|〈ψ1|A |ψ1〉 − 〈ψ2|A |ψ2〉| ≤ |〈ψ1|A |ψ1〉 − 〈ψ1|A |ψ2〉|+ |〈ψ1|A |ψ2〉 − 〈ψ2|A |ψ2〉|
(75)

= |〈ψ1|A (|ψ1〉 − |ψ2〉)|+ |(〈ψ1| − 〈ψ2|)A |ψ2〉| (76)
≤ ab+ ba (77)
= 2ab. (78)

It follows from Lemma 1, Eq. (73), f(H) |ψ〉 ≤ 1 and ‖fT (H) |ψ〉‖ ≤ 1 + δ that∣∣∣〈ψ| f †(H)P≤λf(H) |ψ〉 − 〈ψ| f †T (H)P≤λfT (H) |ψ〉
∣∣∣ ≤ 2δ(1 + δ), (79)

and ∣∣∣〈ψ| f †(H)f(H) |ψ〉 − 〈ψ| f †T (H)fT (H) |ψ〉
∣∣∣ ≤ 2δ(1 + δ). (80)

Meanwhile, the first constraint of Problem (34) ensures that

〈ψ| f †(H)f(H) |ψ〉 = psucc(f)
(∫ ∞
−∞
|f̂(ξ)|dξ

)2
≥ p0

(∫ ∞
−∞
|f̂(ξ)|dξ

)2
. (81)

Let η be a lower bound on
∫∞
−∞ |f̂(ξ)|dξ. It can be obtained by, e.g., noting that∫ ∞

−∞

∣∣∣f̂(ξ)
∣∣∣ dξ ≥ ∣∣∣∣∫ ∞

−∞
f̂(ξ)dξ

∣∣∣∣ = |f(0)| = 1, (82)

where we use the last constraint of Problem (34) in the last step. But one might obtain
better bounds by utilizing other information about f . Then combining Eqs. (79), (80)
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and (81) yields

|O≤λ(f)−O≤λ(fT )| =
∣∣∣∣∣〈ψ| f †(H)P≤λf(H) |ψ〉
〈ψ| f †(H)f(H) |ψ〉 − 〈ψ| f

†
T (H)P≤λfT (H) |ψ〉

〈ψ| f †T (H)fT (H) |ψ〉

∣∣∣∣∣ (83)

≤
∣∣∣∣∣〈ψ| f †(H)P≤λf(H) |ψ〉
〈ψ| f †(H)f(H) |ψ〉 − 〈ψ| f

†
T (H)P≤λfT (H) |ψ〉
〈ψ| f †(H)f(H) |ψ〉

∣∣∣∣∣ (84)

+
∣∣∣∣∣〈ψ| f

†
T (H)P≤λfT (H) |ψ〉
〈ψ| f †(H)f(H) |ψ〉 − 〈ψ| f

†
T (H)P≤λfT (H) |ψ〉

〈ψ| f †T (H)fT (H) |ψ〉

∣∣∣∣∣ (85)

=

∣∣∣〈ψ| f †(H)P≤λf(H) |ψ〉 − 〈ψ| f †T (H)P≤λfT (H) |ψ〉
∣∣∣

〈ψ| f †(H)f(H) |ψ〉 (86)

+〈ψ| f
†
T (H)P≤λfT (H) |ψ〉

〈ψ| f †T (H)fT (H) |ψ〉
·

∣∣∣〈ψ| f †(H)f(H) |ψ〉 − 〈ψ| f †T (H)fT (H) |ψ〉
∣∣∣

〈ψ| f †(H)f(H) |ψ〉
(87)

≤

∣∣∣〈ψ| f †(H)P≤λf(H) |ψ〉 − 〈ψ| f †T (H)P≤λfT (H) |ψ〉
∣∣∣

〈ψ| f †(H)f(H) |ψ〉 (88)

+

∣∣∣〈ψ| f †(H)f(H) |ψ〉 − 〈ψ| f †T (H)fT (H) |ψ〉
∣∣∣

〈ψ| f †(H)f(H) |ψ〉 (89)

≤ 2δ(1 + δ)
p0η2 + 2δ(1 + δ)

p0η2 (90)

= 4δ(1 + δ)
p0η2 , (91)

where the second step follows from the triangle inequality, the fourth step follows from
〈ψ| f †T (H)P≤λfT (H) |ψ〉 ≤ 〈ψ| f †T (H)fT (H) |ψ〉, and the fifth step follows from Eqs. (79),
(80) and (81) and the definition of η. Consequently, setting δ = (

√
εp0η2 + 1− 1)/2 en-

sures that |O≤λ(f)−O≤λ(fT )| ≤ ε. This provides a method for picking an appropriate
δ in Problem (34).

D Detailed analysis of Gaussian boosters
Here we give detailed analysis of Gaussian boosters. Recall that in Section 2.3, we
demonstrate how to find the optimal parameter a for the booster function fa(x) = e−ax

2

in the case where S = [0, 1] and q(x) = βe−βx/(1− e−β) for some β > 0.
By Eqs. (9) and (40), we have

max
x∈R
|fa(x)− fT ;a(x)| ≤ 1− erf(πT/

√
a) ≤

√
ae−π

2T 2/a

π3/2T
, (92)

Accepted in Quantum 2022-09-25, click title to verify. Published under CC-BY 4.0. 25



where in the second step we use the fact that

1− erf(x) = 2√
π

∫ ∞
x

e−t
2
dt ≤ 1√

πx

∫ ∞
x

2te−t2dt = e−x
2

√
πx
. (93)

This implies that for some a = Θ̃(T 2/ log(1/δ)), we have

‖fa(H)− fT ;a(H)‖ ≤ max
x∈R
|fa(x)− fT ;a(x)| ≤ δ. (94)

In this case, we use the results in Appendix B to estimate the smallest N such that

‖fT ;a(H)− fT,N ;a(H)‖ ≤ max
x∈[0,1]

|fT ;a(x)− fT,N ;a(x)| ≤ δ. (95)

Recall that f̂a(ξ) =
√

π
a
e−

(πξ)2
a is the Fourier transform of fa(x) = e−ax

2 . Then we have

R := max
ξ∈[−T,T ]

(∣∣∣f̂a(ξ)∣∣∣+ ∣∣∣f̂ ′a(ξ)∣∣∣) (96)

= max
ξ∈[−T,T ]

(√
π

a
e−

(πξ)2
a + 2π3/2

a3/2 e
− (πξ)2

a |ξ|
)

(97)

≤ max
ξ∈[−T,T ]

(√
π

a
e−

(πξ)2
a

)
+ max

ξ∈[−T,T ]

2π3/2

a3/2 e
− (πξ)2

a |ξ| (98)

=
√
π

a
+
√

2π√
ea

(99)

= O

(
1√
a

)
(100)

= Õ


√

log(1/δ)
T

. (101)

It follows that Eq. (95) holds for some N = O(RT 2/δ) = Õ(T/δ).

D.1 Asymptotic performance of Gaussian boosters
Now suppose we want the boosted state fT ;a(H)|ψ〉

‖fT ;a(H)|ψ〉‖ to be ε-close to the ground state of
H, for arbitrary ε > 0. How large does T need to be as a function of ε? We will show
that T = Õ(log(1/ε)) is sufficient for this purpose.

Formally, suppose H = ∑D
j=1 λj |λj〉 〈λj| has eigenvalues λj’s and eigenstates |λj〉’s,

where 0 = λ1 < λ2 = ∆ ≤ · · · ≤ λD ≤ 1. Moreover, suppose |ψ〉 = ∑D
j=1 µj |λj〉

is the state produced by an ansatz circuit such that γ := µ1 > 0. Then applying
fa(H) or fT ;a(H) on |ψ〉 yields the unnormalized state fa(H) |ψ〉 = ∑D

j=1 fa(x)µj |λj〉 or
fT ;a(H) |ψ〉 = ∑D

j=1 fT ;a(x)µj |λj〉, respectively. We want to choose appropriate T and
a such that ∥∥∥∥∥|λ1〉 −

fT ;a(H) |ψ〉
‖fT ;a(H) |ψ〉‖

∥∥∥∥∥ ≤ ε (102)
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for given ε > 0. By the triangle inequality, we know that Eq. (102) holds if we have
both ∥∥∥∥∥|λ1〉 −

fa(H) |ψ〉
‖fa(H) |ψ〉‖

∥∥∥∥∥ ≤ ε/2 (103)

and ∥∥∥∥∥ fa(H) |ψ〉
‖fa(H) |ψ〉‖ −

fT ;a(H) |ψ〉
‖fT ;a(H) |ψ〉‖

∥∥∥∥∥ ≤ ε/2. (104)

It remains to find T and a that satisfy these equations. First, note that

‖γ |λ1〉 − fa(H) |ψ〉‖ =

∥∥∥∥∥∥
D∑
j=2

µje
−aλ2

j |λj〉

∥∥∥∥∥∥ =

√√√√√ D∑
j=2
|µj|2e−2aλ2

j ≤ e−a∆2
, (105)

where the last step follows from λj ≥ ∆ for j = 2, 3, . . . , D and
∑D
j=2 |µj|2 ≤ 1. This

implies that

|γ − ‖fa(H) |ψ〉‖| = |‖γ |λ1〉‖ − ‖fa(H) |ψ〉‖| ≤ e−a∆2
. (106)

As a result, we have∥∥∥∥∥|λ1〉 −
fa(H) |ψ〉
‖fa(H) |ψ〉‖

∥∥∥∥∥ ≤
∥∥∥∥∥|λ1〉 −

fa(H) |ψ〉
γ

∥∥∥∥∥ (107)

+
∥∥∥∥∥fa(H) |ψ〉

γ
− fa(H) |ψ〉
‖fa(H) |ψ〉‖

∥∥∥∥∥ (108)

= ‖γ |λ1〉 − fa(H) |ψ〉‖
γ

(109)

+ |γ − ‖fa(H) |ψ〉‖|
γ

(110)

≤ e−a∆2

γ
+ e−a∆2

γ
(111)

= 2e−a∆2

γ
, (112)

where the first step follows from the triangle inequality, and the third step follows
from Eqs. (105) and (106). Thus, Eq. (103) holds for some a = O(log(1/(γε))/∆2).
Meanwhile, Eq. (92) implies that

‖fa(H) |ψ〉 − fT ;a(H) |ψ〉‖ ≤ 1− erf(πT/
√
a) ≤

√
ae−π

2T 2/a

π3/2T
, (113)
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which in turn implies that

|‖fa(H) |ψ〉‖ − ‖fT ;a(H) |ψ〉‖| ≤ 1− erf(πT/
√
a) ≤

√
ae−π

2T 2/a

π3/2T
. (114)

Then we get∥∥∥∥∥ fa(H) |ψ〉
‖fa(H) |ψ〉‖ −

fT ;a(H) |ψ〉
‖fT ;a(H) |ψ〉‖

∥∥∥∥∥ ≤
∥∥∥∥∥ fa(H) |ψ〉
‖fa(H) |ψ〉‖ −

fT ;a(H) |ψ〉
‖fa(H) |ψ〉‖

∥∥∥∥∥ (115)

+
∥∥∥∥∥ fT ;a(H) |ψ〉
‖fa(H) |ψ〉‖ −

fT ;a(H) |ψ〉
‖fT ;a(H) |ψ〉‖

∥∥∥∥∥ (116)

= ‖fa(H) |ψ〉 − fT ;a(H) |ψ〉‖
‖fa(H) |ψ〉‖ (117)

+ |‖fa(H) |ψ〉‖ − ‖fT ;a(H) |ψ〉‖|
‖fa(H) |ψ〉‖ (118)

≤ 1− erf(πT/
√
a)

γ
+ 1− erf(πT/

√
a)

γ
(119)

= 2(1− erf(πT/
√
a))

γ
(120)

≤ 2
√
ae−π

2T 2/a

π3/2Tγ
, (121)

where the first step follows from the triangle inequality, and the third step follows from
Eqs. (113) and (114) and ‖fa(H) |ψ〉‖ =

√
γ2 +∑D

j=2 |µj|2e
−2aλ2

j ≥ γ. So Eq. (104)
holds for some T = Õ(

√
a log(1/(γε))) = Õ(log(1/(γε))/∆). Overall, by choosing some

T = Õ(log(1/(γε))/∆) and a = O(log(1/(γε))/∆2), we ensure that Eq. (102) holds, as
claimed.
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