An experiment to test the discreteness of time

Marios Christodoulou1,2, Andrea Di Biagio1,3,4, and Pierre Martin-Dussaud4,5,6

1Institute for Quantum Optics and Quantum Information (IQOQI) Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
3Dipartimento di Fisica, La Sapienza Università di Roma, Piazzale Aldo Moro 5, Roma, Italy
4Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
5Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
6Basic Research Community for Physics e.V., Mariannenstraße 89, Leipzig, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Time at the Planck scale ($\sim 10^{-44} \mathrm{s}$) is an unexplored physical regime. It is widely believed that probing Planck time will remain for long an impossible task. Yet, we propose an experiment to test the discreteness of time at the Planck scale and estimate that it is not far removed from current technological capabilities.

► BibTeX data

► References

[1] G. Edward Marti, Ross B. Hutson, Akihisa Goban, Sara L. Campbell, Nicola Poli, and Jun Ye. ``Imaging optical frequencies with 100 $\mu$Hz precision and 1.1 $\mu$m resolution''. Physical Review Letters 120, 103201 (2018). arXiv:1711.08540.

[2] Garrett Wendel, Luis Martinez, and Martin Bojowald. ``Physical implications of a fundamental period of time''. Physical Review Letters 124, 241301 (2020). arXiv:2005.11572.

[3] Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew Geraci, Peter Barker, M. S. Kim, and Gerard Milburn. ``A Spin Entanglement Witness for Quantum Gravity''. Physical Review Letters 119, 240401 (2017). arXiv:1707.06050.

[4] Chiara Marletto and Vlatko Vedral. ``Gravitationally-induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity''. Physical Review Letters 119, 240402 (2017). arXiv:1707.06036.

[5] Ryan J. Marshman, Anupam Mazumdar, and Sougato Bose. ``Locality and Entanglement in Table-Top Testing of the Quantum Nature of Linearized Gravity''. Physical Review A 101, 052110 (2020). arXiv:1907.01568.

[6] Tanjung Krisnanda, Guo Yao Tham, Mauro Paternostro, and Tomasz Paterek. ``Observable quantum entanglement due to gravity''. npj Quantum Information 6, 12 (2020). arXiv:1906.08808.

[7] Sougato Bose. ``Table-top Testing of the Quantum Nature of Gravity: Assumptions, Implications and Practicalities of a Proposal'' (2020).

[8] Richard Howl, Vlatko Vedral, Devang Naik, Marios Christodoulou, Carlo Rovelli, and Aditya Iyer. ``Non-Gaussianity as a signature of a quantum theory of gravity''. PRX Quantum 2, 010325 (2021). arXiv:2004.01189.

[9] Markus Arndt and Klaus Hornberger. ``Testing the limits of quantum mechanical superpositions''. Nature Physics 10, 271–277 (2014). arXiv:1410.0270.

[10] Oriol Romero-Isart, Mathieu L. Juan, Romain Quidant, and J. Ignacio Cirac. ``Toward Quantum Superposition of Living Organisms''. New Journal of Physics 12, 033015 (2010). arXiv:0909.1469.

[11] Sandra Eibenberger, Stefan Gerlich, Markus Arndt, Marcel Mayor, and Jens Tüxen. ``Matter-wave interference with particles selected from a molecular library with masses exceeding 10000 amu''. Physical Chemistry Chemical Physics 15, 14696 (2013). arXiv:1310.8343.

[12] Marios Christodoulou and Carlo Rovelli. ``On the possibility of laboratory evidence for quantum superposition of geometries''. Physics Letters B 792, 64–68 (2019). arXiv:1808.05842.

[13] Marios Christodoulou and Carlo Rovelli. ``On the possibility of experimental detection of the discreteness of time''. Frontiers in Physics 8, 207 (2020). arXiv:1812.01542.

[14] Sougato Bose and Gavin W. Morley. ``Matter and spin superposition in vacuum experiment (MASSIVE)'' (2018). arXiv:1810.07045.

[15] Hadrien Chevalier, A. J. Paige, and M. S. Kim. ``Witnessing the non-classical nature of gravity in the presence of unknown interactions''. Physical Review A 102, 022428 (2020). arXiv:2005.13922.

[16] R. Colella, A. W. Overhauser, and S. A. Werner. ``Observation of Gravitationally Induced Quantum Interference''. Physical Review Letters 34, 1472–1474 (1975).

[17] Hartmut Abele and Helmut Leeb. ``Gravitation and quantum interference experiments with neutrons''. New Journal of Physics 14, 055010 (2012). arXiv:1207.2953.

[18] Julen S. Pedernales, Gavin W. Morley, and Martin B. Plenio. ``Motional Dynamical Decoupling for Matter-Wave Interferometry''. Physical Review Letters 125, 023602 (2020). arXiv:1906.00835.

[19] Thomas W. van de Kamp, Ryan J. Marshman, Sougato Bose, and Anupam Mazumdar. ``Quantum Gravity Witness via Entanglement of Masses: Casimir Screening''. Physical Review A 102, 062807 (2020). arXiv:2006.06931.

[20] H. Pino, J. Prat-Camps, K. Sinha, B. P. Venkatesh, and O. Romero-Isart. ``On-chip quantum interference of a superconducting microsphere''. Quantum Science and Technology 3, 025001 (2018). arXiv:1603.01553.

[21] National High Magnetic Field Laboratory. ``Selected Scientific Publications Generated from Research Conducted in the 100 Tesla Multi-Shot Magnet''. Technical report. National High Magnetic Field Laboratory (2020). url:​user-facilities/​pulsed-field-facility/​instruments-pff/​100-tesla-multi-shot-magnet.

[22] J. D. Carrillo-Sánchez, J. M. C. Plane, W. Feng, D. Nesvorný, and D. Janches. ``On the size and velocity distribution of cosmic dust particles entering the atmosphere''. Geophysical Research Letters 42, 6518–6525 (2015).

[23] Matthew Dean Schwartz. ``Quantum field theory and the standard model''. Cambridge University Press. New York (2014).

[24] Andrea Di Biagio (2022). code: AndreaDiBiagio/​TimeDiscretenessExperimentPlots.

[25] Oriol Romero-Isart. ``Quantum superposition of massive objects and collapse models''. Physical Review A 84, 052121 (2011). arXiv:1110.4495.

[26] Igor Pikovski, Magdalena Zych, Fabio Costa, and Caslav Brukner. ``Universal decoherence due to gravitational time dilation''. Nature Physics 11, 668–672 (2015). arXiv:1311.1095.

[27] S. Bhagavantam and D. A. A. S. Narayana Rao. ``Dielectric Constant of Diamond''. Nature 161, 729–729 (1948).

[28] F. Nicastro, J. Kaastra, Y. Krongold, S. Borgani, E. Branchini, R. Cen, M. Dadina, C. W. Danforth, M. Elvis, F. Fiore, A. Gupta, S. Mathur, D. Mayya, F. Paerels, L. Piro, D. Rosa-Gonzales, J. Schaye, J. M. Shull, J. Torres-Zafra, N. Wijers, and L. Zappacosta. ``Observations of the Missing Baryons in the warm-hot intergalactic medium''. Nature 558, 406–409 (2018). arXiv:1806.08395.

[29] Katia M. Ferrière. ``The interstellar environment of our galaxy''. Reviews of Modern Physics 73, 1031–1066 (2001).

[30] G. Gabrielse, X. Fei, L. Orozco, R. Tjoelker, J. Haas, H. Kalinowsky, T. Trainor, and W. Kells. ``Thousandfold improvement in the measured antiproton mass''. Physical Review Letters 65, 1317–1320 (1990).

[31] G. Gabrielse. ``Comparing the antiproton and proton, and opening the way to cold antihydrogen''. In Advances In Atomic, Molecular, and Optical Physics. Volume 45, pages 1–39. Elsevier (2001).

[32] Konrad Zuse. ``Rechnender Raum (Calculating Space)''. Schriften Zur Dataverarbeitung 1 (1969). url:​rec/​ZUSRR.

[33] Ted Jacobson, Stefano Liberati, and David Mattingly. ``Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints''. Annals of Physics 321, 150–196 (2006). arXiv:astro-ph/​0505267.

[34] A. A. Abdo, M. Ackermann, M. Ajello, K. Asano, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M. G. Baring, and others. ``A limit on the variation of the speed of light arising from quantum gravity effects''. Nature 462, 331–334 (2009).

[35] Giovanni Amelino-Camelia. ``Burst of support for relativity''. Nature 462, 291–292 (2009).

[36] Robert J. Nemiroff, Ryan Connolly, Justin Holmes, and Alexander B. Kostinski. ``Bounds on Spectral Dispersion from Fermi-Detected Gamma Ray Bursts''. Physical Review Letters 108, 231103 (2012).

[37] D. P. Rideout and R. D. Sorkin. ``A Classical Sequential Growth Dynamics for Causal Sets''. Physical Review D 61, 024002 (1999). arXiv:gr-qc/​9904062.

[38] Fay Dowker. ``Causal sets and the deep structure of spacetime''. In Abhay Ashtekar, editor, 100 Years of Relativity. Pages 445–464. World Scientific (2005). arXiv:gr-qc/​0508109.

[39] Rafael D. Sorkin. ``Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School)'' (2003). arXiv:gr-qc/​0309009.

[40] W. Pauli. ``Die allgemeinen Prinzipien der Wellenmechanik''. In H. Bethe, F. Hund, N. F. Mott, W. Pauli, A. Rubinowicz, G. Wentzel, and A. Smekal, editors, Quantentheorie. Pages 83–272. Springer Berlin Heidelberg, Berlin, Heidelberg (1933).

[41] Eric A. Galapon. ``Pauli's Theorem and Quantum Canonical Pairs: The Consistency Of a Bounded, Self-Adjoint Time Operator Canonically Conjugate to a Hamiltonian with Non-empty Point Spectrum''. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, 451–472 (2002). arXiv:quant-ph/​9908033.

[42] Carlo Rovelli and Lee Smolin. ``Discreteness of area and volume in quantum gravity''. Nuclear Physics B 442, 593–619 (1995). arXiv:gr-qc/​9411005.

[43] Bianca Dittrich and Thomas Thiemann. ``Are the spectra of geometrical operators in Loop Quantum Gravity really discrete?''. Journal of Mathematical Physics 50, 012503 (2009). arXiv:0708.1721.

[44] Carlo Rovelli. ``Comment on ``Are the spectra of geometrical operators in Loop Quantum Gravity really discrete?'' by B. Dittrich and T. Thiemann'' (2007). arXiv:0708.2481.

[45] Carlo Rovelli and Francesca Vidotto. ``Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory''. Cambridge University Press. Cambridge (2014).

[46] Eugenio Bianchi. ``The length operator in Loop Quantum Gravity''. Nuclear Physics B 807, 591–624 (2009). arXiv:0806.4710.

[47] Albert Einstein. ``Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen''. Annalen der Physik 322, 549–560 (1905).

[48] R.A. Millikan. ``A new modification of the cloud method of determining the elementary electrical charge and the most probable value of that charge''. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 19, 209–228 (1910).

[49] R. A. Millikan. ``On the Elementary Electrical Charge and the Avogadro Constant''. Physical Review 2, 109–143 (1913).

Cited by

[1] Marios Christodoulou, Andrea Di Biagio, Richard Howl, and Carlo Rovelli, "Gravity entanglement, quantum reference systems, degrees of freedom", Classical and Quantum Gravity 40 4, 047001 (2023).

[2] Marios Christodoulou, Andrea Di Biagio, Markus Aspelmeyer, Časlav Brukner, Carlo Rovelli, and Richard Howl, "Locally Mediated Entanglement in Linearized Quantum Gravity", Physical Review Letters 130 10, 100202 (2023).

[3] Anne-Catherine de la Hamette, Viktoria Kabel, Esteban Castro-Ruiz, and Časlav Brukner, "Falling through masses in superposition: quantum reference frames for indefinite metrics", arXiv:2112.11473, (2021).

[4] Simone Rijavec, Matteo Carlesso, Angelo Bassi, Vlatko Vedral, and Chiara Marletto, "Decoherence effects in non-classicality tests of gravity", New Journal of Physics 23 4, 043040 (2021).

[5] Carlo Rovelli, "Considerations on Quantum Gravity Phenomenology", Universe 7 11, 439 (2021).

[6] Emily Adlam, "Tabletop Experiments for Quantum Gravity Are Also Tests of the Interpretation of Quantum Mechanics", Foundations of Physics 52 5, 115 (2022).

[7] John Ashmead, "Time dispersion in quantum electrodynamics", arXiv:2211.00202, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2023-03-31 03:21:00) and SAO/NASA ADS (last updated successfully 2023-03-31 03:21:01). The list may be incomplete as not all publishers provide suitable and complete citation data.