Provably accurate simulation of gauge theories and bosonic systems

Yu Tong1,2, Victor V. Albert3, Jarrod R. McClean1, John Preskill4,5, and Yuan Su1,4

1Google Quantum AI, Venice, CA, USA
2Department of Mathematics, University of California, Berkeley, CA, USA
3Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD, USA
4Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA
5AWS Center for Quantum Computing, Pasadena, CA, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum many-body systems involving bosonic modes or gauge fields have infinite-dimensional local Hilbert spaces which must be truncated to perform simulations of real-time dynamics on classical or quantum computers. To analyze the truncation error, we develop methods for bounding the rate of growth of local quantum numbers such as the occupation number of a mode at a lattice site, or the electric field at a lattice link. Our approach applies to various models of bosons interacting with spins or fermions, and also to both abelian and non-abelian gauge theories. We show that if states in these models are truncated by imposing an upper limit $\Lambda$ on each local quantum number, and if the initial state has low local quantum numbers, then an error at most $\epsilon$ can be achieved by choosing $\Lambda$ to scale polylogarithmically with $\epsilon^{-1}$, an exponential improvement over previous bounds based on energy conservation. For the Hubbard-Holstein model, we numerically compute a bound on $\Lambda$ that achieves accuracy $\epsilon$, obtaining significantly improved estimates in various parameter regimes. We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution. Building on that result, we formulate quantum algorithms for dynamical simulation of lattice gauge theories and of models with bosonic modes; the gate complexity depends almost linearly on spacetime volume in the former case, and almost quadratically on time in the latter case. We establish a lower bound showing that there are systems involving bosons for which this quadratic scaling with time cannot be improved. By applying our result on the truncation error in time evolution, we also prove that spectrally isolated energy eigenstates can be approximated with accuracy $\epsilon$ by truncating local quantum numbers at $\Lambda=\textrm{polylog}(\epsilon^{-1})$.

► BibTeX data

► References

[1] I. Arad, A. Kitaev, Z. Landau, and U. Vazirani. An area law and sub-exponential algorithm for 1D systems. arXiv preprint arXiv:1301.1162, 2013. 10.48550/​arXiv.1301.1162.

[2] I. Arad, T. Kuwahara, and Z. Landau. Connecting global and local energy distributions in quantum spin models on a lattice. Journal of Statistical Mechanics: Theory and Experiment, 2016 (3): 033301, 2016. 10.1088/​1742-5468/​2016/​03/​033301.

[3] Y. Atia and D. Aharonov. Fast-forwarding of Hamiltonians and exponentially precise measurements. Nature Communications, 8 (1): 1572, Nov 2017. 10.1038/​s41467-017-01637-7.

[4] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U.-J. Wiese, and P. Zoller. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: From string breaking to evolution after a quench. Physical Review Letters, 109 (17): 175302, 2012. 10.1103/​PhysRevLett.109.175302.

[5] M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and S. Kühn. Efficient basis formulation for $(1+1)$-dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states. Physical Review X, 7 (4): 041046, 2017. 10.1103/​PhysRevX.7.041046.

[6] M. C. Banuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac, M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S. Montangero, et al. Simulating lattice gauge theories within quantum technologies. The European physical journal D, 74 (8): 1–42, 2020. 10.1140/​epjd/​e2020-100571-8.

[7] J. Bender, E. Zohar, A. Farace, and J. I. Cirac. Digital quantum simulation of lattice gauge theories in three spatial dimensions. New Journal of Physics, 20 (9): 093001, 2018. 10.1088/​1367-2630/​aadb71.

[8] D. W. Berry and A. M. Childs. Black-box hamiltonian simulation and unitary implementation. Quantum Information & Computation, 12 (1-2): 29–62, 2012. 10.26421/​QIC12.1-2.

[9] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2006. 10.1007/​s00220-006-0150-x.

[10] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 283–292, 2014. 10.1145/​2591796.2591854.

[11] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian simulation with nearly optimal dependence on all parameters. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 792–809, 2015. 10.1145/​3313276.3316386.

[12] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. O'Brien. Low-cost error mitigation by symmetry verification. Physical Review A, 98 (6): 062339, 2018. 10.1103/​PhysRevA.98.062339.

[13] T. Byrnes and Y. Yamamoto. Simulating lattice gauge theories on a quantum computer. Physical Review A, 73 (2): 022328, 2006. 10.1103/​PhysRevA.73.022328.

[14] C. Canonne. A short note on Poisson tail bounds. 2017. URL http:/​/​​ ccanonne/​files/​misc/​2017-poissonconcentration.pdf.

[15] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A. Tomiya. Classically emulated digital quantum simulation of the schwinger model with a topological term via adiabatic state preparation. Phys. Rev. D, 105: 094503, May 2022. 10.1103/​PhysRevD.105.094503. URL https:/​/​​doi/​10.1103/​PhysRevD.105.094503.

[16] S.-H. Chang, P. C. Cosman, and L. B. Milstein. Chernoff-type bounds for the Gaussian error function. IEEE Transactions on Communications, 59 (11): 2939–2944, 2011. 10.1109/​TCOMM.2011.072011.100049.

[17] A. M. Childs and Y. Su. Nearly optimal lattice simulation by product formulas. Physical Review Letters, 123 (5): 050503, 2019. 10.1103/​PhysRevLett.123.050503.

[18] A. M. Childs, R. Kothari, and R. D. Somma. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput., 46 (6): 1920–1950, 2017. 10.1137/​16m1087072.

[19] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu. Theory of Trotter error with commutator scaling. Physical Review X, 11 (1): 011020, 2021. 10.1103/​PhysRevX.11.011020.

[20] Z. Davoudi, N. M. Linke, and G. Pagano. Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach. Phys. Rev. Research, 3: 043072, Oct 2021. 10.1103/​PhysRevResearch.3.043072. URL https:/​/​​doi/​10.1103/​PhysRevResearch.3.043072.

[21] J. Del Pino, F. A. Schröder, A. W. Chin, J. Feist, and F. J. Garcia-Vidal. Tensor network simulation of non-Markovian dynamics in organic polaritons. Physical Review Letters, 121 (22): 227401, 2018. 10.1103/​PhysRevLett.121.227401.

[22] R. H. Dicke. Coherence in spontaneous radiation processes. Physical Review, 93 (1): 99, 1954. 10.1103/​PhysRev.93.99.

[23] H. Fröhlich. Electrons in lattice fields. Advances in Physics, 3 (11): 325–361, 1954. 10.1080/​00018735400101213.

[24] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204, 2019. 10.1145/​3313276.3316366.

[25] F. Giustino. Electron-phonon interactions from first principles. Reviews of Modern Physics, 89 (1): 015003, 2017. 10.1103/​RevModPhys.89.015003.

[26] S. Gu, R. D. Somma, and B. Şahinoğlu. Fast-forwarding quantum evolution. Quantum, 5: 577, 2021. 10.22331/​q-2021-11-15-577.

[27] C. Guo, A. Weichselbaum, J. von Delft, and M. Vojta. Critical and strong-coupling phases in one-and two-bath spin-boson models. Physical Review Letters, 108 (16): 160401, 2012. 10.1103/​PhysRevLett.108.160401.

[28] J. Haah, M. B. Hastings, R. Kothari, and G. H. Low. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. SIAM Journal on Computing, (0): FOCS18–250, 2021. 10.1137/​18M1231511.

[29] M. B. Hastings. Locality in quantum and Markov dynamics on lattices and networks. Physical Review Letters, 93 (14): 140402, 2004. 10.1103/​PhysRevLett.93.140402.

[30] M. B. Hastings. An area law for one-dimensional quantum systems. Journal of Statistical Mechanics: Theory and Experiment, 2007 (08): P08024, 2007. 10.1088/​1742-5468/​2007/​08/​p08024.

[31] M. B. Hastings and T. Koma. Spectral gap and exponential decay of correlations. Communications in Mathematical Physics, 265 (3): 781–804, 2006. 10.1007/​s00220-006-0030-4.

[32] K. Hepp and E. H. Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Annals of Physics, 76 (2): 360–404, 1973. https:/​/​​10.1016/​0003-4916(73)90039-0.

[33] T. Holstein. Studies of polaron motion: Part I. the molecular-crystal model. Annals of Physics, 8 (3): 325–342, 1959. https:/​/​​10.1016/​0003-4916(59)90002-8.

[34] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276 (1365): 238–257, 1963. 10.1098/​rspa.1963.0204.

[35] W. J. Huggins, S. McArdle, T. E. O'Brien, J. Lee, N. C. Rubin, S. Boixo, K. B. Whaley, R. Babbush, and J. R. McClean. Virtual distillation for quantum error mitigation. Phys. Rev. X, 11: 041036, Nov 2021. 10.1103/​PhysRevX.11.041036. URL https:/​/​​doi/​10.1103/​PhysRevX.11.041036.

[36] S. P. Jordan, K. S. Lee, and J. Preskill. Quantum algorithms for quantum field theories. Science, 336 (6085): 1130–1133, 2012. 10.1126/​science.1217069.

[37] S. P. Jordan, K. S. Lee, and J. Preskill. Quantum computation of scattering in scalar quantum field theories. Quantum Information & Computation, 14 (11-12): 1014–1080, 2014. 10.5555/​2685155.2685163.

[38] A. Kan and Y. Nam. Lattice quantum chromodynamics and electrodynamics on a universal quantum computer. arXiv preprint arXiv:2107.12769, 2021. 10.48550/​arXiv.2107.12769.

[39] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-Guzik, G. K.-L. Chan, and R. Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Physical Review Letters, 120 (11): 110501, 2018. 10.1103/​PhysRevLett.120.110501.

[40] N. Klco and M. J. Savage. Digitization of scalar fields for quantum computing. Physical Review A, 99 (5): 052335, 2019. 10.1103/​PhysRevA.99.052335.

[41] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage. Quantum-classical computation of Schwinger model dynamics using quantum computers. Physical Review A, 98 (3): 032331, 2018. 10.1103/​PhysRevA.98.032331.

[42] N. Klco, M. J. Savage, and J. R. Stryker. Su(2) non-abelian gauge field theory in one dimension on digital quantum computers. Physical Review D, 101 (7): 074512, 2020. 10.1103/​PhysRevD.101.074512.

[43] B. Kloss, D. R. Reichman, and R. Tempelaar. Multiset matrix product state calculations reveal mobile Franck-Condon excitations under strong Holstein-type coupling. Physical Review Letters, 123 (12): 126601, 2019. 10.1103/​PhysRevLett.123.126601.

[44] J. Kogut and L. Susskind. Hamiltonian formulation of Wilson's lattice gauge theories. Physical Review D, 11 (2): 395, 1975. 10.1103/​PhysRevD.11.395.

[45] S. Kühn, E. Zohar, J. I. Cirac, and M. C. Bañuls. Non-Abelian string breaking phenomena with matrix product states. Journal of High Energy Physics, 2015 (7): 1–26, 2015. 10.1007/​JHEP07(2015)130.

[46] J. Liu and Y. Xin. Quantum simulation of quantum field theories as quantum chemistry. Journal of High Energy Physics, 2020 (12): 11, Dec 2020. ISSN 1029-8479. 10.1007/​JHEP12(2020)011.

[47] S. Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. 10.1126/​science.273.5278.1073.

[48] G. H. Low and I. L. Chuang. Optimal Hamiltonian simulation by quantum signal processing. Physical Review Letters, 118 (1): 010501, 2017. 10.1103/​physrevlett.118.010501.

[49] G. H. Low and I. L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3: 163, 2019. 10.22331/​q-2019-07-12-163.

[50] G. H. Low and N. Wiebe. Hamiltonian simulation in the interaction picture. arXiv preprint arXiv:1805.00675, 2018. 10.48550/​arXiv.1805.00675.

[51] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik. Digital quantum computation of fermion-boson interacting systems. Physical Review A, 98 (4), 2018a. 10.1103/​PhysRevA.98.042312.

[52] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik. Electron-phonon systems on a universal quantum computer. Physical Review Letters, 121 (11), 2018b. 10.1103/​PhysRevLett.121.110504.

[53] G. Magnifico, T. Felser, P. Silvi, and S. Montangero. Lattice quantum electrodynamics in $(3+1)$-dimensions at finite density with tensor networks. Nature Communications, 12 (1): 1–13, 2021. 10.1038/​s41467-021-23646-3.

[54] S. McArdle, X. Yuan, and S. Benjamin. Error-mitigated digital quantum simulation. Physical Review Letters, 122: 180501, May 2019. 10.1103/​PhysRevLett.122.180501.

[55] A. H. Moosavian, J. R. Garrison, and S. P. Jordan. Site-by-site quantum state preparation algorithm for preparing vacua of fermionic lattice field theories. arXiv preprint arXiv:1911.03505, 2019. 10.48550/​arXiv.1911.03505.

[56] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler, B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller. U(1) Wilson lattice gauge theories in digital quantum simulators. New Journal of Physics, 19 (10): 103020, 2017. 10.1088/​1367-2630/​aa89ab.

[57] B. Nachtergaele and R. Sims. Lieb-Robinson bounds and the exponential clustering theorem. Communications in Mathematical Physics, 265 (1): 119–130, 2006. 10.1007/​s00220-006-1556-1.

[58] B. Nachtergaele, H. Raz, B. Schlein, and R. Sims. Lieb-Robinson bounds for harmonic and anharmonic lattice systems. Communications in Mathematical Physics, 286 (3): 1073–1098, 2009. 10.1007/​s00220-008-0630-2.

[59] P. Otte. Boundedness properties of fermionic operators. Journal of Mathematical Physics, 51 (8): 083503, 2010. 10.1063/​1.3464264.

[60] T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S. Montangero. Real-time dynamics in U(1) lattice gauge theories with tensor networks. Physical Review X, 6 (1): 011023, 2016. 10.1103/​PhysRevX.6.011023.

[61] A. Rajput, A. Roggero, and N. Wiebe. Hybridized methods for quantum simulation in the interaction picture. Quantum, 6: 780, 2022. 10.22331/​q-2022-08-17-780.

[62] T. E. Reinhard, U. Mordovina, C. Hubig, J. S. Kretchmer, U. Schollwöck, H. Appel, M. A. Sentef, and A. Rubio. Density-matrix embedding theory study of the one-dimensional Hubbard-Holstein model. Journal of chemical theory and computation, 15 (4): 2221–2232, 2019. 10.1021/​acs.jctc.8b01116.

[63] B. Şahinoğlu and R. D. Somma. Hamiltonian simulation in the low-energy subspace. npj Quantum Information, 7 (1): 119, Jul 2021. ISSN 2056-6387. 10.1038/​s41534-021-00451-w.

[64] B. Sandhoefer and G. K.-L. Chan. Density matrix embedding theory for interacting electron-phonon systems. Physical Review B, 94 (8): 085115, 2016. 10.1103/​PhysRevB.94.085115.

[65] N. P. D. Sawaya, M. Smelyanskiy, J. R. McClean, and A. Aspuru-Guzik. Error sensitivity to environmental noise in quantum circuits for chemical state preparation. Journal of Chemical Theory and Computation, 12 (7): 3097–3108, 2016. 10.1021/​acs.jctc.6b00220.

[66] N. P. D. Sawaya, T. Menke, T. H. Kyaw, S. Johri, A. Aspuru-Guzik, and G. G. Guerreschi. Resource-efficient digital quantum simulation of $d$-level systems for photonic, vibrational, and spin-$s$ Hamiltonians. npj Quantum Information, 6 (1): 49, Jun 2020. ISSN 2056-6387. 10.1038/​s41534-020-0278-0.

[67] F. A. Schröder and A. W. Chin. Simulating open quantum dynamics with time-dependent variational matrix product states: Towards microscopic correlation of environment dynamics and reduced system evolution. Physical Review B, 93 (7): 075105, 2016. 10.1103/​PhysRevB.93.075105.

[68] P. Sen. Achieving the Han-Kobayashi inner bound for the quantum interference channel by sequential decoding. arXiv preprint arXiv:1109.0802, 2011. 10.48550/​arXiv.1109.0802.

[69] A. F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe. Quantum algorithms for simulating the lattice Schwinger model. Quantum, 4: 306, 2020. 10.22331/​q-2020-08-10-306.

[70] R. D. Somma. Quantum simulations of one dimensional quantum systems. arXiv preprint arXiv:1503.06319, 2015. 10.48550/​arXiv.1503.06319.

[71] Y. Su, H.-Y. Huang, and E. T. Campbell. Nearly tight Trotterization of interacting electrons. Quantum, 5: 495, 2021. 10.22331/​q-2021-07-05-495.

[72] M. Suzuki. Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. Journal of Mathematical Physics, 26 (4): 601–612, 1985. 10.1063/​1.526596.

[73] M. C. Tran, Y. Su, D. Carney, and J. M. Taylor. Faster digital quantum simulation by symmetry protection. PRX Quantum, 2: 010323, Feb 2021. 10.1103/​PRXQuantum.2.010323.

[74] F. Verstraete and J. I. Cirac. Mapping local Hamiltonians of fermions to local Hamiltonians of spins. Journal of Statistical Mechanics: Theory and Experiment, 2005 (09): P09012, 2005. 10.1088/​1742-5468/​2005/​09/​p09012.

[75] U.-J. Wiese. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Annalen der Physik, 525 (10-11): 777–796, 2013. https:/​/​​10.1002/​andp.201300104.

[76] M. P. Woods, M. Cramer, and M. B. Plenio. Simulating bosonic baths with error bars. Physical Review Letters, 115 (13): 130401, 2015. 10.1103/​PhysRevLett.115.130401.

[77] E. Zohar, J. I. Cirac, and B. Reznik. Simulating compact quantum electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects. Physical Review Letters, 109 (12): 125302, 2012. 10.1103/​PhysRevLett.109.125302.

[78] E. Zohar, J. I. Cirac, and B. Reznik. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. Physical Review Letters, 110 (12): 125304, 2013. 10.1103/​PhysRevLett.110.125304.

Cited by

[1] Niklas Mueller, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz, "Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory", PRX Quantum 4 3, 030323 (2023).

[2] Zhengyan Darius Shi, "Bounds on Rényi entropy growth in many-body quantum systems", Physical Review A 109 4, 042404 (2024).

[3] Tomotaka Kuwahara, Tan Van Vu, and Keiji Saito, "Effective light cone and digital quantum simulation of interacting bosons", Nature Communications 15 1, 2520 (2024).

[4] Yao Ji, Henry Lamm, and Shuchen Zhu, "Gluon digitization via character expansion for quantum computers", Physical Review D 107 11, 114503 (2023).

[5] Saurabh V. Kadam, Indrakshi Raychowdhury, and Jesse R. Stryker, "Loop-string-hadron formulation of an SU(3) gauge theory with dynamical quarks", Physical Review D 107 9, 094513 (2023).

[6] Priyanka Mukhopadhyay, Torin F. Stetina, and Nathan Wiebe, "Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian", PRX Quantum 5 1, 010345 (2024).

[7] Torsten V. Zache, Daniel González-Cuadra, and Peter Zoller, "Quantum and Classical Spin-Network Algorithms for q -Deformed Kogut-Susskind Gauge Theories", Physical Review Letters 131 17, 171902 (2023).

[8] Anthony N. Ciavarella, "Quantum simulation of lattice QCD with improved Hamiltonians", Physical Review D 108 9, 094513 (2023).

[9] Abhishek Rajput, Alessandro Roggero, and Nathan Wiebe, "Quantum error correction with gauge symmetries", npj Quantum Information 9 1, 41 (2023).

[10] Yasar Y. Atas, Jan F. Haase, Jinglei Zhang, Victor Wei, Sieglinde M.-L. Pfaendler, Randy Lewis, and Christine A. Muschik, "Simulating one-dimensional quantum chromodynamics on a quantum computer: Real-time evolutions of tetra- and pentaquarks", Physical Review Research 5 3, 033184 (2023).

[11] Chi-Fang Chen and Fernando G. S. L. Brandão, "Average-Case Speedup for Product Formulas", Communications in Mathematical Physics 405 2, 32 (2024).

[12] Marius Lemm and Oliver Siebert, "Thermal Area Law for Lattice Bosons", Quantum 7, 1083 (2023).

[13] Hsin-Yuan Huang, Yu Tong, Di Fang, and Yuan Su, "Learning Many-Body Hamiltonians with Heisenberg-Limited Scaling", Physical Review Letters 130 20, 200403 (2023).

[14] Zohreh Davoudi, Alexander F. Shaw, and Jesse R. Stryker, "General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory", Quantum 7, 1213 (2023).

[15] Angus Kan and Yunseong Nam, "Simulating lattice quantum electrodynamics on a quantum computer", Quantum Science and Technology 8 1, 015008 (2023).

[16] Guang Hao Low, Yuan Su, Yu Tong, and Minh C. Tran, "Complexity of Implementing Trotter Steps", PRX Quantum 4 2, 020323 (2023).

[17] Yuan Su, "Fast-Forwardable Quantum Evolution and Where to Find Them", Quantum Views 5, 62 (2021).

[18] Ulysse Chabaud and Saeed Mehraban, "Holomorphic representation of quantum computations", Quantum 6, 831 (2022).

[19] Jack Y. Araz, Sebastian Schenk, and Michael Spannowsky, "Toward a quantum simulation of nonlinear sigma models with a topological term", Physical Review A 107 3, 032619 (2023).

[20] Nilin Abrahamsen, Yu Tong, Ning Bao, Yuan Su, and Nathan Wiebe, "Entanglement area law for one-dimensional gauge theories and bosonic systems", Physical Review A 108 4, 042422 (2023).

[21] Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti, "Quantum Simulation for High-Energy Physics", PRX Quantum 4 2, 027001 (2023).

[22] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L. Brandão, "Quantum algorithms: A survey of applications and end-to-end complexities", arXiv:2310.03011, (2023).

[23] Angus Kan and Yunseong Nam, "Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer", arXiv:2107.12769, (2021).

[24] Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert M. Linke, "Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions", PRX Quantum 3 2, 020324 (2022).

[25] Nicolas PD Sawaya, Daniel Marti-Dafcik, Yang Ho, Daniel P Tabor, David E Bernal Neira, Alicia B Magann, Shavindra Premaratne, Pradeep Dubey, Anne Matsuura, Nathan Bishop, Wibe A de Jong, Simon Benjamin, Ojas D Parekh, Norm Tubman, Katherine Klymko, and Daan Camps, "HamLib: A library of Hamiltonians for benchmarking quantum algorithms and hardware", arXiv:2306.13126, (2023).

[26] Guang Hao Low, Yuan Su, Yu Tong, and Minh C. Tran, "On the complexity of implementing Trotter steps", arXiv:2211.09133, (2022).

[27] Anthony N. Ciavarella and Ivan A. Chernyshev, "Preparation of the SU(3) lattice Yang-Mills vacuum with variational quantum methods", Physical Review D 105 7, 074504 (2022).

[28] Andrei Alexandru, Paulo F. Bedaque, Ruairí Brett, and Henry Lamm, "Spectrum of digitized QCD: Glueballs in a S (1080 ) gauge theory", Physical Review D 105 11, 114508 (2022).

[29] Siddharth Hariprakash, Neel S. Modi, Michael Kreshchuk, Christopher F. Kane, and Christian W Bauer, "Strategies for simulating time evolution of Hamiltonian lattice field theories", arXiv:2312.11637, (2023).

[30] Chi-Fang, Chen, and Fernando G. S. L. Brandão, "Average-case Speedup for Product Formulas", arXiv:2111.05324, (2021).

[31] Travis S. Humble, Andrea Delgado, Raphael Pooser, Christopher Seck, Ryan Bennink, Vicente Leyton-Ortega, C. -C. Joseph Wang, Eugene Dumitrescu, Titus Morris, Kathleen Hamilton, Dmitry Lyakh, Prasanna Date, Yan Wang, Nicholas A. Peters, Katherine J. Evans, Marcel Demarteau, Alex McCaskey, Thien Nguyen, Susan Clark, Melissa Reville, Alberto Di Meglio, Michele Grossi, Sofia Vallecorsa, Kerstin Borras, Karl Jansen, and Dirk Krücker, "Snowmass White Paper: Quantum Computing Systems and Software for High-energy Physics Research", arXiv:2203.07091, (2022).

[32] Henry Lamm, Ying-Ying Li, Jing Shu, Yi-Lin Wang, and Bin Xu, "Block Encodings of Discrete Subgroups on Quantum Computer", arXiv:2405.12890, (2024).

[33] Di Fang, Lin Lin, and Yu Tong, "Time-marching based quantum solvers for time-dependent linear differential equations", Quantum 7, 955 (2023).

[34] Marcela Carena, Henry Lamm, Ying-Ying Li, and Wanqiang Liu, "Quantum error thresholds for gauge-redundant digitizations of lattice field theories", arXiv:2402.16780, (2024).

[35] Abhishek Rajput, Alessandro Roggero, and Nathan Wiebe, "Quantum Error Correction with Gauge Symmetries", arXiv:2112.05186, (2021).

[36] S. V. Kadam, I. Raychowdhury, and J. Stryker, "Loop-string-hadron formulation of an SU(3) gauge theory with dynamical quarks", The 39th International Symposium on Lattice Field Theory, 373 (2023).

[37] A. Kan, L. Funcke, S. Kühn, L. Dellantonio, J. Zhang, J. F. Haase, C. A. Muschik, and K. Jansen, "3+1D \theta-Term on the Lattice from the Hamiltonian Perspective", The 38th International Symposium on Lattice Field Theory 112 (2022).

[38] Manu Mathur and Atul Rathor, "SU (N ) toric code and non-Abelian anyons", Physical Review A 105 5, 052423 (2022).

[39] Saurabh V. Kadam, "Theoretical Developments in Lattice Gauge Theory for Applications in Double-beta Decay Processes and Quantum Simulation", arXiv:2312.00780, (2023).

[40] Jiayu Shen, Di Luo, Chenxi Huang, Bryan K. Clark, Aida X. El-Khadra, Bryce Gadway, and Patrick Draper, "Simulating quantum mechanics with a θ -term and an 't Hooft anomaly on a synthetic dimension", Physical Review D 105 7, 074505 (2022).

[41] Sina Bahrami and Nicolas Sawaya, "Particle-conserving quantum circuit ansatz with applications in variational simulation of bosonic systems", arXiv:2402.18768, (2024).

[42] Yonah Borns-Weil and Di Fang, "Uniform observable error bounds of Trotter formulae for the semiclassical Schrödinger equation", arXiv:2208.07957, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 07:09:18) and SAO/NASA ADS (last updated successfully 2024-06-22 07:09:19). The list may be incomplete as not all publishers provide suitable and complete citation data.