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Top quarks represent unique high-
energy systems since their spin correla-
tions can be measured, thus allowing to
study fundamental aspects of quantum
mechanics with qubits at high-energy col-
liders. We present here the general frame-
work of the quantum state of a top-antitop
(tt̄) quark pair produced through quantum
chromodynamics (QCD) in a high-energy
collider. We argue that, in general, the to-
tal quantum state that can be probed in
a collider is given in terms of the produc-
tion spin density matrix, which necessarily
gives rise to a mixed state. We compute
the quantum state of a tt̄ pair produced
from the most elementary QCD processes,
finding the presence of entanglement and
CHSH violation in different regions of
phase space. We show that any realistic
hadronic production of a tt̄ pair is a sta-
tistical mixture of these elementary QCD
processes. We focus on the experimen-
tally relevant cases of proton-proton and
proton-antiproton collisions, performed at
the LHC and the Tevatron, analyzing the
dependence of the quantum state with the
energy of the collisions. We provide exper-
imental observables for entanglement and
CHSH-violation signatures. At the LHC,
these signatures are given by the measure-
ment of a single observable, which in the
case of entanglement represents the viola-
tion of a Cauchy-Schwarz inequality. We
extend the validity of the quantum tomog-
raphy protocol for the tt̄ pair proposed in
the literature to more general quantum
states, and for any production mechanism.
Finally, we argue that a CHSH violation
measured in a collider is only a weak form
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of violation of Bell’s theorem, necessarily
containing a number of loopholes.

1 Introduction
The Standard Model of particle physics is a rel-
ativistic quantum field theory, based on special
relativity and quantum mechanics. Therefore, it
allows to study fundamental properties of quan-
tum mechanics in a genuinely relativistic environ-
ment, at the frontier of the known Physics. How-
ever, even though the Standard Model is inher-
ently a quantum theory, observing basic quantum
phenomena in a high-energy collider can become
quite challenging due to the nature of the mea-
surement process.

Some light on this problem can be shed by
the field of quantum information, where most
of the foundations of quantum mechanics find a
direct application. There, a characteristic sig-
nature of quantumness is provided by the exis-
tence of correlations that cannot be accounted
by a classical probability theory, arising due to
the intrinsic wave nature of quantum mechanics.
Here emerges the concept of entanglement [1–
3], perhaps the most genuine feature of quan-
tum mechanics. Entanglement plays a key role
in quantum technologies like quantum compu-
tation, cryptography, metrology and teleporta-
tion [4–10]. In particular, the study of entan-
glement in high-energy setups is of fundamen-
tal interest since entanglement is expected to be
critically affected by relativistic effects [11–16].
A number of works have already addressed the
role of entanglement in the context of high-energy
physics [17–22].

The simplest system which can exhibit entan-
glement is that formed by two qubits. In high-
energy physics, an interesting realization of a two-
qubit system is a pair of decaying spin-1/2 parti-
cles, since their spin correlations can be measured
from the kinematical distribution of their decay
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products. The best candidate from the Standard
Model to carry out such a measurement is the
top quark, the most massive fundamental parti-
cle known to exist (mtc

2 ≈ 173 GeV), first dis-
covered by the D0 and CDF collaborations at the
Tevatron in the Fermilab in 1995 [23, 24]. Top
quarks are typically produced in top-antitop (tt̄)
pairs which, due to their high mass, quickly decay
well before any other process can affect their spin
correlations. As a result, the spins of the tt̄ pair
are correlated with the kinematical distribution
of the decay products, from where the original
top spin quantum state can be reconstructed.

This feature has rendered top spin correla-
tions a rich subject of study within high-energy
physics [25–32]. Indeed, spin correlations be-
tween tt̄ pairs have already been measured by the
D0 and CDF collaborations at the Tevatron with
proton-antiproton (pp̄) collisions [33–35], and by
the ATLAS and CMS collaborations at the Large
Hadron Collider (LHC) with proton-proton (pp)
collisions [36–40].

However, despite the extensive literature on
the topic, only a very recent work has studied
the entanglement between tt̄ pairs [41]. Specif-
ically, it was proposed that the entanglement
of a tt̄ pair can be detected at the LHC with
high statistical significance using the current data
recorded during Run 2. This would represent
the first measurement ever of entanglement in a
quark pair, and the highest-energy observation
of entanglement so far. Entanglement has been
also recently postulated as potentially sensitive
to effects of New Physics beyond the Standard
Model [42, 43]. An experimental protocol for the
quantum tomography of a tt̄ pair was also devel-
oped in Ref. [41], a canonical technique in quan-
tum information but novel in the high-energy
context. In parallel, some recent works have also
addressed the possibility of measuring the viola-
tion of Bell inequalities with tt̄ pairs [44–46], and
also with W+W− pairs [47], which are massive
spin-1 bosons. Even the measurement of such
a basic quantum phenomenon as quantum inter-
ference can become non-trivial in a high-energy
collider [48]. Apart from the intrinsic interest
of studying foundational aspects of quantum me-
chanics at the frontier of the known Physics, all
these works are paving the way to also use high-
energy colliders for the study of quantum infor-
mation theory. Due to their genuine relativis-

tic behavior, the exotic character of the symme-
tries and interactions involved, as well as their
fundamental nature, high-energy colliders are ex-
tremely attractive systems for these purposes.

Here, we provide the general formalism of the
quantum state of a tt̄ pair created through quan-
tum chromodynamics (QCD) within a genuine
quantum information approach. We discuss that,
in general, the total quantum state that can be
probed in a scattering experiment in a collider is
given in terms of the so-called production spin
density matrix [26], which is necessarily a mixed
state.

For the specific case of a tt̄ pair, we analyze
in detail its quantum state for the most ele-
mentary QCD production processes: light quark-
antiquark (qq̄) or gluon-gluon (gg) interactions.
We extend the entanglement analysis of Ref. [41]
to also include the violation of Bell inequalities,
finding that both quantum phenomena emerge in
certain regions of phase space for both qq̄ and gg
processes. Interestingly, the entanglement struc-
ture can be qualitatively understood in terms
of basic conservation laws, without the need of
knowledge of the particular details of QCD inter-
actions.

We show that any realistic QCD mechanism of
tt̄ production can be seen as a statistical mixture
of the previous building blocks. In particular, we
focus on the case of pp and pp̄ collisions, corre-
sponding to the LHC and the Tevatron, respec-
tively. We study the dependence of the quantum
state on the energy of the collisions, extending the
current phenomenological literature restricted to
Run 2 of LHC [41, 44–46]. We find that, for suffi-
ciently high energies, both types of collisions con-
verge to the same state due to the dominance of
gg processes.

In a high-energy collider, spin correlations are
measured from the fit of the differential cross-
section describing the angular distribution of the
decay products [29, 49]. We propose realistic ex-
perimental observables for the characterization of
the tt̄ quantum state by integrating the signal in
certain regions of phase space. At the LHC, it was
shown that an entanglement signature can be ob-
tained from the measurement of one single magni-
tude, proportional to the trace of the spin correla-
tion matrix [41]. We prove in this work that the
violation of Bell inequality can be also signaled
from the measurement of just one parameter, the
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transverse spin correlations. Moreover, we carry
out a study of the energy dependence of both sig-
natures. Regarding the Tevatron, we find that
an entanglement signature is provided by direct
integration over the whole phase space.

Finally, we analyze in detail the conceptual sig-
nificance of the experimental implementation of
these techniques. We show explicitly that an en-
tanglement measurement at the LHC represents
the violation of a Cauchy-Schwarz inequality. In
contrast, we do not expect a statistically signifi-
cant observation of entanglement at the Tevatron.
We argue that the quantum tomography protocol
developed in Ref. [41] can be extended to more
general quantum states, and to any tt̄ production
process. We discuss that, due to the nature of the
detection process, only weak violations of Bell in-
equalities can be measured in a high-energy col-
lider, since some loopholes, like those related to
the free-will or to the detection efficiency, cannot
be closed.

Remarkably, while the probability and the spin
density matrix of each tt̄ production process are
computed by the high-energy theory, once both
are given, we are simply left with a typical prob-
lem in quantum information involving the convex
sum of two-qubit quantum states, where the usual
techniques of the field can be applied. This im-
portant observation is translated into the article
presentation, fully developed within a quantum
information language, aimed at making it easily
understandable by the physics community out-
side the high-energy field.

The paper is arranged as follows. Section 2
discusses in detail the general framework upon we
build the results of this work, presenting the basic
tools of two-qubit systems used throughout this
work along with a general discussion about quan-
tum states in colliders and relativistic particle-
antiparticle production. Section 3 studies the
tt̄ quantum state in elementary QCD processes.
Section 4 extends the previous results to more re-
alistic processes occurring in actual colliders, ana-
lyzing in detail the energy dependence. Section 5
translates these ideas into relevant experimental
observables. Section 6 provides some technical
remarks about the experimental implementation
of the discussed quantum information techniques.
Finally, Section 7 summarizes the main conclu-
sions, and discusses future perspectives. Techni-
cal details are given in the Appendices.

2 General formalism
2.1 Two-qubit systems
Quantum states are represented in general by a
density matrix ρ, a Hermitian non-negative op-
erator with unit trace in a certain Hilbert space
H, tr(ρ) = 1. These conditions imply that the
number of real parameters characterizing ρ for
dimH = N is N2−1. Expectation values for ob-
servables O are computed by taking the product
trace, 〈O〉 = tr(Oρ).

The most simple example of density matrix is
provided by a qubit, that is, a two-level quantum
system. The density matrix of a qubit takes the
simple form

ρ = I2 +
∑
iBiσ

i

2 (1)

with In the n × n identity matrix and σi, i =
1, 2, 3, the usual Pauli matrices. A physical (i.e.,
non-negative) density matrix ρ is described by
Bloch vectors |B| ≤ 1, with pure states given
by unit vectors saturating the inequality. The 3
coefficients Bi completely determine the quantum
state of the system. For a spin-1/2 particle, they
represent the spin polarization, Bi = 〈σi〉. An
alternative description of ρ can be provided in
terms of angular momentum coherent states |n̂〉
through the P -representation (see Appendix A
for a summary of its main properties):

ρ =
ˆ

dΩ P (n̂) |n̂〉 〈n̂| ,
ˆ

dΩ P (n̂) = 1 (2)

where the angular momentum coherent states |n̂〉
satisfy n̂ ·σ |n̂〉 = |n̂〉, and Ω is the solid angle as-
sociated to the unit vector n̂. The function P (n̂)
is the qubit analogue of the celebrated Glauber-
Sudarshan P -function in quantum optics [50]. It
is easily seen that P (n) can be always chosen as
non-negative for any density matrix ρ describing
a qubit.

More intriguing quantum states arise in bipar-
tite Hilbert spaces H = HA ⊗ HB composed of
subsystems A,B. A quantum state is called sep-
arable iff it can be written as a convex sum of
product states

ρ =
∑
n

pnρ
A
n ⊗ ρBn ,

∑
n

pn = 1, (3)

with pn ≥ 0. An entangled state is defined as a
non-separable state.
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To illustrate this concept, we consider the case of a pair of qubits, whose density matrix ρ can be
decomposed as

ρ =
I4 +

∑
i

(
B+
i σ

i ⊗ I2 +B−i I2 ⊗ σi
)

+
∑
i,j Cijσ

i ⊗ σj

4 (4)

Now, the quantum state of the system is deter-
mined by 15 parameters B±i , Cij , which for spin-
1/2 particles are their spin polarizations B+

i =
〈σi ⊗ I2〉 , B−i = 〈I2 ⊗ σi〉, and their spin corre-
lations Cij = 〈σi ⊗ σj〉.

An insightful way to understand entanglement
for 2-qubit systems arises by considering the P -
representation

ρ =
ˆ

dΩAdΩB P (nA,nB) |nAnB〉 〈nAnB| ,
(5)

where |nAnB〉 = |nA〉 ⊗ |nB〉. From Eq. (3), it
is immediately seen that a state is separable iff
it admits a non-negative P -representation. This
implies that the spin correlations for a separable
state

Cij = 〈σi ⊗ σj〉 =
ˆ

dΩAdΩB P (nA,nB)niAn
j
B

(6)
are purely classical, described by a classical prob-
ability distribution. The same applies to the
spin polarizations. Thus, in the language of the
P -function, entanglement is equivalent to a P -
function that necessarily presents negative values,
a genuine distinctive signature of non-classicality
and quantum behavior as well known from quan-
tum optics [50].

In order to signal the presence of entanglement,
several theoretical criteria can be used. Perhaps
the most well-known one is the Peres-Horodecki
criterion [51, 52], which simply states that if ρ is
separable, taking partial transpose with respect
to the second subsystem

ρT2 =
∑
n

pnρ
a
n ⊗

(
ρbn

)T
(7)

also yields a non-negative operator. Hence, a not
positive semi-definite ρT2 implies that ρ is entan-
gled. In two-qubit systems, the Peres-Horodecki
criterion is also a necessary condition for entan-
glement.

A quantitative measurement of the entangle-
ment of two qubits is provided by the concur-

rence [53]:

C[ρ] ≡ max(0, λ1 − λ2 − λ3 − λ4) (8)

with λi the eigenvalues of the matrix
√√

ρρ̃
√
ρ

ordered in decreasing magnitude, ρ̃ = (σ2 ⊗
σ2) ρ∗ (σ2 ⊗ σ2), and ρ∗ the complex conjugate
of ρ in the spin basis of σ3. The concurrence
is related to the entanglement of formation and
satisfies 0 ≤ C[ρ] ≤ 1, where a quantum state is
entangled iff C[ρ] > 0. Hence, C[ρ] = 1 implies
that ρ is maximally entangled.

The computation of these magnitudes requires
full knowledge of the quantum state. This can
be achieved by means of quantum tomography,
a technique able to reconstruct a quantum state
from the measurement of a selected set of observ-
ables. For the case of a single qubit, character-
ized by 3 parameters, it is enough to measure
the Bloch vector B, which is the spin polariza-
tion for a spin-1/2 particle. For the case of two
qubits, the quantum tomography is performed by
measuring the 15 parameters determining B±,C,
which for spin-1/2 particles represent the spin po-
larizations and spin correlations, respectively. In
actual experiments, an additional measurement
is typically required to ensure the proper normal-
ization of the density matrix [54]. Nevertheless,
in order to detect entanglement, simpler criteria
which require the measurement of just a few pa-
rameters can be formulated. Appendix B con-
tains some general entanglement criteria specif-
ically developed for tt̄ quantum states and used
throughout this work.

An even stronger requirement than entan-
glement is the violation of Bell-type inequali-
ties [3]. No local hidden-variable model can
give rise to it, implying a violation of local real-
ism. The Clauser-Horner-Shimoni-Holt (CHSH)
inequality [55] provides a particularly useful form
of Bell inequality for 2× 2 systems:

|C(a1, b1)−C(a1, b2) +C(a2, b1) +C(a2, b2)| ≤ 2
(9)
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where ai, bi, i = 1, 2 are measurement settings
in the Alice, Bob subsystems A,B, and C(ai, bj)
are their correlations. In the case of spin-1/2
particles, they can be interpreted as measure-
ments of spin polarizations along certain direc-
tions defined by unit vectors ai,bj , C(ai, bj) =
〈(ai · σ)⊗ (bj · σ)〉. Thus, Eq. (9) can be rewrit-
ten in vector notation as simply

|aT
1 C (b1 − b2) + aT

2 C (b1 + b2) | ≤ 2 (10)

with C the same correlation matrix of Eq. (4).
Any separable state of the form (3) satisfies
Eq. (10). Hence, only entangled states can vi-
olate a CHSH inequality.

In practice, the maximization of the l.h.s. of
Eq. (10) is computed from

B[ρ] ≡ max
ai,bi
|aT

1 C (b1 − b2) + aT
2 C (b1 + b2) |

= 2
√
µ1 + µ2 (11)

where 0 ≤ µi ≤ 1 are the eigenvalues of CTC,
ordered in decreasing magnitude [56]. Therefore,
the CHSH inequality can be violated iff µ1+µ2 >
1, where the maximum possible violation of the
CHSH inequality is the Cirel’son bound B[ρ] =
2
√

2 [57].

2.2 Quantum states in colliders

We now study how the physics in real colliders
can be described in terms of quantum states. For
illustrative purposes, we first address the simple
non-relativistic scattering of an incident spinless
particle with mass m from a single fixed target,
characterized by a potential V (the interested
reader is referred to Ref. [58] for the basics of
scattering theory). The process is determined by
the scattering matrix S, whose elements in mo-
mentum representation are

〈p′|S|p〉 = δ(p− p′)− 2πiδ(Ep′ − Ep) 〈p′|T |p〉
(12)

where the T -matrix satisfies the Lippmann-
Schwinger equation T = V +V G0T , with G0 the
usual retarded free Green’s function, and Ep =
p2/2m is the kinetic energy. In the Dirac picture,
the wave function of the scattered state resulting
from an incident particle with well-defined mo-
mentum |p〉 is

|Ψ〉 = S |p〉 (13)

The scattering amplitude f(p → p′) ≡
−(2π)2m~ 〈p′|T |p〉 determines the differential
cross-section characterizing the scattering to
some momentum p′ with the same energy,

dσ
dΩ = |f(p→ p′)|2 (14)

Ω being the solid angle associated to p′. There-
fore, the differential cross-section is proportional
to the probability of the process, given by the
squared on-shell T -matrix element connecting
the initial to the final state.

The scattered state |Ψ〉 can be also rewritten
as a density matrix:

ρS = |Ψ〉 〈Ψ| (15)

=
¨

dp′dp′′ |p′〉 〈p′|S |p〉 〈p|S† |p′′〉 〈p′′|

In a real collider, only momentum measure-
ments of the scattered particle can be performed
and thus, not all the information is needed to de-
scribe the quantum state in experiments. More-
over, scattering events along the beam direction
are not typically measured. Therefore, the rele-
vant quantum state that encodes all the informa-
tion that can be probed in a collider results from
projecting ρS onto momentum states p′ 6= p with
the operators Πp′ = |p′〉 〈p′| as

ρ =
´

dp′ Πp′ |Ψ〉 〈Ψ|Πp′´
dp′ | 〈Ψ|p′〉 |2 〈p′|p′〉 (16)

=
´

dΩ | 〈p′|T |p〉 |2 |p′〉 〈p′|´
dΩ | 〈p′|T |p〉 |2 〈p′|p′〉

= 1
σ

ˆ
dΩ dσ

dΩ
|p′〉 〈p′|
〈p′|p′〉

where the factor 〈p′|p′〉 in the denominator en-
sures proper normalization, tr ρ = 1. The quan-
tum state described by the density matrix ρ is
thus mixed, resulting from the incoherent sum
of momentum states with a probability propor-
tional to the differential cross-section, where the
total cross-section σ here plays an analogue role
to the partition function in statistical mechanics.
As a result, ρ is written only in terms of differ-
ential cross-sections, the observables measured in
actual colliders, computed in terms of T -matrix
elements. In this way, the expectation value of
any momentum observable O(P) can be obtained
from ρ as

〈O〉 = tr[Oρ] = 1
σ

ˆ
dΩ dσ

dΩO(p′) (17)
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For a spin-half particle, things go along the
same lines. By noticing that the spin of the scat-
tered particle is not typically detected in a col-
lider, we now project using Πp′ =

∑
α |p′α〉 〈p′α|

with α labeling spin indices, finding that the
quantum state characterizing the scattering of an
incident particle with momentum p and spin λ is

ρλ = 1
Z

∑
αβ

ˆ
dΩ 〈p′α|T |pλ〉 〈pλ|T † |p′β〉

× |p
′α〉 〈p′β|
〈p′|p′〉 = 1

Z

∑
αβ

ˆ
dΩ Rλαβ(p′) |p

′α〉 〈p′β|
〈p′|p′〉

(18)

where we have used 〈p′α|p′β〉 = 〈p′|p′〉 δαβ . In
the equation above, the partition function Z is
defined to ensure normalization, and the produc-
tion spin density matrix, in the following simply
denoted as the R-matrix [42], is defined as

Rλαβ(p′) ≡ 〈p′α|T |pλ〉 〈pλ|T † |p′β〉 (19)

The R-matrix is not properly normalized, since
its trace is proportional to the differential cross-
section of the process,

trRλ(p′) =
∑
α

Rλαα(p′) (20)

=
∑
α

| 〈p′α|T |pλ〉 |2 ∝ dσλ

dΩ

The proportionality factor can be chosen arbitrar-
ily; for the present moment, we take Rλ directly
proportional to the on-shell T -matrix elements.
Thus, the partition function becomes once more
proportional to the total cross-section

Z =
ˆ

dΩ trRλ(p′) ∝
ˆ

dΩ dσλ

dΩ = σλ (21)

As a 2× 2 Hermitian matrix, the most general
form of the R-matrix is similar to that of Eq. (1),

Rλ = Ãλ +
∑
i

B̃λ
i σ

i, (22)

but with an extra parameter Ãλ that deter-
mines the probability of the process, trRλ(p′) =
2Ãλ(p′).

The proper spin density matrix with unit trace
describing the quantum state for a scattering pro-
cess along a fixed direction is obtained by normal-
ization of R,

ρλαβ(p′) =
Rλαβ(p′)
trRλ(p′) =

Rλαβ(p′)
2Ãλ(p′)

, (23)

and whose spin polarization Bλ is given by Bλ
i =

B̃λ
i /Ã

λ. In terms of these quantum substates, the
total quantum state of Eq. (18) can be written as
simply

ρλ = 1
σλ

∑
αβ

ˆ
dΩ dσλ

dΩ ρλαβ(p′) |p
′α〉 〈p′β|
〈p′|p′〉 (24)

Hence, we can intuitively understand the total
spin-momentum quantum state ρλ as the inco-
herent average in momentum of the spin quan-
tum states ρλ(p′) describing the scattering along
a fixed direction, weighted with the probability of
that scattering process (proportional to the dif-
ferential cross-section). The total cross-section
σλ plays once more the role of the partition func-
tion.

Finally, we note that in a collider the initial
state is typically unpolarized since spin degrees
of freedom cannot be controlled. Thus, the real
quantum state describing the experiment after
many events results from the averaged R-matrix

R(p′) = 1
2
∑
λ

Rλ(p′) (25)

In summary, the quantum state describing the
scattered particles in a collider is a mixed state
because of two fundamentally different reasons,
related to the control over the degrees of free-
dom. (i) Regarding orbital variables: Momentum
distributions of the scattered particles are the
only measurable observables in colliders, given in
terms of differential cross-sections. Thus, even if
the scattered state is pure, one can only access to
the diagonal part in momentum, which motivates
the use of a reduced mixed density matrix. (ii)
Regarding discrete variables: Internal degrees of
freedom of the initial state cannot be typically
controlled and one has to average uniformly over
them. This average over all possible initial states
after many scattering events results in an incoher-
ent mixture that is described by a density matrix.

2.3 Relativistic particle-antiparticle pair pro-
duction
We now switch to the actual case of high-energy
colliders, whose physics is described by relativis-
tic quantum field theories within the framework
of the Standard Model. The Standard Model is
composed of fundamental spin-1/2 particles (and
their corresponding antiparticles) which interact
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through the mediation of gauge bosons of spin-
1. These interactions can be either strong (me-
diated by massless gluons g), weak (mediated by
the massive Z0,W± bosons), or electromagnetic
(mediated by the photon γ), corresponding to a
Yang-Mills theory SU(3)⊗ SU(2)⊗U(1), respec-
tively. Electromagnetic and weak interactions are
both unified within the framework of electroweak
theory, while strong interactions are described by
quantum chromodynamics. The remaining parti-
cle of the Standard Model, the Higgs boson, has
spin-0, and is the responsible for the occurrence
of mass in massive particles.

A natural Standard Model candidate for an en-
tangled two-qubit system is a particle-antiparticle
(denoted generically as PP̄ ) pair produced from
some initial state I:

I → P + P̄ (26)

In the following, we restrict to the case where P
is a Standard Model fermion of mass m, although
the formalism can be easily generalized to the
case where P is some massless spin-1 gauge bo-
son like the photon. Among the Standard Model
fermions, we can distinguish between quarks and
leptons, where the latter do not interact through
QCD since they do not have color degrees of free-
dom. Typically, the components of the initial
state I annihilate themselves through gauge in-
teractions, giving rise to the PP̄ pair. In the pro-
cess, total energy and momentum are conserved.

The kinematics of a PP̄ pair is determined in
the center-of-mass (c.m.) frame by the invariant
mass M and the direction of flight k̂ of the par-
ticle P . In this frame, the particle/antiparticle
four-momenta read kµ = (k0,k), k̄µ = (k0,−k),
with k̂ = k/|k|, and satisfy the Lorentz-invariant
dispersion relation

k̄2 = k2 ≡ kµkµ =
(
k0
)2
− k2 = m2, (27)

where in the following we work in natural units
~ = c = 1.

The invariant mass M is the c.m. energy of
the pair, defined from the usual invariant Man-
delstam variables as

M2 ≡ s ≡ (k + k̄)2, (28)

In the c.m. frame, M2 = 4
(
k0)2 = 4(m2 + k2),

where the momentum is related to the particle

velocity β by |k| = mβ/
√

1− β2, so

β =

√
1− 4m2

M2 (29)

Hence, threshold production (β = 0) is at the
minimum energy possible for a PP̄ pair, M =
2m, as naturally expected.

With respect to the quantum state of the PP̄
pair, mutatis mutandis, we define again an R-
matrix in terms of the on-shell relativistic T -
matrix elements as

RIλαβ,α′β′(M, k̂) ≡ 〈Mk̂αβ|T |Iλ〉 〈Iλ|T † |Mk̂α′β′〉
(30)

with |Iλ〉 labeling the initial state of the system
and

|Mk̂αβ〉 ≡ |kα〉 ⊗ |k̄β〉 (31)

where the first/second subspace correspond to the
particle/antiparticle, respectively. The spins of
the particles are computed in their respective rest
frames, where they are well defined. Once more,
if internal degrees of freedom λ of the initial state
cannot be controlled (like spin or color), one uses
the averaged R-matrix

RIαβ,α′β′(M, k̂) = 1
Nλ

∑
λ

RIλαβ,α′β′(M, k̂) (32)

with Nλ the number of internal degrees of free-
dom of I. In analogy to Eq. (18), the resulting
quantum state is

ρI = 1
Z

∑
αβ,α′β′

ˆ
dΩ RIαβ,α′β′(M, k̂) (33)

× |Mk̂αβ〉 〈Mk̂α′β′|
〈Mk̂|Mk̂〉

with the partition function Z proportional once
more to the total cross-section

Z =
ˆ

dΩ tr RI(M, k̂) ∝ σI (34)

The R-matrix characterizes the quantum state of
any PP̄ pair produced in a relativistic process,
which is a mixed state by the very same reasons
as in the non-relativistic case. It takes the general
form

R = ÃI4 +
∑
i

(
B̃+
i σ

i ⊗ I2 + B̃−i I2 ⊗ σi
)

(35)

+
∑
i,j

C̃ijσ
i ⊗ σj
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in a similar fashion to Eq. (4), but once more
with an extra coefficient Ã proportional to the
c.m. differential cross-section.

The actual spin density matrix is obtained from
the normalization of R:

ρ = R

tr(R) = R

4Ã
(36)

As a result, the spin polarizations B±i and spin
correlations Cij of the PP̄ pair are

B±i = B̃±i
Ã
, Cij = C̃ij

Ã
(37)

In terms of these quantum states, one can re-
trieve the relativistic version of Eq. (24),

ρI = 1
σI

∑
αβ,α′β′

ˆ
dΩ dσI

dΩ ρIαβ,α′β′(M, p̂) (38)

× |Mk̂αβ〉 〈Mk̂α′β′|
〈Mk̂|Mk̂〉

3 Production of tt̄ in elementary QCD
processes
A particularly interesting example of particle-
antiparticle pair is provided by a top-antitop
quark pair, which will be the subject of study
throughout the rest of the work. Specifically, we
restrict to the production of tt̄ pairs through QCD
processes, although the concepts and techniques
developed here can be straightforwardly extended
to other types of interaction and/or particle-
antiparticle pairs. For the theoretical computa-
tions, we employ leading-order (LO) QCD per-
turbation theory, since it provides analytical re-
sults and a clear picture of the underlying physics.
Higher-order corrections are known to be small
and do not change the main results [29, 41, 42,
44, 45].

At LO QCD, only two initial states can pro-
duce a tt̄ pair: a light quark-antiquark (qq̄) or a
gluon (gg) pair,

q + q̄ → t+ t̄, (39)
g + g → t+ t̄.

Representative Feynman diagrams for these pro-
cesses in the Standard Model are depicted in
Fig. 1.

Each initial state I = qq̄, gg creates a tt̄ pair in
a spin quantum state described by the production

Figure 1: Representative Feynman diagrams for tt̄ pro-
duction within the Standard Model. Spring lines repre-
sent gluons and straight lines represent quarks, all either
real or virtual.

spin density matrix RI(Mtt̄, k̂), where the spin
and color degrees of freedom of the initial state
have already been averaged, Mtt̄ is the invariant
mass of the tt̄ pair, and k̂ is the flight direction
of the top quark. For the characterization of the
R-matrix, an orthonormal basis needs to be fixed
in order to compute the corresponding spin po-
larizations and correlations. The most common
choice is the helicity basis [31], defined in the c.m.
frame as {k̂, n̂, r̂}, with r̂ = (p̂ − cos Θk̂)/ sin Θ,
n̂ = r̂ × k̂, where p̂ is a unitary vector along the
direction of the initial state and Θ is the produc-
tion angle of the top quark with respect to the
beam, cos Θ = k̂ · p̂. We note here that, due to
momentum conservation, the c.m. frame of the
initial state is the same as that of the tt̄ pair.

The advantage of the helicity basis is that,
although the tt̄ relativistic spins are only well-
defined in their respective rest frames, those are
equivalent to the c.m. frame via a Lorentz trans-
formation along the top direction, which does not
change the orientation of the helicity basis. A
schematic representation of this basis is provided
in Fig. 2.

The production spin density matrix RI(Mtt̄, k̂)
in the helicity basis is only a function of β (or,
equivalently, of Mtt̄) and cos Θ. Specifically, in
the Standard Model, the correlation matrix C̃Iij
is symmetric and B̃I,+

i = B̃I,−
i . Furthermore, at

LO, the tt̄ pair is unpolarized, B̃I,±
i = 0, and, in

QCD production, their spins along the n-axis are
uncorrelated with respect to the remaining direc-
tions, C̃Inr = C̃Ink = 0 [39]. Therefore, RI(Mtt̄, k̂)
is characterized at LO QCD by only 5 parameters
in the helicity basis: ÃI , C̃Ikk, C̃

I
nn, C̃

I
rr, C̃

I
kr. The

values of those coefficients can be computed ana-
lytically and are well known [28, 30, 31]. Here, we
fix the normalization of RI(Mtt̄, k̂) such that the
c.m. differential cross-section for tt̄ production
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Figure 2: Orthonormal helicity basis, defined in the c.m.
frame. k̂ is the direction of the top and p̂ is the direction
of the initial beam. The vector n̂ is perpendicular to the
{k̂, p̂} plane and r̂ = k̂ × n̂ is the vector orthogonal to
k̂ within the {k̂, p̂} plane.

from an initial state I is [28]

dσI

dΩ = α2
sβ

M2
tt̄

ÃI(Mtt̄, k̂) (40)

with αs ' 0.118 the strong coupling constant
characterizing the strength of QCD interactions.

The actual spin density matrices ρI(Mtt̄, k̂) are
computed from the normalization of RI(Mtt̄, k̂).
As a result of the above considerations, at LO
ρI(Mtt̄, k̂) is unpolarized, its correlation matrix
is symmetric, and it is already diagonal in the n̂
direction. These last two properties imply that
the correlation matrix can be diagonalized by an
appropriated rotation in the {k̂, r̂} plane, with
eigenvalues {CI+, CInn, CI−},

CI± = CIkk + CIrr
2 ±

√√√√(CIkk − CIrr
2

)2

+ CI2kr (41)

and orthonormal eigenvectors {û+, n̂, û−}. We
will refer to this orthonormal basis as the diagonal
basis.

Regarding entanglement, since CInn < 0 in all
phase space and for both initial states [see Eqs.
(45), (51)], we find that the Peres-Horodecki cri-
terion is equivalent to ∆I > 0 (see Appendix B),
where

∆I ≡
−CInn + |CI+ + CI−| − 1

2 (42)

= −C
I
nn + |CIkk + CIrr| − 1

2
We note that this definition differs from that of
Ref. [41] by a factor 2, so the concurrence is di-
rectly equal to ∆I for entangled states:

C[ρI ] = max(∆I , 0) (43)

Previous approaches in high-energy physics based
on the entanglement entropy [21, 59, 60] are not
useful here since they are only valid for pure
states. We recall that the entanglement of the
quantum state ρI(Mtt̄, k̂) is Lorentz invariant be-
cause it has well-defined momentum [11, 12].

Regarding the violation of the CHSH inequal-
ity, from Eq. (11) it is immediately seen in the
diagonal basis to be equivalent to

µI ≡ tr
[
CTC

]
−
(
CImin

)2
− 1 > 0 (44)(

CImin

)2
≡ min

{(
CI+

)2
,
(
CInn

)2
,
(
CI−

)2
}

3.1 qq̄ processes

For qq̄ processes, the coefficients of the R-matrix
in the helicity basis are

Ãqq̄ = Fq(2− β2 sin2 Θ) (45)
C̃qq̄rr = Fq(2− β2) sin2 Θ
C̃qq̄nn = −Fqβ2 sin2 Θ

C̃qq̄kk = Fq
[
2− (2− β2) sin2 Θ

]
C̃qq̄rk = C̃qq̄kr = Fq

√
1− β2 sin 2Θ

Fq = 1
18

The resulting tt̄ quantum state ρqq̄(β, k̂) is en-
tangled in the bulk of phase space as 1

∆qq̄ = −Cqq̄nn = β2 sin2 Θ
2− β2 sin2 Θ

≥ 0 (46)

The above inequality is saturated only at
threshold (β = 0) or for forward production
(Θ = 0). In both limits, the tt̄ spins are aligned
along the beam axis in a maximally correlated
but separable mixed state:

Cqq̄ij (0, k̂) = Cqq̄ij (β, p̂) = p̂ip̂j (47)

ρqq̄(0, k̂) = ρqq̄(β, p̂)

= |↑p̂↑p̂〉 〈↑p̂↑p̂|+ |↓p̂↓p̂〉 〈↓p̂↓p̂|2

where |↑p̂〉 , |↓p̂〉 are the spin eigenstates along the
direction p̂. This spin alignment at threshold is
a consequence of spin conservation, since the tt̄
pair is produced from the initial qq̄ state via gluon

1We note that the result for ∆qq̄ in Ref. [41] contained
a typo, and a factor 2 was missing.
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Figure 3: Concurrence of the spin density matrix ρI(β, k̂) resulting from an initial state I = qq̄, gg as a function of
the top velocity β and the production angle Θ in the tt̄ c.m. frame. All plots are symmetric under the transformation
Θ→ π −Θ. Left: qq̄ → tt̄. Right: gg → tt̄. Solid black lines represent the critical boundaries between separability
and entanglement βPH

c1,c2(Θ), while dashed black lines represent the critical boundaries for the violation of the CHSH
inequality, βCH

c1,c2(Θ).

exchange (see Fig. 1), which is a massless spin-1
boson.

Hence, for low production angles or close to
threshold, the degree of entanglement is expected
to be small, as can seen in left Fig. 3, where the
concurrence of ρqq̄(β, k̂) is represented.

In the opposite limit of high transverse momen-
tum pT (i.e., high energies and production angles
close to Θ = π/2), the tt̄ pair is in a spin-triplet
pure state,

Cqq̄ij (1, n̂× p̂) = δij − 2n̂in̂j (48)
ρqq̄(1, n̂× p̂) = |Ψ∞〉 〈Ψ∞|

|Ψ∞〉 = |↑n̂↓n̂〉+ |↓n̂↑n̂〉√
2

This state is maximally entangled, C[ρ] = 1, as
seen in upper right corner of left Fig. 3.

With respect to the CHSH inequality, it is also
violated by qq̄ production processes in the bulk
of phase space. This is seen in the diagonal basis,
where

Cqq̄+ = 1, Cqq̄− = −Cqq̄nn = ∆qq̄ (49)

This basis is often called the off-diagonal ba-
sis [61] in the literature of qq̄ processes, and is
commonly used because the tt̄ spins along the
û+ direction are perfectly correlated. Because of
this,

µqq̄(β,Θ) =
[
∆qq̄(β,Θ)

]2
≥ 0 (50)

Therefore, remarkably, entanglement and CHSH
violation are equivalent conditions for qq̄ pro-
cesses.

3.2 gg processes
For gg processes, the coefficients of the R-matrix
in the helicity basis are

Ãgg = Fg
[
1 + 2β2 sin2 Θ− β4(1 + sin4 Θ)

]
C̃ggrr = −Fg

[
1− β2(2− β2)(1 + sin4 Θ)

]
C̃ggnn = −Fg

[
1− 2β2 + β4(1 + sin4 Θ)

]
C̃ggkk = −Fg

[
1− β2 sin2 2Θ

2 − β4(1 + sin4 Θ)
]

C̃ggrk = C̃ggkr = Fg

√
1− β2β2 sin 2Θ sin2 Θ

Fg = 7 + 9β2 cos2 Θ
192(1− β2 cos2 Θ)2 (51)

The resulting tt̄ quantum state ρgg(β, k̂) is entan-
gled iff ∆gg(β,Θ) > 0, where

∆gg = β4(1 + sin4 Θ)− β2(1 + sin2 Θ)
1 + 2β2 sin2 Θ− β4(1 + sin4 Θ)

+ |1− β2(1 + sin2 Θ)|
1 + 2β2 sin2 Θ− β4(1 + sin4 Θ)

(52)

The second line implies that ρgg(β, k̂) is not en-
tangled for β2(1 + sin2 Θ) = 1, so there are fi-
nite regions of separability in phase space, in con-
trast to the qq̄ case. In particular, two regions of
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entanglement can be distinguished: one close to
threshold, and another one for high pT , delim-
ited by the lower and upper critical boundaries
βPH
c1 (Θ), βPH

c2 (Θ):

βPH
c1 (Θ) =

√
1 + sin2 Θ−

√
2 sin Θ

1 + sin4 Θ

βPH
c2 (Θ) = 1

(1 + sin4 Θ)
1
4

(53)

These features can be observed in right Fig. 3,
where the concurrence of ρgg(β, k̂) is represented,
with the black solid lines signaling the critical
boundaries βPH

c1,c2(Θ) between entanglement and
separability.

The strong entanglement signature close to
threshold results from the fact that the spin po-
larizations of the gg initial state are allowed to
align in different directions. Due to angular mo-

mentum conservation, these features produce at
threshold a tt̄ pair in a spin singlet

Cggij (0, k̂) = −δij (54)

ρgg(0, k̂) = |Ψ0〉 〈Ψ0|

|Ψ0〉 = |↑n̂↓n̂〉 − |↓n̂↑n̂〉√
2

which is maximally entangled.
In the opposite limit of high pT , gluon fusion

produces the same maximally entangled triplet
state as qq̄ processes, Eq. (48). The reason behind
this similarity is that for high energies the orbital
angular momentum contribution dominates over
the spin contribution.

With respect to the violation of the CHSH in-
equality, the eigenvalues of the correlation matrix
are

Cgg± =
−1+β2(1+sin2 Θ)±

√
β4(1−2 sin2 Θ+5 sin4 Θ)−2β6(1−sin2 Θ+3 sin4 Θ+sin6 Θ)+β8[1+sin4 Θ]2

1+2β2 sin2 Θ−β4(1+sin4 Θ)
(55)

As a result, an explicit analytical computation
of the critical boundaries βCH

c1,c2(Θ) of the re-
gions where the CHSH inequality is violated be-
comes much more cumbersome; even in the rela-
tively simple case of Θ = π/2, the critical values
βCH
c1,c2(π/2) are obtained from the zeros of fourth

order polynomials in β2, finding βCH
c1 (π/2) ≈

0.367 < βPH
c1 (π/2) = 2−1/4 ≈ 0.541, and

βCH
c2 (π/2) ≈ 0.931 > βPH

c2 (π/2) =
√

1− 1/
√

2 ≈
0.841. The numerically computed boundaries
βCH
c1,c2(Θ) are represented by black dashed lines

in right Fig. 3. As expected, the regions where
CHSH inequality is violated are within entan-
gled regions of phase space, βCH

c1 (Θ) ≤ βPH
c1 (Θ) ≤

βPH
c2 (Θ) ≤ βCH

c2 (Θ).

An important conclusion is that the entangle-
ment structure of tt̄ production can be mostly un-
derstood from basic laws of angular momentum
conservation between the initial and final state,
without the need to invoke technical details of
the specific form of QCD interactions.

4 Production of tt̄ in realistic QCD
processes

Because of color confinement, quarks and gluons
are not free particles and cannot be found isolated
in nature. Instead, they are forming hadrons,
which are bound states of quarks through QCD
interactions. As a result, we can understand
hadrons as a sea of quarks and gluons, which
within this context are indistinctively denoted as
partons [62, 63]. Quantitatively, the composition
of a hadron is modeled by its so-called parton
distribution function (PDF), which determines
the participation of each parton in a particular
QCD process at a certain energy scale. Due to
its non-perturbative character, PDF distributions
are typically computed by fitting experimental
data (see Appendix C for more technical details
about PDF). Here, we focus on tt̄ production
from two main types of hadron processes which
are of high relevance for experiments: proton-
proton collisions, as in the LHC, and proton-
antiproton collisions, as in the Tevatron.

The above considerations modify the results of
the previous section as following. For given en-
ergy and top direction in the c.m. frame, the
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R-matrix describing the tt̄ pair resulting from a
hadronic process is computed in terms of each
partonic matrix RI(Mtt̄, k̂) as

R(Mtt̄, k̂,
√
s) =

∑
I=qq̄,gg

LI(Mtt̄,
√
s)RI(Mtt̄, k̂)

(56)
The function LI(Mtt̄,

√
s) is the so-called lumi-

nosity function [28], and is computed in terms of
the PDF describing the colliding hadrons. The
luminosity function can be regarded as the prob-
ability distribution of occurrence of each initial
state I in the total hadronic process for a given
Mtt̄, depending also on the hadron c.m. energy√
s [see Eq. (134)]. We note that the c.m. frame

of the colliding hadrons is not the same as the
parton c.m. frame. However, at LO the direction
of the parton initial state I in its c.m. frame is
to a very good approximation that of the initial
hadron beam, so one can take safely p̂ along the
hadron beam in Fig. 2, which is the one whose
direction is controlled in a collider [29].

With the help of the luminosities and the R-
matrix, the differential cross-section characteriz-
ing tt̄ production from a given hadronic process
is computed as

dσ
dΩdMtt̄

= α2
sβ

M2
tt̄

Ã(Mtt̄, k̂,
√
s) (57)

=
∑

I=qq̄,gg
LI(Mtt̄,

√
s)dσI

dΩ (Mtt̄, k̂)

where the partonic differential cross-sections are
those of Eq. (40). Thus, the differential cross-
section per unit solid angle and per unit c.m. en-
ergy is just the sum of the partonic differential
cross-sections from an initial state I, multiplied
by the probability distribution LI of producing
each initial state I with energy Mtt̄.

Regarding the actual spin quantum state, since
ρI = RI/4ÃI , then

ρ(Mtt̄, k̂,
√
s) =

∑
I=qq̄,gg

wI(Mtt̄, k̂,
√
s)ρI(Mtt̄, k̂)

(58)
Similar expressions can be written for the
spin polarizations and spin correlations
B±(Mtt̄, k̂,

√
s),C(Mtt̄, k̂,

√
s) of ρ(Mtt̄, k̂,

√
s) in

terms of their partonic counterparts, computed
from Eqs. (45), (51). The weights wI are

obtained from the luminosities as

wI(Mtt̄, k̂,
√
s) = LI(Mtt̄,

√
s)ÃI(Mtt̄, k̂)∑

J LJ(Mtt̄,
√
s)ÃJ(Mtt̄, k̂)

(59)
and represent the probability of production
of each individual partonic quantum state
ρI(Mtt̄, k̂), satisfying wqq̄ + wgg = 1. They can
be simply understood as the probability of oc-
currence of the initial state I, LI , multiplied by
the probability of producing a tt̄ pair from I, pro-
portional to the differential cross-section, in turn
proportional to the coefficient ÃI(Mtt̄, k̂).

We stress that the nature of the specific hadron
collision only enters in the calculations through
the probabilities wI(Mtt̄, k̂,

√
s), which are PDF

dependent. Hence, the LO QCD qq̄ and gg pro-
cesses are the building blocks of any realistic
hadronic production process, whose role is re-
duced to change the amount of mixing between
them. From a more general perspective, we
can regard the production spin density matrices
RI(Mtt̄, k̂) and the luminosities LI(Mtt̄,

√
s) as

inputs from the theory of high-energy physics,
from which we can compute the physical spin
density matrices ρI(Mtt̄, k̂) and the probabilities
wI(Mtt̄, k̂,

√
s). Once done, we are simply left

with a typical problem in quantum information
involving the convex sum of two-qubit states,
where the usual techniques of the field can be
applied.

In order to understand better how the mixture
between qq̄ and gg channels affects the tt̄ quan-
tum state ρ(Mtt̄, k̂,

√
s), we first use a toy model

where both partonic probabilities are constant,
wI(Mtt̄, k̂,

√
s) = wI . We gradually introduce gg

processes in a pure qq̄ reaction in upper row of
Fig. 4. For a small amount of gg processes, the
effect of mixing is reduced to shrink the entangled
region towards the high pT region. By further
increasing the amount of gg processes, at some
point entangled tt̄ states also emerge at threshold.
We can actually compute from Eq. (42) the crit-
ical value wPH

c at which entanglement appears,
since

∆(β = 0,Θ) = wgg + |3wgg − 1| − 1
2 (60)

For wgg > 1/3, ∆(0,Θ) = 2wgg − 1, so

wPH
c = 1

2 (61)
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Figure 4: Same as Fig. 3 but for the tt̄ quantum state ρ(Mtt̄, k̂,
√
s) resulting from realistic hadronic processes. Upper

row: Toy model where the probabilities are constant in whole phase space, wI(Mtt̄, k̂,
√
s) = wI . (a) wgg = 0.2.

(b) wgg = 0.4.(c) wgg = 0.6.(d) wgg = 0.8. Middle row: tt̄ production from pp collisions. (e)
√
s = 1 TeV. (f)√

s = 10 TeV. (g)
√
s = 30 TeV. (h)

√
s = 100 TeV. Lower row: tt̄ production from pp̄ collisions. (i)-(l) Same

values of
√
s as (e)-(h), respectively.

Hence, in order to have entanglement close to
threshold, we need at least 50% of the tt̄ pairs to
be produced through gluon fusion. Regarding the
violation of the CHSH inequality, the correspond-
ing critical value wCH

c is computed by switching
to the off-diagonal basis where both correlation
matrices are diagonal (ρgg at threshold is a spin
singlet, invariant under rotations). This gives

µ(β = 0,Θ) = 2w2
gg − 1 (62)

from where we find

wCH
c = 1√

2
> wPH

c (63)

Once this simple model is understood, we
switch to real hadron processes. We analyze tt̄
production from pp collisions for different c.m.
energies in central row of Fig. 4. By direct
comparison with upper row, we observe that for
low c.m. energies qq̄ processes dominate. How-
ever, the amount of gg processes increases with
the c.m. energy, eventually dominating the tt̄
production mechanism. A similar calculation is
shown in the lower row of Fig. 4 for pp̄ collisions

where, although qq̄ contributions are stronger at
low energies, gg dominance is again recovered for
sufficiently high c.m. energies, and both types of
collisions converge to a similar quantum state.

We can further quantify the amount of mixing
of qq̄ and gg processes in the total tt̄ production
by computing the relative contribution of each
channel to the total cross-section from Eq. (57):

fI ≡

√
s´

2mt
dMtt̄

´
dΩ LI

dσI
dΩ

√
s´

2mt
dMtt̄

´
dΩ dσ

dΩdMtt̄

(64)

where we stress that the maximum invariant mass
Mtt̄ achievable by the tt̄ pair is precisely the c.m.
energy of the hadron pair, Mtt̄ =

√
s. The frac-

tion of gg processes fgg for both pp and pp̄ colli-
sions is represented in left Fig. 5, where its pre-
dicted increase with the c.m. energy indicated by
the entanglement analysis is clearly observed, as
well as the stronger contribution of qq̄ processes
for pp̄ collisions with respect to pp at low energies.
At high energies, both hadronic processes con-
verge to the same gluon fraction fgg. This analy-
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Figure 5: Study of the dependence of tt̄ production mechanism with the hadron c.m. energy
√
s for pp collisions

(solid blue line) and for pp̄ collisions (dashed red line), corresponding to the LHC and Tevatron, respectively. Black
markers indicate the values for c.m. energies of actual high-energy colliders. Circles: Run 1 (

√
s = 7, 8 TeV), Run 2

(
√
s = 13 TeV) and Run 3 (

√
s = 13.6 TeV) of the LHC. Squares: Possible upgrade of the LHC (

√
s = 27 TeV).

Triangles: Tevatron (
√
s = 1.96 TeV). Left: Gluon fraction fgg. Right: gg probability at threshold wgg(β = 0).

Horizontal black lines mark the critical values wPH
gg,c = 1/2 for entanglement (solid), and wCH

gg,c = 1/
√

2 for CHSH
violation (dashed).

sis suggests that entanglement measurements can
be also used to understand the underlying struc-
ture of a certain high-energy process without di-
rect knowledge of it.

A related plot is that of right Fig. 5, in which
the threshold values of the gluon probability
wgg(β = 0,

√
s) are represented (there is no an-

gular dependence at threshold). We observe that
entanglement [wgg(0,

√
s) > wPH

c = 1/2] can be
achieved in pp collisions for small c.m. ener-
gies

√
s & 5 TeV, below current LHC energies.

In particular, the relevant experimental values√
s = 7, 8 TeV [36–38],

√
s = 13 TeV [39, 40]

and
√
s = 13.6 TeV [64] are marked by circles,

corresponding to the c.m. energies of Run 1,
Run 2 and the ongoing Run 3 of the LHC, re-
spectively. The expected value for a possible up-
grade of the LHC is

√
s = 27 TeV [65], marked

by a square. In addition, the c.m. energy for pp
collisions in the Future Circular Collider (FCC),√
s = 100 TeV [66], is represented explicitly

in Fig. 4h. With respect to CHSH violation
[wgg(0,

√
s) > wCH

c = 1/
√

2], we observe that we
need larger energies

√
s & 10 TeV, with Run 2

and Run 3 only slightly above this limit. For
pp̄ collisions, even threshold entanglement can-
not be observed since the c.m. energies required
are well above the maximum energy achieved at
the Tevatron,

√
s = 1.96 TeV [33–35], marked by

a triangle.

From these plots, we conclude that the Teva-
tron and the LHC provide experimental realiza-
tions to a very good approximation of the two
main paradigms of tt̄ production through QCD,
qq̄ and gg reactions.

5 Experimental observables

5.1 Experimental motivation

How are all these spin magnitudes translated into
actual observables that can be measured in high-
energy colliders? This is where the unique prop-
erties of the top quark enter in place. As ex-
plained in the Introduction, the top quark is the
most massive particle of the Standard Model.
This property makes that even its large width
Γt ' 1 GeV is still narrow when compared to its
mass mt ' 173 GeV. In turn, this large width re-
sults in a very short lifetime τ = 1/Γt ∼ 10−25s.
This implies that a tt̄ pair decays so fast that any
other process, such as hadronisation (with a time
scale ∼ 10−23s) or spin decorrelation (with a time
scale ∼ 10−21s), cannot affect their spin quan-
tum state, whose information is directly trans-
lated into the properties of the decay products.
This is what makes the top quark so special, as
any other quark hadronizes before decaying, los-
ing its spin information in the process. On the
other hand, if the top quark did not decay, its
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spin state could not be extracted because detec-
tors only measure the momentum of the arriving
particles.

Quantitatively, we describe the decay of a top
quark to some final state F in terms of a decay
spin density matrix, defined in the top rest frame
as

ΓFα′α ≡ 〈F |T |tα〉 〈tα′|T † |F 〉 (65)

where |tα〉 is the top state with zero momentum
and spin α, |F 〉 is the final state after the decay,
and T is here the on-shell T -matrix determining
the amplitude of the decay process. A similar
decay spin density matrix Γ̄F̄β′β can be defined for
the decay of the antitop quark to a final state F̄ .

The idea is to describe the production and de-
cay of a tt̄ pair using the production and decay
spin density matrices. Specifically, we consider
a tt̄ pair with fixed c.m. energy and momentum
produced from a hadron collision, whose quantum
state is specified by the matrix R(Mtt̄, k̂,

√
s). In

the so-called narrow-width approximation, valid
since Γt � mt [26], the differential cross-section
characterizing the decay of a tt̄ pair to two final
states FF̄ is proportional to [29, 49]

dσFF̄ ∼
∑

αα′,ββ′

Rαβ,α′β′(Mtt̄, k̂,
√
s)ΓFα′αΓ̄F̄β′β

= tr
[(

ΓF ⊗ Γ̄F̄
)
R(Mtt̄, k̂,

√
s)
]

(66)

Thus, the information about the quantum state
of the tt̄ pair, encoded in R(Mtt̄, k̂,

√
s), is con-

tained in the cross-section characterizing the de-
cay products of the final states FF̄ .

We can retrieve this information from final
states including a lepton `, which can be either
an electron or a muon, ` = e, µ. Specifically, we
consider the electroweak leptonic decay of both
the top and the antitop quark:

t→ b+W+ → b+ `+ + ν`, (67)
t̄→ b̄+W− → b̄+ `− + ν̄`

where F = b`+ν`, with `+ the antilepton and
ν` its associated neutrino, and F̄ its conjugate,
F̄ = b̄`−ν̄`. A diagrammatic representation of
the top/antitop decay is provided in Fig. 6.

The expression for the decay spin density ma-
trices vastly simplifies if we integrate out all the
degrees of freedom of the final states FF̄ except
for the lepton directions. In that case, due to
the rotational invariance in the top (antitop) rest

frames, the resulting decay spin density matrices
Γ` (Γ̄`) can only be of the form [31]

Γ` ∝
I2 + κ`(ˆ̀+ · σ)

2 , Γ̄` ∝
I2 + κ̄`(ˆ̀− · σ)

2 (68)

ˆ̀± being the antilepton (lepton) directions in each
one of the parent top (antitop) rest frames, and
κ` = −κ̄` ' 1 the so-called spin analyzing powers
of the leptons.

As a result, the cross-section σ`¯̀ characterizing
the `+`− angular distribution reads

dσ`¯̀
dΩ+dΩ−dMtt̄dΩk̂

∝ α2
sβ

M2
tt̄

tr
[
(Γ` ⊗ Γ̄`)R

]
∝ α2

sβ

M2
tt̄

[
Ã+ B̃+ · ˆ̀+ − B̃− · ˆ̀− − ˆ̀+ · C̃ · ˆ̀−

]
(69)

where Ω±, Ωk̂ are the solid angles associated to
ˆ̀±, k̂. The differential elements dMtt̄dΩk̂ arise
because we are considering the decay of a tt̄ pair
with fixed energy and direction. The total an-
gular differential cross-section describing the lep-
tons arising from the tt̄ decay is then obtained by
integration over all possible top directions and
c.m. energies:

dσ`¯̀
dΩ+dΩ−

=

√
sˆ

2mt

dMtt̄

ˆ
dΩ dσ`¯̀

dΩ+dΩ−dMtt̄dΩk̂

(70)
This implies that the normalized angular differ-
ential cross-section characterizing the dileptonic
decay is

1
σ`¯̀

dσ`¯̀
dΩ+dΩ−

= 1 + B+ · ˆ̀+ −B− · ˆ̀− − ˆ̀+ ·C · ˆ̀−
(4π)2

(71)
where the vectors B± and the matrix C are the
integrated values of the top/antitop spin polar-
izations and the spin correlation matrix, respec-
tively. Therefore, we can measure all the inte-
grated spin information of a tt̄ pair by fitting the
angular distribution of the leptonic decay prod-
ucts.

In particular, from the kinematic reconstruc-
tion of each event, the momenta of the tt̄ and
`+`− pairs can be determined. By defining the
polar angle with respect to a certain direction
given by the unit vector ûi, cos θi± ≡ ˆ̀± · ûi, and
after integrating over the azimuthal angles, we
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Figure 6: Representative Feynman diagrams for a lep-
tonic electroweak decay of a top (left) and antitop
(right) quark.

find that the spin polarizations can be easily ob-
tained from a linear fit of the angular distribu-
tions for each individual lepton as

1
σ`¯̀

dσ`¯̀
d cos θi±

= 1
2(1±B±i cos θi±) (72)

The spin correlations for a pair of directions i, j
can be measured from the distribution of the
product xij ≡ cos θi+ cos θj−, given by integration
of Eq. (71):

1
σ`¯̀

dσ`¯̀
dxij

= 1
2 [1− Cijxij ] ln 1

|xij |
(73)

Another measurable magnitude of interest is the
trace of the correlation matrix, which can be di-
rectly extracted from

1
σ`¯̀

dσ`¯̀
d cosϕ = 1

2(1−D cosϕ), D = tr[C]
3 (74)

where ϕ is the angle between the lepton directions
in each one of their parent top and antitop rest
frames, cosϕ = ˆ̀+ · ˆ̀−.

The determination of the momentum of the tt̄
pair also implies that their spins can be charac-
terized in any orthonormal basis, e.g. in the he-
licity basis considered so far. The measurement

of the tt̄ spin polarizations and spin correlations
through this technique is well-established, and
has already been performed by the CMS collab-
oration at the LHC [39], where B±,C were ob-
tained in the helicity basis, with no restrictions
on tt̄ phase space. However, no entanglement sig-
nature was provided by these measurements.

5.2 Integrated expectation values
The formalism of the previous subsection focused
on integrated values over all (Mtt̄, k̂) phase space.
However, as explained, the tt̄ momenta can be ex-
perimentally reconstructed, allowing to restrict
the contributions to the integral of Eq. (69) to
specific regions Π of phase space. In that case,
the measured spin polarizations and spin correla-
tions would correspond to integrated values just
within the region Π. This allows to further ex-
plore the tt̄ properties in search of richer physics.
For instance, we can take Π within the regions of
phase space where entanglement is present (de-
limited by the black lines in Figs. 3, 4).

Ideally, one would restrict Π to a small bin
around a given value (Mtt̄, k̂), since that would al-
low to study the individual spin quantum states
ρ(Mtt̄, k̂,

√
s). However, in actual experiments,

the signal needs to be integrated in order to col-
lect a sufficient number of events for achieving
statistically significant measurements. Therefore,
an adaptation of the formalism developed in the
previous sections is required.

We begin by noting that the total quantum
state ρT(

√
s) describing the tt̄ pairs produced

from a certain hadronic process is obtained by
generalizing Eq. (38) as

ρT(
√
s) = 1

σ

∑
αβ,α′β′

√
sˆ

2mt

dMtt̄

ˆ
dΩ dσ

dΩdMtt̄

ραβ,α′β′(Mtt̄, k̂,
√
s) |Mtt̄k̂αβ〉 〈Mtt̄k̂α

′β′|
〈Mtt̄k̂|Mtt̄k̂〉

(75)

If we consider now some observable O diagonal in momentum space, with matrix elements
Oα′β′,αβ(Mtt̄, k̂) = 〈Mtt̄k̂α

′β′|O |Mtt̄k̂αβ〉 / 〈Mtt̄k̂|Mtt̄k̂〉, its expectation value 〈O〉 = tr[OρT(
√
s)] is

simply computed as

〈O〉 = 1
σ

√
sˆ

2mt

dMtt̄

ˆ
dΩ dσ

dΩdMtt̄

tr
[
O(Mtt̄, k̂)ρ(Mtt̄, k̂,

√
s)
]

(76)

This expectation value is readily understood as the average of the expectation values of O for all
possible quantum states ρ(Mtt̄, k̂,

√
s) of the tt̄ pair, with a probability proportional to the differential

cross-section of the process, normalized by the total cross-section for tt̄ production.
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The above equation can be simply rewritten in terms of the R-matrix as

〈O〉 =

√
s´

2mt
dMtt̄

´
dΩ α2

sβ
M2
tt̄

tr
[
O(Mtt̄, k̂)R(Mtt̄, k̂,

√
s)
]

√
s´

2mt
dMtt̄

´
dΩ α2

sβ
M2
tt̄

tr
[
R(Mtt̄, k̂,

√
s)
] (77)

From these considerations, it is immediate to compute the reduced quantum state ρT,Π(
√
s) that

describes the tt̄ pair within a certain region Π of phase space by projecting only onto the relevant
states |Mtt̄k̂〉 contained in Π:

ρT,Π(
√
s) = 1

σΠ

∑
αβ,α′β′

ˆ
Π

dΩdMtt̄

dσ
dΩdMtt̄

ραβ,α′β′(Mtt̄, k̂,
√
s) |Mtt̄k̂αβ〉 〈Mtt̄k̂α

′β′|
〈Mtt̄k̂|Mtt̄k̂〉

(78)

with the partition function σΠ being the tt̄ cross-
section in the region Π

σΠ ≡
ˆ

Π
dΩdMtt̄

dσ
dΩdMtt̄

(79)

Similar relations can be obtained for the ex-
pectation value 〈O〉Π of any observable O in the
region Π by restricting the integrals of Eqs. (76),
(77) to the region Π.

Furthermore, we can define a genuine two-qubit
quantum state by taking the trace in momentum
space

ρΠ(
√
s) ≡ trMtt̄k̂

[
ρT,Π(

√
s)
]

=
∑

αβ,α′β′

ρΠ,αβ,α′β′ |αβ〉 〈α′β′| (80)

In matrix notation,

ρΠ(
√
s) = 1

σΠ

ˆ
Π

dΩdMtt̄

dσ
dΩdMtt̄

ρ(Mtt̄, k̂,
√
s)

=

∑
I

´
Π dΩdMtt̄

α2
sβ
M2
tt̄

LI(Mtt̄,
√
s)RI(Mtt̄, k̂)∑

I

´
Π dΩdMtt̄

α2
sβ
M2
tt̄

LI(Mtt̄,
√
s)4ÃI(Mtt̄, k̂)

(81)

As a two-qubit quantum state, ρΠ is determined
by the respective integrated spin polarizations
and spin correlations B±Π,CΠ, which can be mea-
sured from the cross-section of the dileptonic de-
cay, Eqs. (72), (73). However, since ρΠ is al-
ready the result of an integration in phase space,
the orthonormal basis used to compute B±Π,CΠ
cannot depend on (Mtt̄, k̂), which invalidates the
use of the helicity or the diagonal basis. A natu-
ral choice is then the beam basis {x̂, ŷ, ẑ}, where
ẑ = p̂ points along the initial beam, and x̂, ŷ point

transverse directions to the beam, where all direc-
tions are fixed in the c.m. frame [29]. The beam
basis is represented in Fig. 7.

If one inserts the density matrices ρ(Mtt̄, k̂,
√
s)

computed in the helicity or the diagonal basis in
Eq. (81), the resulting integrated density matrix,
which we denote as ρ̄Π(

√
s), does not represent

an actual spin quantum state of the tt̄ pair, Eq.
(80), even though it satisfies the usual proper-
ties of a density matrix as it is a convex sum of
physical density matrices (i.e., it is a non-negative
Hermitian matrix with unit trace). The coeffi-
cients B±Π,CΠ characterizing this fictitious quan-
tum state ρ̄Π(

√
s) are precisely the expectation

values in Π of the spin polarizations and the spin
correlations in the basis chosen for the integra-
tion. Nevertheless, since both the set of sepa-
rable and Bell-local states are convex, any sig-
nature of entanglement/CHSH violation in the
fictitious quantum state ρ̄Π(

√
s) implies entan-

glement/CHSH violation in some of the physical
substates ρ(Mtt̄, k̂,

√
s), and so in the total spin-

momentum quantum state ρT,Π.

The upshot of the discussion of this subsec-
tion is that we can aim at obtaining entangle-
ment signatures by applying the previous criteria
to the corresponding integrated expectation val-
ues in selected regions Π of phase space where
the tt̄ pair is entangled. Moreover, we can an-
alyze directly if the physical two-qubit quantum
state ρΠ itself is entangled. In fact, by measuring
the coefficients B±Π,CΠ we can perform the full
quantum tomography of ρΠ.

Due to its experimental simplicity and avail-
ability of analytical results, leading to a better
understanding of the physics involved, in the fol-
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Figure 7: Orthonormal beam basis, defined in the c.m.
frame. The ẑ vector points along the direction of the
initial hadron beam, ẑ = p̂, while x̂, ŷ point fixed trans-
verse directions.

lowing we take the region Π as Π = Σ×S2. That
is, we integrate over all possible top directions so
we only have to specify the cuts in the invariant
mass spectrum that delimit the region Σ.

5.3 Angular integration
We compute first the distributions resulting from
averaging over the angular coordinates. We start
with the R-matrix for each partonic initial state
I:

RIΩ(Mtt̄) = 1
4π

ˆ
dΩ RI(Mtt̄, k̂) (82)

The invariance under rotations around the beam
axis implies that, in the beam basis, the cor-
relation matrix describing RIΩ(Mtt̄) after az-
imuthal integration is diagonal, C̃Iij = δijC̃

I
j ,

with C̃Ix = C̃Iy ≡ C̃I⊥. Thus, the matrices
RIΩ(Mtt̄) are characterized by just 3 parame-
ters that can be computed analytically from Eqs.
(45), (51): ÃI(Mtt̄), C̃I⊥(Mtt̄) and C̃Iz (Mtt̄), where
ÃI(Mtt̄) is the angular average of ÃI(Mtt̄, k̂). Ac-
tual spin density matrices ρIΩ(Mtt̄) are obtained
from RI(Mtt̄) by normalization, ρIΩ(Mtt̄) =
RIΩ(Mtt̄)/4ÃI(Mtt̄).

With respect to entanglement, due to the sym-
metry around the beam axis of ρIΩ, the Peres-
Horodecki criterion is equivalent now to δIΩ > 0
[see Eq. (132) and ensuing discussion], with

δIΩ ≡
−CIz + |2CI⊥| − 1

2 , (83)

from where the concurrence reads C[ρIΩ] =
max(δIΩ, 0).

Regarding the CHSH violation, ρIΩ can achieve
it iff µIΩ(Mtt̄) > 0, where now

µIΩ ≡ max
{

2
(
CI⊥

)2
,
(
CI⊥

)2
+
(
CIz

)2
}
−1 (84)

The angular average of the expectation values
in the helicity and the diagonal basis are com-
puted similarly:

C̃Iij(Mtt̄) ≡
1

4π

ˆ
dΩ C̃Iij(Mtt̄, k̂)

CIij(Mtt̄) =
C̃Iij(Mtt̄)
ÃI(Mtt̄)

(85)

We note that the matrix C̃Iij(Mtt̄) is also diagonal
in the helicity basis after the angular averaging
since C̃Ikr(Mtt̄) vanishes at LO due to the odd par-
ity under inversion of the coefficient C̃Ikr(Mtt̄, k̂).

Moreover, a complementary entanglement sig-
nature can be obtained from ∆I

Ω(Mtt̄) > 0, with

∆I
Ω ≡

−CInn(Mtt̄) + |CIkk(Mtt̄) + CIrr(Mtt̄)| − 1
2 ,

(86)
since, if all substates ρI(Mtt̄, k̂) for fixed Mtt̄

were separable, ∆I(Mtt̄, k̂) ≤ 0 and so would
its angular average 〈∆I(Mtt̄)〉Ω, which satisfies
∆I

Ω(Mtt̄) ≤ 〈∆I(Mtt̄)〉Ω. Hence, ∆I
Ω(Mtt̄) > 0

necessarily implies that some of the substates
ρI(Mtt̄, k̂) must be entangled. Another way to
put it is that ∆I

Ω(Mtt̄) > 0 is an entanglement
criterion for a fictitious quantum state ρ̄IΩ(Mtt̄)
[see discussion after Eq. (81)]. Similarly, one
can obtain a criterion for CHSH violation BIΩ >
2 that results from the angular integration of
B[ρI(Mtt̄, k̂)], see Eq. (11).

Technical details about the analytical calcula-
tion of the angular integrals are provided in Ap-
pendix D.

5.3.1 qq̄ processes

We obtain for Rqq̄Ω (Mtt̄) that

Ãqq̄(Mtt̄) = 1
9

[
1− β2

3

]
(87)

C̃qq̄⊥ (Mtt̄) = 2
135f(β)

C̃qq̄z (Mtt̄) = 1
9

[
1− β2

3 −
4
15f(β)

]

f(β) ≡

(
1−

√
1− β2

)2

2
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Figure 8: Angular-averaged spin correlations as a function of β. Main plot shows CI
⊥ (solid blue) and CI

z (dashed-
dotted green). Inset shows CI

rr (solid black), CI
nn (dashed orange), and CI

kk (dashed-dotted purple). Left: I = qq̄.
Dashed red line is ∆qq̄

Ω . Right: I = gg. Dashed red line is C[ρgg] = max(δgg
Ω , 0). Vertical black lines represent the

critical values βCH
c (dashed) and βPH

c (solid) above which there is no CHSH violation and entanglement, respectively.

while for the angular averages of the helicity spin
correlations we find

C̃qq̄rr (Mtt̄) = (2− β2)
27 (88)

C̃qq̄nn(Mtt̄) = −β
2

27

C̃qq̄kk(Mtt̄) = 1 + β2

27

These results imply that the quantum state ρqq̄Ω
is completely separable as

δqq̄Ω (Mtt̄) =
−1 + β2

3 + 4
15f(β)

1− β2

3
< 0 (89)

We note that this only means that the angular-
averaged state ρqq̄Ω is separable, but not that en-

tanglement disappears after the angular average.
Indeed,

∆qq̄
Ω (Mtt̄) = β2

3− β2 ≥ 0 (90)

which means that entanglement is still present
in the whole energy range (except exactly at
threshold, β = 0). Since in the diagonal basis
C+(Mtt̄, k̂) = 1, its angular average also satis-
fies C+(Mtt̄) = 1, and thus there is CHSH viola-
tion for any non-zero β, Bqq̄Ω (β) > 2. Left Fig. 8
displays all the angular-averaged magnitudes for
I = qq̄.

5.3.2 gg processes

We obtain for RggΩ (Mtt̄) that

Ãgg(Mtt̄) = 1
192

[
−59 + 31β2 + (66− 36β2 + 2β4)atanh(β)

β

]
(91)

C̃gg⊥ (Mtt̄) = 1− β2

192

[
9− 16atanh(β)

β

]
+ g(β)

C̃ggz (Mtt̄) = 1
192

[
−109 + 49β2 + (102− 72β2 + 2β4)atanh(β)

β

]
− 2g(β)

g(β) ≡ f(β)
96β4

[
49− 149

3 β2 + 24
5 β

4 − (49− 66β2 + 17β4)atanh(β)
β

]
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while for the helicity spin correlations we find

C̃ggrr (Mtt̄) = − 1
192

87− 31β2 + 66
atanh(β)

β − 1
β2 −

(
102− 38β2 + 2β4

) atanh(β)
β

 (92)

C̃ggnn(Mtt̄) = − 1
192

[
41− 31β2 −

(
34− 36β2 + 2β4

) atanh(β)
β

]

C̃ggkk(Mtt̄) = − 1
192

−37 + 31β2 − 66
atanh(β)

β − 1
β2 +

(
66− 34β2 + 2β4

) atanh(β)
β


We note that Cgg⊥ (Mtt̄) < 0 for all the energies of interest (the sign crossover is produced only in the

ultrarelativistic limit β ≈ 0.970). This implies that for practical purposes we can take δggΩ (Mtt̄) as

δggΩ = −1 + tr[Cgg]
2 =

75− 31β2 −
(
68− 38β2 + 2β4) atanh(β)

β

−59 + 31β2 + (66− 36β2 + 2β4)atanh(β)
β

(93)

From this expression, we compute the critical top
velocity βPH

c ≈ 0.632 below which the state ρggΩ is
still entangled, with the associated critical mass
being MPH

c ≈ 446 GeV.

On the other hand, since in the entangled re-
gion |Cgg⊥ | > |Cggz |, ρ

gg
Ω can violate the CHSH

inequality iff

µggΩ = 2
(
Cgg⊥

)2 − 1 > 0 (94)

This condition is satisfied below the critical value
βCH
c ≈ 0.378 < βPH

c , corresponding to a critical
mass MCH

c ≈ 374 GeV.
We can also reproduce these results from the

spin correlations in the helicity basis. Indeed,
since

Cggkk + Cggrr = −
50−

(
36− 4β2) atanh(β)

β

−59 + 31β2 + (66− 36β2 + 2β4)atanh(β)
β

(95)

we have that Cggkk + Cggrr < 0 for β < β∆ ≈ 0.864, and thus, in the energy range where the state is
entangled, δggΩ = ∆gg

Ω = −(1 + tr[Cgg])/2. In fact, this result can be obtained in any orthonormal basis
due to the rotational invariance of the trace, tr[Cgg] = 2Cgg⊥ + Cggz = Cggrr + Cggnn + Cggkk, reflecting the
symmetry of the spin-singlet state.

However, entanglement is again lost at high energies for ρggΩ : even if we use the full ∆gg
Ω ,

∆gg
Ω =

50− 31β2 −
(
50− 36β2 + 2β4) atanh(β)

β +
∣∣∣25−

(
18− 2β2) atanh(β)

β

∣∣∣
−59 + 31β2 + (66− 36β2 + 2β4)atanh(β)

β

(96)

we do not get any entanglement signature, in contrast to qq̄ processes. Right Fig. 8 displays all the
angular-averaged magnitudes for I = gg.

5.3.3 General considerations

We analyze the global results of Fig. 8 for both
processes in the light of the 2D plots of Fig. 3
for ρI(Mtt̄, k̂). The entanglement loss in ρIΩ(Mtt̄)
for both quark and gluon processes arises due to

the statistical average over all possible top direc-
tions. However, close to threshold, gluon fusion
produces a tt̄ pair in a spin singlet [see Eq. (54)],
invariant under rotations, and thus unaffected by
the angular average, keeping the entanglement.

Nevertheless, an entanglement signature can be
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recovered for qq̄ processes by averaging ∆qq̄, since
the helicity basis changes accordingly its orienta-
tion to produce a constructive sum of the spin
correlations. The same technique does not work
for the gg channel at high energies because there
is no entanglement close to forward production
Θ = 0, which spoils the high-pT entanglement
when averaging over all top directions.

5.4 Mass integration
With the help of the angular-averaged R-matrix,
it is quite simple to compute expectation values
in the region Π of phase space by integrating in
the mass range specified by Σ. Since mass inte-
gration involves luminosity functions (which we
stress that do not depend on the tt̄ direction),
one has necessarily to consider specific hadron
processes.

The angular average of the total matrix
R(Mtt̄, k̂,

√
s) describing a realistic hadronic tt̄

production process for fixed c.m. energy is

RΩ(Mtt̄,
√
s) =

∑
I=qq̄,gg

LI(Mtt̄,
√
s)RIΩ(Mtt̄)

(97)
The actual spin density matrix ρΩ(Mtt̄,

√
s) =

RΩ(Mtt̄,
√
s)/4Ã(Mtt̄,

√
s) is computed from its

partonic counterparts ρIΩ(Mtt̄) as in Eq. (58):

ρΩ(Mtt̄,
√
s) =

∑
I=qq̄,gg

wI(Mtt̄,
√
s)ρIΩ(Mtt̄) (98)

where the probabilities wI(Mtt̄,
√
s) are now

wI(Mtt̄,
√
s) = LI(Mtt̄,

√
s)ÃI(Mtt̄)∑

J LJ(Mtt̄,
√
s)ÃJ(Mtt̄)

(99)

Finally, by Eq. (81), the density matrix ρΠ
reads in terms of these angular-averaged magni-
tudes as

ρΠ(
√
s) =

∑
I

´
Σ dMtt̄

α2
sβ
M2
tt̄

LI(Mtt̄,
√
s)RIΩ(Mtt̄)∑

I

´
Σ dMtt̄

α2
sβ
M2
tt̄

LI(Mtt̄,
√
s)4ÃI(Mtt̄)

= 1
σΣ

ˆ
Σ

dMtt̄

dσ
dMtt̄

ρΩ(Mtt̄,
√
s) (100)

with
dσ

dMtt̄

=
ˆ

dΩ dσ
dΩdMtt̄

, σΣ =
ˆ

Σ
dMtt̄

dσ
dMtt̄
(101)

Similar considerations apply to the mass integra-
tion of the angular-averaged expectation values,
such as the spin correlations in the helicity basis.

Because of their illustrative character and their
high-experimental relevance, we focus on two
particular hadronic processes: pp̄ collisions at√
s = 2 TeV (very close to the actual value√
s = 1.96 TeV at the Tevatron), and pp colli-

sions at
√
s = 13 TeV (corresponding to the c.m.

energy of Run 2 at the LHC). As shown in Fig. 5,
at the Tevatron qq̄ processes dominate while at
the LHC gg processes do. The 2D plot of their
concurrences is depicted in left column of Fig. 9.
We focus on integrating the signal in the two rele-
vant regions for entanglement: close to threshold
and at high pT .

5.4.1 Threshold analysis

Close to threshold, the angular results of the pre-
vious subsection predict that only the gg chan-
nel gives rise to entangled tt̄ pairs. Therefore,
we restrict to the LHC example and take Σ =
[2mt,Mtt̄], which means that only events in the
window [2mt,Mtt̄] are selected, so

ρΠ(
√
s) = ρ(Mtt̄,

√
s) (102)

≡ 1
σ(Mtt̄)

ˆ Mtt̄

2mt
dM dσ

dMρΩ(M,
√
s)

with σ(Mtt̄) the total integrated cross-section
in the same mass window. Since it is com-
puted in terms of the angular-averaged substates
ρΩ(Mtt̄,

√
s), the quantum state ρ(Mtt̄,

√
s) is also

characterized by its integrated transverse and
longitudinal spin correlations C⊥, Cz, represented
in Fig. 9b. The necessary and sufficient condition
for ρ(Mtt̄,

√
s) to be entangled is that the inte-

grated value δ(Mtt̄,
√
s) satisfies δ(Mtt̄,

√
s) > 0.

Remarkably, this implies that a directly mea-
surable entanglement witness W , which satisfies
W < 0 only for entangled states [67], is provided
by the observable D of Eq. (74),

W ≡ D + 1/3 (103)

The concurrence is also readily computed from
D as C[ρ] = max(−1− 3D, 0)/2. The integrated
value of D is represented in Fig. 9b, along with
the critical value βPH

c (
√
s) (marked by horizontal

and vertical solid black lines) below whichW < 0.
Regarding the CHSH violation, its presence

can be also signaled by just one parame-
ter, C⊥(Mtt̄,

√
s), as given by the condition

µ(Mtt̄,
√
s) = 2 [C⊥(Mtt̄,

√
s)]2− 1 > 0. The crit-

ical value βCH
c (
√
s) below which there is CHSH
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Figure 9: Upper row: Analysis of tt̄ production at the LHC for
√
s = 13 TeV. (a) 2D plot of the concurrence as

in Figs. 3, 4. (b) Integrated spin correlations C⊥ (solid blue), Cz (dashed dotted green) and D (dashed red) for
ρ(Mtt̄,

√
s). The horizontal and vertical solid black lines signal the entanglement limit D = −1/3 while dashed ones

signal the CHSH violation limit |C⊥| = 1/
√

2. Lower row: Analysis of tt̄ production at the Tevatron for
√
s = 2 TeV.

(c) Same as (a). (d) Integrated correlations in the spin helicity basis: Crr (solid black), Cnn (dashed orange), and
Ckk (dashed-dotted purple). Dashed red and solid blue lines show the integrated value of ∆ and B/2, respectively.
Horizontal and vertical dashed black lines signal the CHSH violation limit B/2 = 1.

violation, |C⊥(βCH
c ,
√
s)| = 1/

√
2, is marked in

Fig. 9b by horizontal and vertical dashed black
lines.

We compute the critical values βCH
c (
√
s) ≤

βPH
c (
√
s) as a function of the c.m. energy and rep-

resent them in Fig. 10. We compare these critical
values with those for the angular-averaged sub-
states ρggΩ (Mtt̄), βCH

c ≈ 0.378 < βPH
c ≈ 0.632

(horizontal dashed and solid lines). We ob-
serve that, for sufficiently large c.m. energies,
the critical value βPH

c (
√
s) exceeds its angular-

averaged counterpart, even though ρ(Mtt̄,
√
s)

contains some mixing with qq̄ processes that re-
duces the entanglement (see lower part of right
Fig. 3 and Fig. 9a). This exceeding arises from
the fact that the total quantum state ρ(Mtt̄,

√
s)

is a convex sum of the substates ρIΩ(Mtt̄). There-

fore, one needs higher energies to include a suf-
ficient amount of separable states in order to di-
lute the entanglement. Nevertheless, if the inte-
gration window Σ was entirely placed in the re-
gion of separability of ρIΩ(Mtt̄), no entanglement
would be observed. In contrast, for the CHSH
violation, βCH

c (
√
s) is always below its angular-

averaged counterpart, at least within the range of
energies considered. This is because of the critical
effect introduced by the mixing with qq̄ processes
at threshold, see Fig. 5, which cannot be over-
come by the opposite effect of mass integration
due to the lower size of the CHSH-violating win-
dow. Indeed, for the considered energy of Run 2,√
s = 13 TeV, the weight of the gg channel at

threshold is barely above the critical value 1/
√

2,
Fig. 5b.
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5.4.2 High-pT analysis

For high pT at the Tevatron, entanglement is not
present in the two-qubit quantum state ρΠ but is
instead signaled by the integrated value of ∆Ω.
Indeed, Fig. 9c suggests to choose now the mass
window Σ as [Mtt̄,

√
s]:

∆(Mtt̄,
√
s) = 1

σ̄(Mtt̄)

ˆ √s
Mtt̄

dM dσ
dM∆Ω(M,

√
s)

(104)
with σ̄(Mtt̄) = σ−σ(Mtt̄). We define in a similar
fashion the integrated value of the CHSH viola-
tion, B(Mtt̄,

√
s).

The values of ∆(Mtt̄,
√
s) and B(Mtt̄,

√
s)/2,

along with the integrated helicity spin correla-
tions, are represented in Fig. 9d. Interestingly,
even though the tt̄ pairs produced close to thresh-
old are not entangled (see lower Fig. 9c), the inte-
gration in the mass range makes ∆(Mtt̄,

√
s) > 0

in the whole mass spectrum, similarly to the in-
crease of the critical value of βPH

c (
√
s) for gg pro-

cesses. However, this does not apply to the CHSH
violation, which can only be observed now at high
energies β > βCH

c ≈ 0.652.
Within the angular-averaged scheme consid-

ered here, no entanglement can be detected for gg
processes at high pT . We note, however, that en-
tanglement and CHSH violation can be observed
at the LHC for high pT if one also introduces a
cut in the top direction, as suggested by Fig. 9a
and implemented in Refs. [44, 45].

6 Experimental remarks
We complement here the theoretical predictions
for observables of the previous section with some
experimental remarks about the actual measure-
ment scheme in high-energy colliders, and the
potential statistical significance of the discovery.
Nevertheless, a dedicated analysis of the expected
experimental sensitivity of each prediction is be-
yond the scope of the present work.

6.1 Entanglement detection

The detection of entanglement is more delicate
than it could be naively expected from Figs. 3, 4
since, even though entanglement is present in
a wide region of phase space, one has to select
carefully the phase space regions where the sig-
nal is integrated in order to obtain an entan-
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Figure 10: Critical values βPH
c (
√
s) (solid blue) and

βCH
c (
√
s) (dashed red) below which entanglement and

CHSH violation can be observed, respectively, close to
threshold as a function of the c.m. energy

√
s for pp

collisions. The horizontal lines mark the critical values
βCH

c (dashed) and βPH
c (solid) for ρgg

Ω . Black markers
indicate values for c.m. energies at the LHC. Circles:
Run 1 (

√
s = 7, 8 TeV), Run 2 (

√
s = 13 TeV) and

Run 3 (
√
s = 13.6 TeV). Squares: Possible upgrade of

the LHC (
√
s = 27 TeV).

glement signature. In fact, the recent measure-
ment of the CMS collaboration at the LHC with
the data of Run 2 [39], with no restrictions in
phase space, yielded no entanglement signature,
D = −0.237± 0.011 > −1/3.

Our analysis reveals that there are two main
regions where entanglement can be in principle
detected: close to threshold and for high trans-
verse momentum.

6.1.1 Threshold

Close to threshold, as shown in Fig. 5, the only
experiment with high enough c.m. energy to give
rise to entanglement is the LHC. The idea here is
to measure D from the cross-section of Eq. (74),
applying an upper cut in the mass spectrum for
the integrated signal. Although our calculation
is restricted to LO, in general, the criterion W =
D + 1/3 < 0 still provides a sufficient condition
for the entanglement of ρ(Mtt̄,

√
s) without any

assumption on its specific form [see Eq. (124)].
The entanglement witness W < 0 can be

rewritten as the violation of a Cauchy-Schwarz
inequality, a typical entanglement signature in
other fields such as quantum optics, condensed
matter, or analog Hawking radiation [50, 68–70].
This is proven by using the P -representation of
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Eq. (5). If a state is separable, P (nA,nB) > 0,
and then

|tr C| = |〈σ · σ〉|

=
∣∣∣∣ˆ dΩAdΩB P (nA,nB)nA · nB

∣∣∣∣
≤
ˆ

dΩAdΩB P (nA,nB) |nA · nB|

≤
ˆ

dΩAdΩB P (nA,nB) = 1 (105)

Hence, the directly measurable observable D rep-
resents in the range of values −1 ≤ D < −1/3 a
genuine non-classical feature, which can be qual-
itatively understood from the fact that the clas-
sical average of the scalar product of two vec-
tors with unit length is never larger than one,
3|D| = |tr C| = | 〈σ · σ〉 | ≤ 1. A similar entan-
glement criterion based on the trace of the cor-
relation matrix was derived for Heisenberg spin
chains [71].

A dedicated analysis of the entanglement dis-
covery was performed in Refs. [41, 45], find-
ing that high-statistical significance can be ex-
pected, potentially more than 5 statistical devi-
ations (5σ), the standard candle for discovery in
high-energy physics.

Figures 5, 10 show that the effect of increas-
ing the c.m. energy saturates for large energies.
Therefore, we do not expect that future hadron
colliders with higher collision energies, such as
possible upgrades of the LHC or the FCC, will
strongly increase the entanglement in tt̄ produc-
tion. However, we do expect that a larger data
collection will enhance the sensitivity of the mea-
surements by reducing the statistical uncertain-
ties. For example, the LHC is expected to collect
about 20− 30 times more events with respect to
the currently recorded data [72], a possible up-
grade of the LHC to access higher energies (HE-
LHC) is expected to collect about 100 times more
events [65], and the FCC is expected to collect
about 140− 220 times more events [73]. Another
possibility to increase entanglement is to enhance
the contribution from the gg channel by further
rejecting events from the qq̄ channel, as recently
proposed in Ref. [46].

6.1.2 High pT

For high pT , both partonic processes qq̄ and gg
give rise to the same triplet state due to or-

bital angular momentum dominance. Neverthe-
less, because the procedure used here averages
over all possible top directions, only qq̄ processes
yield an entanglement signature in our scheme. A
detailed study of the statistical significance of an
entanglement detection for high pT at the LHC
has been already provided in Ref. [45], predicting
also a potential 5σ discovery.

Regarding the Tevatron, entanglement is de-
tected from the integrated value of ∆, which is in
general a sufficient condition for the presence of
entanglement [see Eq. (123)]. There are impor-
tant conceptual differences between the detection
of entanglement close to threshold (involving the
measurement ofD) and that at high pT (involving
the measurement of ∆). First, close to threshold,
entanglement is detected from one single magni-
tude, D, while ∆ requires the measurement of 3
magnitudes, which are the diagonal spin corre-
lations in the helicity or the diagonal basis (we
note that a recent work has proposed to measure
∆ also from a single parameter [46]). Second,
D + 1/3 < 0 reveals that the physical two-qubit
quantum state ρΠ is entangled, while ∆ > 0 sig-
nals entanglement in the fictitious quantum state
ρ̄Π, and so in the total spin-momentum quantum
state ρT,Π.

At the Tevatron, the relatively low c.m. energy
and data recorded yielded high uncertainties on
spin-correlation observables [33–35]. Therefore,
by considering typical uncertainties of the carried
measurements, we do not expect in principle to
find there an entanglement signature with high-
statistical significance.

6.1.3 Lorentz invariance

Finally, we would like to discuss the possible
role of the reference frame choice on the entan-
glement detection. While our calculations as-
sume that the tt̄ momenta for each production
process are well-defined and therefore their spin-
entanglement is Lorentz invariant, in realistic
situations their wave function is necessarily de-
scribed by wave packets with finite width, so their
entanglement is no longer independent of the ref-
erence frame. However, within the current ex-
perimental scheme, the tt̄ spins are by definition
measured in their respective rest frames, since
these are precisely the frames where the lepton
directions `± are defined in Eq. (68).
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6.2 Quantum tomography
A protocol for the quantum tomography of the tt̄
pair was developed in Ref. [41], based on the fact
that the experimental procedure of Section 5.1 al-
lows to measure the integrated value of the spin
correlations and spin polarizations. Thus, by im-
plementing a cut in the invariant mass spectrum,
one can extract all the parameters characterizing
the total quantum state ρ(Mtt̄,

√
s) of Eq. (102).

As explained, such a reconstruction requires the
use of a fixed orthonormal basis in space, like the
beam basis.

We extend here the proposed quantum tomog-
raphy protocol to more general situations. First,
we note that the protocol is not restricted to the
state ρ(Mtt̄,

√
s), but it is rather valid for any ar-

bitrary integrated quantum state ρΠ by measur-
ing all the 15 parameters B±i , Cij in the beam
basis. We can further simplify the process if
we integrate over the azimuth around the beam
axis, since then rotational invariance is recovered
and thus, at LO, only 2 parameters are needed
for quantum tomography: the integrated trans-
verse and longitudinal spin correlations C⊥, Cz.
In general, by only assuming symmetry around
the beam axis, the quantum tomography of the
tt̄ pair requires the measurement of just 4 pa-
rameters, B±z , C⊥, Cz, with B±z the spin polar-
izations along the beam axis. Nevertheless, from
the recent CMS measurement [40], the values of
these polarizations are still expected to be quite
small. A summary of the parameters needed for
the quantum tomography of the tt̄ pair is pre-
sented in Table 1.

Assumption Coefficients #Parameters
Symmetry + LO C⊥, Cz 2

Symmetry B±z , C⊥, Cz 4
None B±i , Cij 15

Table 1: Summary of the parameters needed to be mea-
sured in order to perform the quantum tomography of
the tt̄ pair for different assumptions on the form of ρΠ.
“Symmetry” denotes symmetry around the beam axis,
obtained after integration over the azimuth in the beam
basis.

Moreover, since the quantum tomography pro-
tocol only depends on the decay properties of the
tt̄ pair and not on the nature of the production
process, it can be extended to any tt̄ production
mechanism, such as positron-electron (e+e−) col-

lisions. Furthermore, even though we have fo-
cused on the case of a dileptonic decay of the tt̄
pair, Eqs. (68), (69) are valid for any pair of
detectable decay products by just replacing `±
and κ`, κ̄` by the corresponding flight directions
in the parent rest frames and spin analyzing pow-
ers. We conclude by noting that the proposed
quantum tomography protocol for the tt̄ pair goes
beyond the general approach to high-energy pro-
cesses presented in Ref. [60].

6.3 CHSH violation

Since entanglement is a necessary condition for
the violation of CHSH inequalities, CHSH vio-
lations are generally expected to be measured
with lower statistical significance than entangle-
ment [45]. This is clearly seen by examining
Fig. 10, where we see that the upper critical value
for a CHSH violation is well below that for entan-
glement. Remarkably, in a similar fashion to en-
tanglement, the CHSH violation close to thresh-
old is also inferred from the value of just one pa-
rameter, C⊥. Nevertheless, one can always mea-
sure the full CHSH violation in a more conven-
tional way through Eq. (10). Due to the rota-
tional invariance in the perpendicular plane to the
beam, the experimental scheme is similar to the
usual case of Bell inequalities with spin-singlet
states, and one chooses four vectors a1,a2,b1,b2
in that plane satisfying a1 · a2 = b1 · b2 = 0 and
a1 · b1 = a2 · b2 = a2 · b1 = −a1 · b2 = 1/

√
2.

Since the correlation matrix should be isotropic
in this plane, this experimental scheme is equiv-
alent to measure |C⊥| > 1/

√
2. We note that our

choice of spin directions is fixed a priori, so no
statistical bias is introduced [45].

Regarding the statistical significance of the
CHSH violation close to threshold, we expect it to
be much lower than that of entanglement. How-
ever, even if a significant detection is not achiev-
able with the current Run 2 data, it could be per-
formed with the increased c.m. energies (as seen
from Fig. 10) and larger amount of data provided
by future runs and/or colliders. At the Tevatron,
since entanglement detection already seems quite
challenging, we do not expect to achieve a statisti-
cally significant observation of a CHSH violation.

As for the case of entanglement, the scheme
presented here does not allow to observe CHSH
violation at the LHC at high pT . Nevertheless,
a thorough analysis of the potential detection of
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CHSH violation in this regime and its statistical
significance is presented in Refs. [44, 45].

So far, we have discussed the violation of the
CHSH inequality of Eq. (10). However, a mea-
surement of a genuine violation of Bell theorem
implies much more than just measuring some lin-
ear combination of spin correlations above certain
critical value, like in the case of entanglement.
In order to fully rule out a local hidden-variable
model, one needs to perform a loophole-free test
that ensures that the experimental setup satisfies
all the hypotheses of Bell theorem. Loophole-free
violations of Bell inequalities were measured for
the first time in 2015 [74, 75], and only in 2018
the so-called “free will” loophole was completely
closed [76].

Consequently, a careful analysis of the mea-
surement process in a collider is in order. Due to
its illustrative character, we examine the paradig-
matic case of Run 2 at the LHC. Run 2 consisted
of colliding a bunch of protons every 25 ns, yield-
ing typically 60-80 collisions per bunch [77]. The
products of these collisions are recorded by differ-
ent detectors surrounding the pp interaction point
that trace their direction and momentum/energy.
This process goes on for several years (Run 1 went
from 2009 to 2012, and Run 2 went from 2015 to
2018) to collect sufficient amount of statistics.

As a result, in our specific case, the experi-
ments of Alice and Bob should be regarded as the
detector recording of the `+`− pair resulting from
a tt̄ decay. First, one needs to ensure that the
detection events are causally disconnected. This
in principle could be done, since the lepton pair
is typically ultrarelativistic due to the large top
mass, and in addition causally-connected detec-
tion events can be rejected after reconstruction of
the lepton momenta.

However, a major problem arises due to the
fact that the direction of the spin measurements
cannot be controlled, since we only detect the lep-
ton directions. In fact, technically, one does not
even have access to the tt̄ spins, but rather in-
fers their expectation values since they are corre-
lated with the lepton directions. We stress that
Eq. (68) is only valid after integrating out all the
remaining degrees of freedom of the decay prod-
ucts, and cannot be used on an event by event
basis. In other words: there is not a measure-
ment setting that yields a ±1 in each detection
event or that can be controlled by Alice or Bob.

Therefore, the free-will loophole cannot be closed
and even the specific measurement setting of the
CHSH inequality is not achievable; only once the
spin correlation matrix has been extracted from
the fit of the angular differential cross-section of
the decay products, one can aim at measuring a
CHSH violation. Moreover, many of the events
are not useful for the analysis, which gives rise to
the so-called detection loophole.

The emergence of all these loopholes is quite
natural because high-energy colliders were not
specifically designed for testing Bell inequalities.
As a result, in a high-energy collider, we can only
detect a weak violation of the CHSH inequal-
ity, in the sense that some loopholes can never
be closed. Related discussions on the validity of
Bell tests in high-energy colliders can be found in
Refs. [44, 45, 47].

7 Conclusions and outlook

In this work, we have provided the general frame-
work to study the quantum state of tt̄ pairs pro-
duced in QCD processes. We have discussed that,
due to the nature of the measurement scheme, the
most general quantum state that can be probed
in a collider is fully determined by the production
spin density matrix. This has to be necessarily a
mixed state since a) only momentum measure-
ments are carried out in a collider and b) one has
to average over the internal degrees of freedom
(like spin or color) of the initial state.

We have analyzed tt̄ production for the most
elementary QCD partonic reactions, extending
the work of Ref. [41] to also include the analysis
of CHSH violation. For qq̄ processes, entangle-
ment and CHSH violation are equivalent condi-
tions, and are present in whole phase space. For
gg processes, entangled tt̄ pairs are produced at
threshold in a spin-singlet state, and at high pT
in a spin-triplet state, both violating the CHSH
inequality. Remarkably, all these features can be
essentially understood in terms of basic conserva-
tion laws of angular momentum, without invoking
the specific details of QCD interactions.

We have shown that, at least at LO, any tt̄
production from a real hadronic process can be
written in terms of these basic building blocks
through the luminosity functions, which deter-
mine the probability of a certain partonic reac-
tion at a given c.m. energy in terms of PDF.
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In particular, we have focused on pp and pp̄ colli-
sions, which are those carried out at the LHC and
the Tevatron, respectively. We have performed a
detailed analysis on how the tt̄ quantum state de-
pends on the c.m. energy of the collisions, finding
that at low energies the qq̄ channel dominates,
with the gg contribution increasing with the c.m.
energy for both types of collisions. For the LHC,
the gg channel already dominates at the energies
of its first run. For the Tevatron, however, due to
its relatively low-energy operating point, qq̄ pro-
cesses dominate. Thus, both colliders represent a
perfect example of each elementary QCD process.

Thinking about potential experimental real-
izations, we have proposed a number of realis-
tic observables for the characterization of the tt̄
quantum state that provide signatures of entan-
glement and CHSH violation. Interestingly, at
the LHC these signatures are obtained by the
measurement of a single magnitude: for entan-
glement, the trace of the correlation matrix is a
good entanglement witness, as already predicted
in Ref. [41], while CHSH violation can be signaled
by measuring the spin correlations in the trans-
verse plane to the beam.

Finally, we analyze in detail the experimen-
tal implementation of these ideas. We explic-
itly show that an entanglement measurement at
the LHC represents the violation of a Cauchy-
Schwarz inequality. Regarding the Tevatron, we
find that a statistically significant observation of
entanglement seems quite challenging due to the
relatively large expected uncertainties.

We also extend the quantum tomography pro-
tocol developed in Ref. [41] to more general quan-
tum states, arguing that it can be applied in gen-
eral to any tt̄ quantum state. In particular, if
one averages over the beam axis, rotational sym-
metry is recovered and the quantum tomography
can be implemented from the measurement of just
4 parameters, related to the transverse and lon-
gitudinal spin correlations, and to the longitu-
dinal spin polarizations. Furthermore, since the
protocol does not depend on the specific produc-
tion process, it can be extended to any tt̄ pro-
duction mechanism, like electroweak production
from e+e− collisions.

Regarding the CHSH violation, since it is a
stronger requirement than entanglement, its sta-
tistical significance is expected to be lower. More-
over, we argue that, due to the nature of the de-

tection process, only weak violations of Bell in-
equalities can be measured in a high-energy col-
lider, since some loopholes, like those related to
the free-will or to the detection efficiency, can-
not be closed. This is not surprising: after all,
high-energy colliders were not designed to test
Bell inequalities.

From a quantum information perspective, top
quarks allow to export fundamental concepts
in quantum information, such as entanglement,
CHSH violation or quantum tomography, to the
high-energy field. This opens the prospect of us-
ing high-energy colliders to study quantum in-
formation problems at the highest-energy scale
available. The genuine relativistic behavior, the
exotic character of the interactions and symme-
tries involved, and the fundamental nature of
this environment make it especially attractive for
such purpose. Indeed, the detection of entangle-
ment or CHSH violation in tt̄ pairs would rep-
resent their highest-energy detections ever, many
orders of magnitude above standard laboratory
setups. Another interesting experiment is the im-
plementation of the quantum tomography of the
tt̄ pair, which could be used for instance to mea-
sure quantum discord [78, 79].

A very interesting perspective is provided by
future colliders, where tt̄ pairs are expected to be
produced from e+e− collisions, such as the FCC-
ee [80]. In particular, in future linear e+e− col-
liders such as the International Linear Collider
(ILC) [81] and the the Compact Linear Collider
(CLIC) [82, 83], spin degrees of the initial e+e−

state can be controlled to a large extent, in con-
trast to the QCD production discussed in this
work. These colliders are then revealed as quite
promising scenarios to study quantum informa-
tion problems, where the techniques of this work
can be straightforwardly adapted. Alternative
candidates to top quarks for the study of quan-
tum information problems are gauge bosons aris-
ing from Higgs decays and τ leptons [43, 47, 84].

From the high-energy perspective, the intro-
duction of quantum information concepts can
provide new relevant observables in the field. For
example, entanglement measurements can help to
understand the underlying mechanism of a cer-
tain production process. A very intriguing exten-
sion of this work is to explore New Physics beyond
the Standard Model by measuring the quantum
state of the tt̄ pair, comparing the experimental
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results with the predictions of the different theo-
ries available. Indeed, some recent works already
address the possibility of using entanglement to
trace signatures of New Physics [42, 43].

We conclude by stressing that the work has
been fully developed within a genuine quantum
information framework, since once the produc-
tion spin density matrix and the luminosity func-
tions are computed by the theory of high-energy
physics, all the calculations are reduced to study
convex combinations of two-qubit quantum states
using standard tools of quantum information the-
ory. Our work then provides a simple and general
approach for non-particle physicists to the quan-
tum information aspects of high-energy colliders,
a fascinating arena to study the foundations of
quantum mechanics.
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A P -representation and coherent
states for qudits
We review here the main properties of the P -
representation for qudits introduced in Ref. [85].
We describe a Hilbert space of dimension N as an
irreducible representation of SU(2) with angular
momentum j such that N = 2j + 1. The qudit
basis is relabeled as |j,m〉, with m = −j,−j +
1 . . . , j the eigenvalues of the z-component of the
angular momentum, Jz |j,m〉 = m |j,m〉. Angu-
lar momentum coherent states |j, n̂〉 are defined
as those simultaneously eigenstates of J2 and n·J,
i.e., J2 |j, n̂〉 = j(j + 1) |j, n̂〉 and n · J |j, n̂〉 =
j |j, n̂〉, where we work in the usual orthonormal
basis in spherical coordinates {n̂, n̂θ, n̂φ}:

n̂ = [sin θ cosφ, sin θ sinφ, cos θ]
n̂θ = [cos θ cosφ, cos θ sinφ,− sin θ] (106)
n̂φ = [− sinφ, cosφ, 0]

One can easily compute |j, n̂〉 from the ladder op-
erators J±,n̂ = n̂θ · J ± in̂φ · J as J+,n̂ |j, n̂〉 = 0,

finding

|j, n̂〉 =
2j∑
n=0

√√√√(2j
n

)[
cos θ2

]2j−n [
sin θ2

]n
× e−i(j−n)φ |j, j − n〉 (107)

As the more usual coherent states, these states
form an overcomplete basis of the Hilbert space,

2j + 1
4π

ˆ
dΩ |j, n̂〉 〈j, n̂| =

∑
m

|j,m〉 〈j,m| = I2j+1

(108)
The P -representation for a quantum state ρ is
defined from these coherent states as

ρ =
ˆ

dΩ P (n̂) |j, n̂〉 〈j, n̂| ,
ˆ

dΩ P (n̂) = 1
(109)

This definition does not completely fix P (n̂). In
order to check it, we consider its expansion in
spherical harmonics

P (n̂) =
∞∑
`=0

∑̀
m=−`

p`mY
m
` (n̂) (110)

Y m
` (n̂) =

√
2`+ 1

4π
(`−m)!
(`+m)! sinm θPm` (cos θ)eimφ

where Pm` (cos θ) are the associated Legendre
polynomials. Normalization of P (n̂) implies
p00 = 1/

√
4π. Since spherical harmonics form an

orthonormal basis, when inserting Eq. (107) in
Eq. (109) we realize that only the coefficients p`m
with ` ≤ 2j are involved, while those for ` > 2j
remain undetermined. Thus, the most general
expression for P (n̂) is

P (n̂) = 1
4π +

2j∑
`=1

∑̀
m=−`

p`mY
m
` (n̂) +Q2jf(n̂)

(111)
with Q2j the projector onto ` > 2j and f(n̂)
an arbitrary angular function. Since P (n̂) is a
real function, the number of real parameters de-
termining the coefficients {p`m}2j`=1 is precisely
(2j + 1)2 − 1 = 4j(j + 1), the number of pa-
rameters fixing an arbitrary density matrix in a
Hilbert space of dimension 2j + 1. Therefore,
any density matrix can be described in terms of
a certain function P (n̂), where those admitting a
non-negative P -function represent classical states
described by a conventional probability distribu-
tion.
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We now focus on the case of qubits, where j =
1/2 and the coherent states are the usual spin
states

|n̂〉 = cos θ2e
−iφ2 |↑〉+ sin θ2e

iφ2 |↓〉 (112)

where |↑〉 , |↓〉 are the spin states along the z-axis,
|12 ±

1
2〉. Since 2j = 1, only spherical harmonics

up to ` = 1 in the expansion of P (n̂) are involved
in the expression of ρ. This can be straightfor-
wardly checked by noticing in Eq. (2) that

|n〉 〈n| = 1 + n · σ
2 (113)

Moreover, if we choose the i = x, y, z basis for the
spherical harmonics Y 1

i (n̂) =
√

3
4π n̂i, we simply

find that the Bi coefficients of Eq. (1) are

Bi =
√

4π
3 p1i (114)

and thus

P (n̂) = 1
4π [1 + 3(n̂ ·B)] +Q1f(n̂) (115)

For one qubit, a non-negative P (n̂) can always
be found since ρ is in fact an incoherent mixture
of the two spin states along the direction of the
Bloch vector B.

The two-qubit case is straightforwardly
adapted from the one qubit case. In particular,
the most general expression for P (n̂A, n̂B),
defined through Eq. (5), is now

P (n̂A, n̂B) = 1
(4π)2 [1 + 3B+ · n̂A + 3B− · n̂B

+ 9n̂A ·C · n̂B] +Q1 ⊗Q1f(n̂A, n̂B)
(116)

Entangled states are thus states for which no
f(n̂A, n̂B) can be found such that P (n̂A, n̂B) is
non-negative.

B Specific entanglement criteria for tt̄

pairs
We derive here some adapted results for tt̄ quan-
tum states from the general entanglement crite-
ria discussed in Section 2.1. For that purpose,
we write the full matrix form of the general ex-
pression for a density matrix ρ in a 2× 2 Hilbert
space, Eq. (4):

ρ = 1
4


1 +B+

3 +B−3 + C33 B−1 + C31 − i(B−2 + C32) B+
1 + C13 − i(B+

2 + C23) C11 − C22 − i(C12 + C21)
B−1 + C31 + i(B−2 + C32) 1 +B+

3 −B
−
3 − C33 C11 + C22 + i(C12 − C21) B+

1 − C13 − i(B+
2 − C23)

B+
1 + C13 + i(B+

2 + C23) C11 + C22 + i(C21 − C12) 1−B+
3 +B−3 − C33 B−1 − C31 − i(B−2 − C32)

C11 − C22 + i(C21 + C12) B+
1 − C13 + i(B+

2 − C23) B−1 − C31 + i(B−2 − C32) 1−B+
3 −B

−
3 + C33


(117)

where we are following the usual convention for
the Pauli matrices σi. For the analysis of the
Peres-Horodecki criterion, we compute the par-

tial transpose of ρ with respect to the second sub-
system, ρT2 , which amounts to transpose its four
2× 2 blocks, namely:

ρT2 = 1
4


1 +B+

3 +B−3 + C33 B−1 + C31 + i(B−2 + C32) B+
1 + C13 − i(B+

2 + C23) C11 + C22 + i(C12 − C21)
B−1 + C31 − i(B−2 + C32) 1 +B+

3 −B
−
3 − C33 C11 − C22 − i(C12 + C21) B+

1 − C13 − i(B+
2 − C23)

B+
1 + C13 + i(B+

2 + C23) C11 − C22 + i(C21 + C12) 1−B+
3 +B−3 − C33 B−1 − C31 + i(B−2 − C32)

C11 + C22 + i(C21 − C12) B+
1 − C13 + i(B+

2 − C23) B−1 − C31 − i(B−2 − C32) 1−B+
3 −B

−
3 + C33


(118)

The Peres-Horodecki criterion states that ρT2 is non-negative iff ρ is separable. A simpler version of
this statement is obtained by considering vectors with only first and fourth component, which gives a
reduced quadratic form

ρC ≡
[

1 +B+
3 +B−3 + C33 C11 + C22 + i(C12 − C21)

C11 + C22 + i(C21 − C12) 1−B+
3 −B

−
3 + C33

]
(119)
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The non-negative character of ρT2 implies
det ρC ≥ 0. Thus, det ρC < 0 is a sufficient con-
dition of entanglement since it implies that ρT2

is not positive semi-definite. In turn, det ρC < 0
can be rewritten as P > 0, with

P ≡ (B+
3 +B−3 )2 + (C11 + C22)2

+ (C21 − C12)2 − (1 + C33)2 (120)

Furthermore,

P ≥ (C11 + C22)2 − (1 + C33)2 ≡ P̃, (121)

so P̃ > 0 provides an even simpler entanglement
criterion. Specifically, since 1 + C33 ≥ 0, P̃ > 0
iff

|C11 + C22| > 1 + C33 (122)

Thus, the entanglement signatures used in the
main text

∆ ≡ −C33 + |C11 + C22| − 1
2 > 0 (123)

as well as

W = D + 1
3 ≡

tr[C]
3 + 1

3 < 0 (124)

are sufficient conditions for entanglement in gen-
eral, valid for arbitrary quantum states in 2 × 2
bipartite Hilbert spaces.

We now address the specific case of tt̄ produc-
tion through LO QCD, characterized by unpolar-
ized quantum states (the so-called T -states [86]),
B+
i = B−i = 0, and a symmetric correlation ma-

trix, Cij = Cji. The latter condition implies that
the correlation matrix can be diagonalized after
the appropriated rotation, C = diag[C1, C2, C3],
which reduces Eq. (117) to

ρ = 1
4


1 + C3 0 0 C1 − C2

0 1− C3 C1 + C2 0
0 C1 + C2 1− C3 0

C1 − C2 0 0 1 + C3


(125)

It is easy to see that

±C3 + |C1 ± C2| − 1 ≤ 0 (126)

by demanding ρ to be a physical state described
by a non-negative density matrix. This comple-
ments the Peres-Horodecki criterion, which says
that the state is entangled iff

±C3 + |C1 ∓ C2| − 1 > 0 (127)

By combining both conditions, we find that
Peres-Horodecki is equivalent to

−C3 + |C1 + C2| − 1 > 0, C3 ≤ 0 (128)
C3 + |C1 − C2| − 1 > 0, C3 ≥ 0

where the first line is just the condition ∆ > 0 of
Eq. (123).

For a T -state, the concurrence can be also an-
alytically computed from its definition (8), since
in that case ρ̃ = ρ. Hence,

√√
ρρ̃
√
ρ = ρ, and λi

are the eigenvalues of ρ, λi = 1
4(1 + C3 ± |C1 −

C2|), 1
4(1 − C3 ± |C1 + C2|). Moreover, as ρ has

unit trace, ∑
i

λi = 1, (129)

and the concurrence is simply C[ρ] = max(2λ1 −
1, 0), with 2λ1−1 = (±C3 + |C1∓C2|−1)/2. By
noting the analogy with Eq. (127), we can write
the concurrence directly in terms of the Peres-
Horodecki criterion:

C[ρ] = 1
2 max[−C3 + |C1 + C2| − 1, 0], C3 ≤ 0

C[ρ] = 1
2 max[C3 + |C1 − C2| − 1, 0], C3 ≥ 0

(130)

For the study of the angular-averaged quan-
tum states ρΩ, we consider the particular case in
which there is invariance under rotations around
a certain direction, chosen along σ3 and labeled
as the z-axis. In that case, the spin polariza-
tions must be longitudinal, B±i = B±z δi3, and the
correlation matrix is diagonal, Cij = δijCj , with
eigenvalues C1 = C2 = C⊥ and C3 = Cz. The
Peres-Horodecki criterion is then equivalent to

4C2
⊥ + (B+

z +B−z )2 − (1 + Cz)2 > 0 (131)

If the state is unpolarized,

δ ≡ −Cz + 2|C⊥| − 1
2 > 0 (132)

is a necessary and sufficient condition for entan-
glement, while for B±z 6= 0, δ > 0 is just a suffi-
cient condition.

C Parton distribution functions
We further explain here the concept of PDF and
detail how the luminosity functions LI(Mtt̄,

√
s)
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of Eq. (56) are computed. The PDF Nπ(x) de-
termines the probability of originating a parton
π from the corresponding hadron with an energy
fraction 0 ≤ x ≤ 1. For instance, in the case
of pp collisions, a tt̄ pair is originated from the
interaction between a parton π from one of the
protons and the corresponding antiparton π̄ from
the other proton. The probability of producing a
state I = ππ̄ with partonic c.m. energy ŝ = x1x2s
is Nπ(x1)Nπ̄(x2). In the case of I = qq̄, π can be
either some light quark, π = u, d, c, s, b, or its
corresponding antiparticle π = ū, d̄, c̄, s̄, b̄. In the
case of I = gg, π is a gluon. Since the partonic
c.m. frame is that of the tt̄ pair, the c.m. energy
is the same, Mtt̄ =

√
ŝ, and thus we can compute

the luminosity function as

LI(Mtt̄, s) =
∑
π

ˆ 1

0

ˆ 1

0
dx1dx2 δ(Mtt̄ −

√
ŝ)

×Nπ(x1)Nπ̄(x2) (133)

where the sum over the index π runs over all the
possible partons giving rise to the state I. Chang-
ing to dimensionless variables x = √

x1x2 =
Mtt̄/

√
s, t =

√
x1/x2 gives

LI(Mtt̄, s) =
∑
π

2x√
s

ˆ 1
x

x

dt
t
Nπ(xt)Nπ̄

(
x

t

)
(134)

For the case of pp̄ collisions, we simply replace one
of the proton PDF above by the antiproton PDF
N̄π(x), which is that of the proton but interchang-
ing partons with antipartons, N̄π(x) = Nπ̄(x).

The luminosity integral (134) is computed nu-
merically, using the PDF values proportioned by
the NNPDF30LO PDF set [87]. No significant
change is found if other PDF sets are used.

D Angular averaging

We outline here the main technical details about
the computation of the angular integrals pre-
sented in Section 5.3.

D.0.1 qq̄ processes

For computing the angular averages involved in
the qq̄ channel, the polar integrals in Θ can be
computed either as polynomials in t = cos Θ or

in terms of

Fn ≡
ˆ π

2

0
dΘ sinn Θ = n− 1

n
In−2 =

Γ
(
n+1

2

)
Γ
(
n+2

2

)√π
2

(135)
with Γ(x) the usual Euler gamma function.

The integral giving rise to the CHSH violation
Bqq̄Ω is much more delicate. We sketch here the
main steps for its computation. First, we change
variable as β cos θ =

√
z, so

1
2

ˆ π

0
dΘ sin Θ

√
(2− β2 sin2 Θ)2 + β4 sin4 Θ

= 1√
2β

ˆ β2

0
dz

√
(z + 1− β2)2 + 1

z
(136)

This last integral can be recurrently rewritten af-
ter integrating by parts as

ˆ β2

0
dz

√
(z + 1− β2)2 + 1

z
= 2
√

2
3 β (137)

+ 2
3
[
1 + (1− β2)2

]
E0(1− β2)

+ 2
3(1− β2)E1(1− β2)

with

En(x) ≡
ˆ 1−x

0
dz zn√

z [(z + x)2 + 1]
(138)

This integral can be in turn expressed in terms of
elliptic integrals:

En(x) = 2
ˆ √1−x

0
dy y2n√

(y2 + x)2 + 1
(139)

= a2n−1
ˆ 1

τ
dt

(
1−t
1+t

)2n√
(At2 +B) (A+Bt2)

where

t ≡ a− y
a+ y

, τ = a−
√

1− x
a+
√

1− x
(140)

A ≡ 1
2

[
1 + b

a

]
, B ≡ 1

2

[
1− b

a

]

a = 4
√
x2 + 1, b =

√√
x2 + 1− x

2

The last step is changing to angular variables as

t =
√
k′ tanφ, k′ ≡ B

A
(141)

φ1 = arctan τ√
k′
, φ2 = arctan 1√

k′
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which yields

En(x) = a2n−1

A

ˆ φ2

φ1

dφ

(
1−
√
k′ tanφ

1+
√
k′ tanφ

)2n

√
1− k2 sin2 φ

(142)

= a2n−1

A

2n∑
m=0

(
2n
m

)
(−1)m2mηm(φ2, φ1,

√
k′, k2)

In the above equation, k2 = 1− k′2 is the modu-
lus of the elliptic integral, and ηn(φ2, φ1, α, k

2) ≡
ηn(φ2, α, k

2)− ηn(φ1, α, k
2), with

ηn(ϕ, α, k2) ≡
ˆ ϕ

0

dφ
(1 + α tanφ)n

√
1− k2 sin2 φ

(143)
The integrals ηn(ϕ, α, k2) can be analitically ob-
tained in terms of elliptic functions. For instance,

η0(ϕ, α, k2) =
ˆ ϕ

0

dφ√
1− k2 sin2 φ

≡ F (ϕ, k2)

(144)
is just the usual incomplete elliptic integral of
the first kind, which through the relation u =
F (φ, k2) defines the Jacobi elliptic functions

snu = sinφ, cnu = cosφ, tnu = tanφ (145)

These functions allow to rewrite

ηn(ϕ, α, k2) =
ˆ F (ϕ,k2)

0

du
(1 + α tnu)n (146)

This integral can be computed analytically
through recurrence relations. Nevertheless, the
values of ηn(ϕ, α, k2) for n = 1, 2, needed for
the computation of E1(x), are too cumbersome
to write them here; we refer the interested reader
to Ref. [88] for its complete expressions. For any
practical purpose, we find that direct numerical
integration of Eq. (136) is faster and simpler.

D.0.2 gg production

For gg processes, it can be seen that all the in-
volved integrals can be put in terms of Kn,2(β),
with

Kn,m(x) ≡
ˆ x

−x
dz z2n

(1− z2)m (147)

This integral satisfies recursion relations

Kn,m(x) = Kn−1,m(x)−Kn−1,m−1(x) (148)

Kn,0(x) = 2 x
2n+1

2n+ 1

K0,m(x) = 1
(m− 1)

[
x

(1− x2)m−1

+2m− 3
2 K0,m−1(x)

]
K0,1(x) = 2atanh(x) = ln 1 + x

1− x
that eventually yield

Kn,1(x) = 2
[
atanh(x)−

n−1∑
k=0

x2k+1

2k + 1

]
(149)

Kn,2(x) = x

1− x2 − (2n− 1)atanh(x)

+
n−2∑
k=0

2(n− 1− k)
2k + 1 x2k+1
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