
The XP Stabiliser Formalism: a Generalisation of the
Pauli Stabiliser Formalism with Arbitrary Phases
Mark A. Webster1,2, Benjamin J. Brown1,3, and Stephen D. Bartlett1

1Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
2Sydney Quantum Academy, Sydney, NSW, Australia
3Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, 2100 Copenhagen,

Denmark

We propose an extension to the Pauli stabiliser formalism that includes fractional
2π/N rotations around the Z axis for some integer N . The resulting generalised sta-
biliser formalism – denoted the XP stabiliser formalism – allows for a wider range of
states and codespaces to be represented. We describe the states which arise in the
formalism, and demonstrate an equivalence between XP stabiliser states and ‘weighted
hypergraph states’ - a generalisation of both hypergraph and weighted graph states.
Given an arbitrary set of XP operators, we present algorithms for determining the
codespace and logical operators for an XP code. Finally, we consider whether measure-
ments of XP operators on XP codes can be classically simulated.

1 Introduction
Representing general quantum states of n qubits requires an amount of information that is ex-
ponential in n. For tractable theoretical study of quantum systems, we require more compact
representations of quantum states of interest. Some examples of such representations include ten-
sor network states e.g. Matrix Product States and Projected Entangled Pair States [20] and states
created by low-depth quantum circuits [9].

The Pauli stabiliser formalism allows for the efficient description and manipulation of an im-
portant subset of quantum states, known as Pauli stabiliser states [12]. Pauli stabiliser states and
codes can be efficiently described using a set of stabiliser generators, which are elements of the Pauli
group 〈iI,X, Z〉⊗n, with only n such generators needed to describe a Pauli stabiliser state. Many
key quantum features such as entanglement and superposition can be captured using stabiliser
states. Given the stabiliser generators, efficient algorithms exist for determining the codespace,
logical operators and simulating measurements of Pauli operators. On the other hand, the states
which can be represented within the Pauli stabiliser formalism are quite limited. The fact that we
can simulate the behaviour of Pauli stabiliser states suggests that we are missing some important
aspects of quantum advantage.

Given the ubiquity and the utility of the Pauli stabiliser formalism in quantum information
theory, it is no surprise that there have been several studies into generalising this formalism in order
to broaden the classes of stabiliser states. One such approach is the qudit stabiliser formalism,
where we fix a dimension D and stabiliser generators are from the generalised Pauli group on
D-level systems. The algorithms from the Pauli stabiliser formalism can be extended to qudit
codes [11], and measurement of any generalised Pauli group operator is known to be classically
simulable [2].

Another generalisation is the XS stabiliser formalism [18], wherein stabiliser codes are defined
using elements of 〈αI,X, S〉⊗n which act on qubits and where α := eiπ/4 and S := diag(1, i) is the
phase gate. In Ref. [18], the authors demonstrate that states outside the Pauli stabiliser formalism
can be represented as XS stabiliser states. In particular, they demonstrate that Quantum Twisted

Mark A. Webster: mark.webster@sydney.edu.au

1

ar
X

iv
:2

20
3.

00
10

3v
3

 [
qu

an
t-

ph
]

 2
0

Se
p

20
22

mailto:mark.webster@sydney.edu.au

Double models which harbour non-Abelian anyons can be represented in the XS formalism. The
authors present algorithms for determining the codespace, expectation values and logical operators
for such codes, but these are limited to certain ‘regular’ codes.

In this paper, we introduce the XP stabiliser formalism which generalises the concept of the
XS formalism. In the XP formalism, we fix an integer N and define XP codes using elements of
〈ωI,X, P 〉⊗n where ω := eiπ/N , P := diag(1, ω2). We prove that hypergraph and weighted graph
states can be represented as XP stabiliser states. These are useful classes of states which cannot be
represented as Pauli stabiliser states. We present XP versions of many of the algorithms available in
the Pauli stabiliser formalism, which apply to any XP code. This includes algorithms to determine
the codespace, logical operators and simulate the measurement of diagonal Pauli operators on an
XP codespace. Computational complexity of these tasks increases with the precision N of the
code. We demonstrate that measurement of XP operators on a codespace is not always efficiently
simulable. Hence, the XP formalism lies on the boundary between what is classically simulable
and what is not, suggesting that we may be able to capture some aspects of quantum advantage.

The XP stabiliser formalism has a number of potential applications. For instance, the logical
operator structure of XP codes is much richer than is the case for Pauli stabiliser codes. We could
potentially use the XP formalism to describe codes with transversal logical non-Clifford operations
(for instance T or CCZ gates) that could be used for fault-tolerant preparation of magic states. As
the stabiliser generators of XP codes do not commute, certain no-go theorems may not apply, for
instance, in the area of quantum memories [4]. Compared to the Pauli stabiliser formalism, a wider
range of topological phases can be represented, which makes studying them more straightforward
using the techniques presented in this paper.

This paper is structured to present the framework and tools necessary to start exploration
of the XP formalism, with examples used throughout the paper. Where possible, examples are
linked to interactive Jupyter notebooks that allow for further exploration and modification of these
examples by the reader.

In Chapter 2, we review the Pauli stabiliser formalism and the XS Formalism introduced in
Ref. [18]. We then introduce the XP formalism and summarise the main results of this paper. In
Chapter 3, we set out definitions for XP operators and give a full description of their algebra. In
Chapter 4, we show how to identify the codespace of an arbitrary set of XP operators and calculate
a set of codewords which form a basis of the codespace. In Chapter 5, we classify the states which
arise in the XP formalism and show that two important classes of states can be represented as XP
stabiliser states: hypergraph [23] and weighted graph states [13, 14].

In Chapter 6, we address the logical operator structure of XP codes. We show how to find
XP operators which generate the logical operator group for a given codespace. We can allocate
quantum numbers to the codewords of Chapter 4, and this leads to a classification of XP codes
into XP-regular and non-XP-regular codes. We show that any XP-regular code can be mapped to
a CSS code with similar logical operator structure. We show how to determine all possible logical
actions which can be applied by diagonal operators and demonstrate that non-XP-regular codes
give rise to logical operators with complex actions.

In Chapter 7, we look at measurements in the XP formalism. We demonstrate an efficient
algorithm for simulation of measurement of diagonal Pauli operators on any XP code. Beyond this
special case, XP operators cannot in general be measured within the XP formalism. Estimating
measurement outcome probabilities for XP operators is in general an NP-complete problem.

We conclude in Chapter 8 with a discussion and list of outstanding questions for the XP
formalism.

2 The XP Stabiliser Formalism
The Pauli stabiliser formalism (PSF) has been hugely valuable for describing the quantum error-
correcting codes we need to overcome the decohering effects of the environment on quantum sys-
tems. Moreover, its structure is such that we can prove powerful results on the simulability of
Clifford circuits.

Nevertheless, this formalism is limited in the types of quantum states it can describe. Extending
the stabiliser formalism gives us new tools to describe more general quantum systems, and to

2

https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples

explore their potential applications.
In this section, we first review the PSF and discuss the desirable features that we would like

to carry over into an extension to the formalism. We next discuss the XS Formalism introduced
in Ref. [18], which is an extension of the PSF. We then introduce our new formalism, the XP
formalism, which generalises the concept of the XS Formalism. Finally, we outline the main
properties of the XP formalism and summarise the results presented in this paper.

2.1 Review of the Pauli Stabiliser Formalism
Pauli stabiliser codes are amongst the most commonly studied quantum error correction codes. A
stabiliser code is specified by a list of stabiliser generators. The stabiliser generators are tensor
products of operators in the single-qubit Pauli group P = 〈iI,X, Z〉. The stabiliser group is the
group generated by the stabiliser generators. The codespace is the simultaneous +1 eigenspace of
the stabiliser group. The codewords are a basis of the codespace (i.e. spanning and independent).

The power of the Pauli stabiliser formalism is that stabiliser codes can be analysed and simulated
by operations on the stabiliser generators rather the codewords. In Chapter 10 of Ref. [19], efficient
algorithms involving operations on the stabiliser generators are set out for the following tasks:

1. Check if a set of Pauli operators identify a non-trivial codespace: equivalent to checking
whether −I is in the stabiliser group.

2. Find codewords and logical operators: represent the stabiliser generators as binary vectors
which form the rows of a check matrix, then apply linear algebra techniques.

3. Simulate action of Clifford Unitary Operator U : the updated code generators are obtained
by conjugating each of the generators by U .

4. Simulate measurement of Pauli Operator A: update the stabiliser generators by determining
if they commute or anticommute with A.

The above properties allow us to detect and correct errors in Pauli stabiliser codes by measuring
the stabiliser generators.

2.2 Extending the Pauli Stabiliser Formalism - Existing Work
The Pauli stabiliser formalism (PSF) is capable of describing only a limited subset of all possi-
ble quantum states. One way to extend the PSF is to consider qudit stabiliser codes using the
Generalised Pauli Group [11], and there is a fairly substantial literature on this generalisation.

Another way is to work with qubits, but to admit operators with finer rotations around the
Z axis in stabiliser groups. In the XS stabiliser formalism, introduced in Ref. [18], stabiliser
generators are tensor products of operators in 〈αI,X, S〉 where S := diag(1, i) so that S4 = I and
α := exp(iπ/4) so that α8 = 1. The XS stabiliser formalism can describe a wider range of states
compared to the PSF, meaning there are XS code states that cannot be expressed within the PSF.
Examples of such XS code states are the twisted quantum double models [8].

A set of XS stabiliser generators do not need to commute to form a valid code. As a result, we
cannot in general perform simultaneous measurements of the generators, as is commonly done in
PSF codes for error correction. Even so, commuting parent Hamiltonians for XS codes exist, and
so error correction is possible with XS codes.

In the XS stabiliser formalism, regular codes are a special case, defined as those where the
diagonal generators are tensor products of 〈−I, Z〉. For these regular codes, Ref. [18] presents
algorithms to: calculate the codewords from a list of stabiliser generators; calculate the stabiliser
generators for a given codeword; calculate logical Z and X operators for a codespace; construct a
circuit to find expectation values for measurements of Pauli operators on the code.

In summary, Ref. [18] provides a useful generalisation of the PSF, as well as generalising a
number of algorithms for analysing and simulating codes. One of the main limitations of the XS
stabiliser formalism is that many algorithms only work for regular codes, which are a subset of
possible XS codes.

3

Qudit Codes Ref. [11] XP Codes
Parameters Qudit Dimension D,

Number of qudits n
Precision N , Number of
qubits n

Phases ω = exp(2πi/D) ω = exp(πi/N)
Generalised X X =

∑
0≤j≤D−1 |j〉〈j + 1| Pauli X

Generalised Z Z =
∑

0≤j≤D−1 ω
j |j〉〈j| P = diag(1, ω2)

Vector form of
operators

ωpXxZz where
p ∈ ZD,x, z ∈ ZnD

ωpXxP z where
p ∈ Z2N ,x ∈ Zn2 , z ∈ ZnN

Commutators Operators commute, up
to phase

Operators commute, up
to a diagonal operator

Clifford (Normaliser)
Group

Known - Table III of
Ref. [11]

Unknown - most likely
restricted to tensors of
single-qubit XP operators
and Controlled Z
operators

Generalised
Hadamard

Quantum Fourier
Transform

None

Code Stabilisers 〈G〉
Commute

Yes No

Code Stabilisers
Uniquely defined by
Codespace

Yes No - but Logical Identity
Group is Unique
(Section 6.2.3)

Standard form of
Stabiliser Groups

Yes - Using Smith Normal
Form

Yes - Using Howell
Matrix Form

Codespace Dimension dim(C) = Dn/|〈G〉| Arbitrary
Classical Simulation of
Measurements

Yes - any generalised
Pauli Ref. [2]

Not possible for arbitrary
XP operators

Table 1: Qudit Stabiliser Codes Compared to XP Codes

2.3 The XP Stabiliser Formalism
In our work, we introduce a formalism that generalises the the XS stabiliser formalism concept,
allowing us to represent an even wider set of states. We demonstrate algorithms for most of the
operations we have under the PSF, with a corresponding increase in computational complexity.
The algorithms work on any XP code and are not restricted to regular codes as in Ref. [18]. The
XP formalism is at a similar level of generality as that presented for qudits in Ref. [11], and we
prove many analogous results. The properties of XP and qudit stabiliser codes are compared in
Table 1.

An XP stabiliser code is defined by fixing an integer N ≥ 2 which we refer to as the precision
of the code. We then specify a set of stabiliser generators which are from 〈ωI,X, P 〉⊗n where

ω := exp
(πi
N

)
= exp

(1
2N 2πi

)
so ω2N = 1 (1)

P := diag(1, ω2) so PN = I . (2)

Each choice of precision N leads to a different stabiliser formalism. For example, N = 2
corresponds to the standard Pauli stabiliser formalism, with ω = i and Z2 = I. The XS stabiliser
formalism of Ref. [18] corresponds to N = 4, with ω =

√
i and S4 = I. Note that N does not need

to be a power of 2 - e.g., N = 6 or N = 7 are valid choices.
Unlike the Pauli stabiliser formalism, the XPF is not closed under conjugation by Hadamard

operators. In particular, if N = 2M then:

HPH−1 = M
√
X (3)

One could consider expanding the formalism to allow fractional X operators of this type, but this
does not lead to a finite set of operators that is closed under group operations.

4

XS Formalism [18] XP Formalism
Form of Stabiliser
Generators

〈αI,X, S〉⊗n : S4 =
I, α8 = 1

〈ωI,X, P 〉⊗n : PN =
I, ω2N = 1

Determine Codewords
from Stabiliser
Generators

Regular codes only All XP codes

Determine Stabiliser
Generators from
Codewords

States only (1D
codespaces)

Any codespace

Which stabiliser
groups have the same
codespace?

Open question Same logical identity
group ⇔ same codespace

Determine Logical
Operators for a Code

Regular codes only: Z
and X

All XP codes: Generators
for XP logical operator
group, which may include
non-Clifford logical
operators

Simulate
Measurements on a
Code

Regular codes: circuit
method to calculate
expectation value when
measuring Paulis

All XP codes: Stabiliser
algorithm to measure
diagonal Paulis;
Codeword algorithm to
calculate outcome
probabilities when
measuring any XP
operator.

Table 2: Summary of Results and Comparison with XS Formalism

There are a number of open questions from Ref. [18] which we also address for both XS codes
and the general XP case:

• How do we find all transversal logical operators for a given code?

• Which sets of operators stabilise the same codespace?

• Can we simulate measurements efficiently?

• Which classes of states can be described within a generalisation of the stabiliser formalism?

2.4 Summary of Results
We present algorithms within the XPF for many of the operations that are possible within the
Pauli stabiliser formalism (PSF). Our formalism is broader than the XS formalism and answers a
number of open questions from Ref. [18]. Table 2 compares the XS stabiliser formalism with the
XPF and summaries the results we demonstrate in this paper.

We start by setting out the algebra of XP operators in Chapter 3. We show how to represent
XP operators as vectors of integers. By generalising the symplectic product of the PSF, we write
elegant closed form expressions for the main algebraic operations on XP operators - including
multiplication, inverses, powers, conjugation and commutation. We also show efficient ways to
calculate the eigenvalues and the action of projectors of XP operators.

We specify XP codes by giving a list of XP operators which have a non-trivial simultaneous
+1 eigenspace. In Chapter 4, we show how to identify the codespace for an arbitrary set of XP
operators. In Ref. [18], a method is presented for doing this, but only for ‘regular’ codes where the
diagonal stabiliser generators are from 〈−I, Z〉⊗n. We demonstrate an algorithm which works for
any XP code, whether regular or not.

5

Having introduced some of the basic techniques for working with XP codes, in Chapter 5 we
determine which states arise under the XP formalism. We identify the form of the phase function
of XP stabiliser states and show an equivalence between ‘weighted hypergraph states’ and XP
stabiliser states. In particular, two important classes of states - hypergraph and weighted graph
states - can be represented as XP stabiliser states. We give examples which have potential uses in
measurement-based quantum computation and self-correcting quantum memories.

Understanding which logical operators arise for a given XP code has important implications for
which error-protected operations are possible. In Chapter 6 we show how to calculate generators
for the entire group of logical operators of XP form. The algorithm works for all XP codes, and
yields any non-Clifford logical operators (e.g., logical T, CCZ etc) of XP form which act on the
codespace.

The stabiliser group of a codespace is not unique in the XPF, but the group of XP operators
which act as logical identities on the codespace is unique. We show how to efficiently calculate
generators for the logical identity group for a given XP group, resulting in a test for whether two
XP groups stabilise the same codespace.

In Section 6.5 we introduce a classification of XP codes into XP-regular and non-XP-regular
codes. XP-regular codes include all ‘regular’ codes as defined in Ref. [18], but is a broader class.
We show that, as in the PSF, the codespace dimension of XP-regular codes is a power of 2. For non-
XP-regular codes, the codespace dimension is arbitrary. Non-XP-regular codes are non-additive
and have a structure similar to that of codeword stabilised (CWS) quantum codes [7]. Each XP-
regular code can be mapped to a CSS code which has a similar logical operator structure. We
demonstrate that for non-XP-regular codes, more complex diagonal operators can arise compared
to the PSF. A summary of the differences between XP-regular and non XP-regular codes is in
Table 3.

Property XP-Regular Non-XP-Regular
Codespace Dimension 2k for some k Arbitrary
Additive Yes No
Related CSS Code Maps to a CSS code with

similar logical operator
structure

No related CSS code

Diagonal Logicals Same as related CSS code Exotic
Non-diagonal Logicals Similar to related CSS

code
Transversal logical X may
not exist

Table 3: XP-Regular vs Non XP-Regular Codes

Determining the extent to which computations on a quantum computer can be classically
simulated is one of the central questions in the field of quantum information. In the Pauli stabiliser
formalism, we can classically simulate the measurement of any Pauli operator on any stabiliser code.
A similar result holds for the qudit stabiliser formalism for generalised Pauli group operators.
Chapter 7 covers measurement in the XP formalism. Measurement of diagonal Pauli operators
can be efficiently simulated on any XP code, and we present an efficient stabiliser method for
calculating the outcome probabilities and updated XP code. We then consider extending the
algorithm to precision 4 operators. We show that finding the outcome probabilities when measuring
collections of diagonal precision 4 diagonal operators is NP-complete. We also give examples where
the measurement of precision 4 operators cannot be done within the XP formalism.

Finally in Chapter 8, we summarise what is known about the XP formalism, discuss implica-
tions, and lay out possible future research directions.

2.5 XPF Software Package
We have produced a Python software package implementing all algorithms discussed in this paper.
The Github repository is made available subject to GPL licensing. Interactive Jupyter notebooks
for all examples in this paper are included and can be modified to run different scenarios.

6

https://github.com/m-webster/XPFpackage
https://www.gnu.org/licenses/gpl-3.0.en.html
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples

3 Algebra of XP Operators
In this section, we lay out fundamental results for the algebra of XP operators, including closed form
expressions for algebraic operations which support efficient simulation on a classical computer. We
show how to write a unique vector representation for XP operators. We generalise the symplectic
product of the Pauli stabiliser formalism and show how to express algebraic operations in terms of
the vector representation and the generalised symplectic product. We also introduce the concepts
of the degree and fundamental phase of XP operators. These concepts allow us to determine the
eigenvalues and actions of the projectors of XP operators.

3.1 Vector Representation of XP Operators
In this section, we show that there is a natural identification of XP operators on n qubits with
vectors of integers. Let u = (p|x|z) ∈ Z × Zn × Zn be an integer vector of length 2n + 1. Define
the XP operator of precision N corresponding to u as:

XPN (u) := ωp
⊗

0≤i<n
Xx[i]P z[i] (4)

where ω and P are as defined in Eqs. (1) and (2). Each component is periodic in that we can write:

XPN (p|x|z) = XPN (pmod 2N |x mod 2|z modN) (5)

Accordingly, we can write a unique vector representation (p|x|z) ∈ Z2N × Zn2 × ZnN for each XP
operator. We call p the phase component, x the X component and z the Z component.

Here we list some properties of this notation:

1. The identity XP operator is XPN (0|0|0) where 0 is the length n vector with all entries 0.

2. Because ωN = −1, we have XPN (N |0|0) = −I.

3. The single qubit X operator is XPN (0|1|0).

4. Diagonal operators are of form XPN (p|0|z), i.e. the X component is the zero vector.

5. If N is even, the single qubit Z operator is XPN (0|0|N2). For N odd, Z operators cannot
be represented as XP operators. Note that one may rescale the code to be of precision 2N
by doubling the phase and Z components of stabiliser generators, in which case the rescaled
code has the same codespace and accommodates Z operators.

Example 3.1 (Using XP operator notation)
Consider the following example of an XP operator:

A = XP8(12|1110000|0040000) . (6)

The precision is specified by the subscript 8, in this case N = 8. This means that ω = exp(1
16 2πi)

and P 8 = I so P = T where T is the operator diag(1,
√
i). In other words, this is an XT operator.

Most of the examples we consider in this paper are precision N = 8 codes.
The components of A are as follows. The phase component is a value p ∈ Z16. In this case

p = 12 means the overall phase of the operator is ω12 = exp(12
16 2πi) = exp(3

4 2πi) = −i. The X
component is a binary vector of length n so that x ∈ Zn2 . In this case, x = 1110000, representing
X1X2X3, where Xi represents the operator which applies X to the ith qubit and I elsewhere. The
Z component is a value z ∈ Zn8 . In this case z = 0040000 representing T 4

3 .
In terms of X and T operators, we can write:

XP8(12|1110000|0040000) = exp(12
162πi)X1X2X3T

4
3 (7)

= −iX1X2X3Z3 (8)

As the phase and Z components are divisible by 4, we can rescale A and write it as a precision 2
operator by dividing the phase and Z components by 4:

XP8(12|1110000|0040000) = XP2(3|1110000|0010000) (9)

7

3.2 Multiplication Rule and Generalised Symplectic Product
In the Pauli stabiliser formalism, we represent operators as binary vectors and understand commu-
tation relations in terms of the symplectic product. In this section, we generalise the symplectic
product to the XP formalism, and this allows us to write a simple rule for multiplying XP operators.

Let z ∈ Zn be an integer vector of length n with ith component denoted z[i]. The antisymmetric
operator of precision N corresponding to z is:

DN (z) := XPN (
∑
i

z[i]|0|−z) . (10)

In this paper, arithmetic operations on vectors are component-wise in Z i.e.:

(a + b)[i] := a[i] + b[i] (11)
(ab)[i] := a[i]b[i] . (12)

We can then express the multiplication of two XP operators as the sum of their vector represen-
tations, adjusted by an antisymmetric operator:

Proposition 3.1 (Multiplication of XP Operators)
The product of two XP operators given in vector format is:

XPN (u1)XPN (u2) = XPN (u1 + u2)DN (2x2z1) (13)

Proof. For n = 1, looking at matrix representations of X and P we see that:

PX = ω2XP−1 = (XP)(ω2P−2) = (XP)DN (2) (14)

From this, we can show that the multiplication rule applies for all single qubit XP operators in
〈ωI,X, P 〉 and in turn to the tensor products of such operators.

Example 3.2 (Multiplication of XP Operators)
Let N = 4, n = 3 so that unique vector representations of XP operators are XPN (p|x|z) where
(p|x|z) ∈ Z8 × Z3

2 × Z3
4. Consider two example XP operators A1 and A2 defined as

A1 = XP4(2|111|330) , with u1 = (2|111|330) ,
A2 = XP4(6|010|020) , with u2 = (6|010|020) .

Then
A1A2 = XP4(u1 + u2)DN (2x2z1) = XP4(6|101|330) . (15)

This example is worked out in detail in the linked Jupyter notebook. You can also explore how
multiplication works for random XP operators of arbitrary precision and length.

3.3 Other Algebraic Identities
We can write simple closed form identities for various algebraic operations in terms of antisymmetric
operators, and these are summarised in Table 4. These identities allow us to efficiently implement
algebraic operations in the XPF software package.

Example 3.3 (Algebraic Identities)
The following are some consequences of algebraic identities in Table 4:

1. The MUL and INV rules imply that products and inverses of diagonal operators are diagonal.

2. The SQ and COMM rules imply that squares and commutators of XP operators A,B are
always diagonal.

3. The CONJ rule implies that conjugating an operator A by an operator B results in A times
a diagonal operator.

8

https://github.com/m-webster/XPFpackage/blob/main/Examples/3.2_multiplication.ipynb
https://github.com/m-webster/XPFpackage

Name Rule
MUL Multiplication of two XP operators

XPN (u1)XPN (u2) = XPN (u1 + u2)DN (2x2z1)
SQ Square of an XP operator

A2 = XPN (2p|0|2z)DN (2xz)
POW XP operator raised to a power

Am = XPN (mp|ax|mz)DN ((m− a)xz), where a = mmod 2
INV Inverse of an XP operator

A−1 = XPN (−p|x| − z)DN (−2xz)
CONJ Conjugation of XP operators

A1A2A
−1
1 = A2DN (2x1z2 + 2x2z1 − 4x1x2z1)

COMM Commutator of XP operators
A1A2A

−1
1 A−1

2 = DN (2x1z2 − 2x2z1 + 4x1x2z1 − 4x1x2z2)
OP Action of an XP operator on a computational basis vector

XPN (p|x|z)|e〉 = ωp+2e·z|e⊕ x〉

Table 4: Algebraic Identities for XP Operators

3.4 Group Structure of XP Operators
Because we have rules for products and inverses of XP operators, the XP operators of precision N
on n qubits form a group, denoted XPN,n.

For any set of XP operators G, we can determine the group generated by the operators which
we denote G = 〈G〉. The subset of diagonal XP operators GZ forms an Abelian subgroup. This
is because diagonal operators commute and GZ is closed under multiplication (and so includes all
inverses and the identity operator).

There is a natural group homomorphism Zp between GZ over multiplication and Zn+1
2N over

addition modulo 2N . For diagonal operators, the action of Zp is:

Zp(XPN (p|0|z)) = (2z|p) mod 2N (16)

The Zp map is well defined and is a group homomorphism because:

A1A2 = XPN ((p1 + p2) mod 2N |0|(z1 + z2) modN) (17)

and so:

Zp(A1A2) = (2(z1 + z2) mod 2N |(p1 + p2) mod 2N) (18)
= (Zp(A1) + Zp(A2)) mod 2N (19)

The inverse map Zp−1(z|p) = XPN (p|0|z/2) is well defined providing each component of z is divis-
ible by 2 in Z2N (even Z components). Addition over Zn+1

2N takes vectors with even Z components
to vectors with even Z components. Hence, we can find the generators of GZ by finding a set
of vectors B ⊂ Zn+1

2N which span Zp(GZ). Using the Howell matrix form of Appendix A, we set
B = HowZN

(Zp(G)). The set Zp−1(B) generates GZ . This method is used to determine a unique
set of canonical generators for an XP group (see Section 4.1).

3.5 Eigenvalues and Projectors of XP Operators
Identifying the eigenvalues and eigenvectors of XP operators will be important when considering
measurements. We first show how to determine the action of an XP operator on computational
basis elements. The degree and fundamental phase of an XP operator, defined in this section, allow
us to determine the eigenvalues of XP operators efficiently. These results are used in the chapters
on identifying the codespace and measurements in the XP formalism (Chapters 4, 7).

The action of an XP operator on a computational basis element |e〉 of Hn2 where e ∈ Zn2 is:

XPN (p|x|z)|e〉 = XPN (p|x|z)XPN (0|e|0)|0〉 = ωp+2e·z|e⊕ x〉 (20)

9

When calculating the action on computational basis elements, we apply the diagonal part of the
operator first, then the X component. The notation e · z =

∑
i e[i]z[i] is the usual dot product

for vectors in Z. The notation e⊕ x = (e + x) mod 2 denotes component-wise addition modulo 2
which is equivalent to XOR for binary vectors e and x.

For a given XP operator A,A2N = I so there must be a minimal deg(A) ∈ Z2N such that for
some q ∈ Z2N :

Adeg(A) = ωqI (21)

We call deg(A) the degree of A and q the fundamental phase of A. The degree can be calculated
efficiently via the method below:

Proposition 3.2 (Calculating Degree of Operator)
We calculate the degree of XP operator A = XPN (p|x|z) as follows:

1. If A is diagonal: deg(A) = LCM{N/GCD(N, z[i]) : 0 ≤ i < n}

2. If A is non-diagonal: deg(A) = 2 deg(A2), noting that A2 is diagonal.

Proof. To show 1, note that where A is diagonal, Am = XPN (mp|0|mz). We need to solve for
mz = 0 modN . To show 2, note that odd powers of A are non-diagonal, so the degree must be
even. Apply 1 to A2 which is diagonal.

Once we have the degree of an operator, the fundamental phase is the phase component of
Adeg(A). Determining the fundamental phase and degree of an XP operator allows us to identify
its eigenvalues, as follows:

Proposition 3.3 (Eigenvalues of Operator)
If A has degree d and fundamental phase q, the only possible eigenvalues of A are ωm : m =
(q + 2Nj)/d for j ∈ [0 . . . d− 1].

Proof. Let |ψ〉 be an eigenvector with A|ψ〉 = ωp|ψ〉. By the definition of degree and fundamental
phase, Ad = ωqI so Ad|ψ〉 = ωdp|ψ〉 = ωq|ψ〉. Hence dp = qmod 2N and the result follows.

The following proposition allows us to calculate the action of projectors of XP operators on a
computational basis element:

Proposition 3.4 (Action of XP Projectors on computational basis elements)
Consider the projectors Aλ of A onto the λ-eigenspace of A. If A is diagonal, the action of Aλ on
the basis element |e〉 is:

Aλ|e〉 =
{
|e〉 : if A|e〉 = λ|e〉
0 : if A|e〉 6= λ|e〉

(22)

If A is non-diagonal, the action of Aλ is:

Aλ|e〉 =
{

1
2 (I + λ−1A)|e〉 : if A2|e〉 = λ2|e〉
0 : if A2|e〉 6= λ2|e〉

(23)

Proof. To verify Eq. (23), note that where A2|e〉 = λ2|e〉:

A
(1

2(I + λ−1A)|e〉
)

= 1
2(A+ λ−1A2)|e〉 = 1

2(A+ λ−1λ2I)|e〉 = λ
(1

2(I + λ−1A)|e〉
)
. (24)

10

4 Calculating Codewords from Stabiliser Generators
In this section, we show how to identify the codespace stabilised by a given set of XP operators. In
the Pauli stabiliser formalism, there is a very simple relationship between the number of stabiliser
generators and the dimension of the codespace the stabiliser group defines. Given a stabiliser group
on n qubits with k independent commuting generators, the codespace has dimension 2(n−k).

In the XP formalism, this relationship is much more complex. For example, the eigenspace
dimensions of XP operators vary widely and are not in general powers of 2. As an illustration
of this complexity, the +1 eigenspace dimensions which arise for various 7-qubit diagonal XP
operators of precision 8 are listed in Table 5. Readers can explore eigenspaces of diagonal XP
operators in the linked Jupyter notebook.

Operator Dim Operator Dim Operator Dim
XP8(0|0|3333333) 1 XP8(0|0|1333355) 15 XP8(0|0|2222266) 28
XP8(0|0|2555555) 2 XP8(0|0|6133555) 16 XP8(0|0|6111177) 30
XP8(0|0|0133333) 4 XP8(0|0|1173335) 17 XP8(0|0|4222666) 32
XP8(0|0|2355555) 6 XP8(0|0|6111735) 18 XP8(0|0|3333555) 35
XP8(0|0|3333335) 7 XP8(0|0|1173355) 19 XP8(0|0|2222666) 36
XP8(0|0|2223555) 8 XP8(0|0|6135555) 20 XP8(0|0|0333555) 40
XP8(0|0|6133335) 10 XP8(0|0|3333355) 21 XP8(0|0|0003355) 48
XP8(0|0|6133355) 12 XP8(0|0|6155555) 22 XP8(0|0|4444444) 64
XP8(0|0|1733333) 13 XP8(0|0|2661117) 24 XP8(0|0|0000000) 128
XP8(0|0|6113555) 14 XP8(0|0|6111117) 26

Table 5: Example: Eigenspace dimensions for selected diagonal XP operators with n = 7, N = 8.

Here we present an algorithm to identify the codespace of a set of XP operators. The input for
our algorithm is an arbitrary list of XP operators G ⊂ XPN,n. The output is a list of codewords
{|κi〉 : 0 ≤ i < dim(C)} that form a basis for the codespace C stabilised by the group G = 〈G〉, or
an empty set if there is no codespace. The algorithm operates in two steps:

1. Convert the set of XP operators into a canonical form. This is a set of generators S in
a particular form which generate the stabiliser group 〈S〉 = 〈G〉. We split the canonical
generators into diagonal SZ and non-diagonal generators SX , where the diagonal canonical
generators SZ generate the diagonal subgroup of the stabiliser group.

2. Calculate an independent set of codewords |κi〉 that span the codespace. We do this by
applying the orbit operator (defined below in terms of the SX) to particular computational
basis elements |mi〉 in the simultaneous +1 eigenspace of the SZ .

We will describe these steps in detail in the following sections.

4.1 Canonical Generators of XP Groups
For any set of XP operators G, we can calculate a set of operators in canonical form that generate
the same XP group as G. Specifically, we calculate an independent set of diagonal (SZ) and
non-diagonal (SX) operators that generate 〈G〉. The diagonal subgroup of 〈G〉 is generated by
SZ .

Proposition 4.1 sets out the form and properties of the canonical generators. The proposition
uses the concept of a generator product which is defined as follows. The generator product of an
ordered set of XP operators S = {S0, . . . , Sm−1} specified by a vector of integers a ∈ Zm is:

Sa =
∏

0≤i<m
S

a[i]
i (25)

11

https://github.com/m-webster/XPFpackage/blob/main/Examples/4.1_eigenspaces.ipynb

Proposition 4.1 (Canonical Generators of an XP Group)
For any set of XP Operators G = {Gi : 0 ≤ i < m}, there exists a unique set of diagonal operators
SZ := {Bj : 0 ≤ j < s} and non-diagonal operators SX := {Ai : 0 ≤ i < r} with the following
form:

1. Let SX be the r × n binary matrix formed from the X-components of the SX . The matrix
SX is in Reduced Row Echelon Form (RREF).

2. Let SZp be the s × (n + 1) matrix with rows taken from the image of SZ under the Zp
map of Section 3.4 (i.e. Zp(XPN (p|0|z)) = (2z|p)). The matrix SZp is in Howell Form (see
Appendix A).

3. For XPN (p|x|z) ∈ SX , the matrix
(

1 (2z|p)
0 SZp

)
is in Howell Form.

The following properties hold for the canonical generators:

Property 1: All group elements G ∈ 〈G〉 can be expressed as G = Sa
XSb

Z where a ∈ Z|SX |
2 ,

b ∈ Z|SZ |
N

Property 2: Two sets of XP operators of precision N generate the same group if and only if
they have the same canonical generators.

Conditions 1-3 ensure the canonical generators are unique for a given set of operators, and so
can form the basis of the test in Property 2. The entries of SZp are from Z2N which is in general a
ring. The Howell matrix form is a generalisation of the RREF which gives us a canonical basis for
the row span of a matrix over a ring. See Appendix A for a full description of the Howell matrix
form and linear algebra over rings.

We briefly consider the implications of Properties 1 and 2. Let 〈G〉 be an XP stabiliser group.
If there is an operator of form ωqI, q 6= 0 in 〈G〉, the codespace is empty. Due to the Howell
Property (see Section A.2), we can determine if this is the case by checking if ωqI ∈ SZ for some
q 6= 0. This is a generalisation of the requirement that −I /∈ 〈G〉 in the Pauli stabiliser formalism
and the concept of admissible generating sets in the XS stabiliser formalism (see Ref. [18] on page
7). Going forward, we assume that XP codes are specified in terms of their canonical generators
SZ ,SX and that there is no element ωqI, q 6= 0 in SZ .

Because the matrices SX , SZp are in echelon form, this imposes a natural ordering on SX ,SZ .
Property 1 states that we can write any G ∈ 〈G〉 as a product of the canonical generators where
operators are applied in this order. It implies that SZ generates the diagonal subgroup of 〈G〉
because the diagonal subgroup is the set of operators where a = 0. Recalling Example 3.3, all
commutators and squares of elements in 〈G〉 are diagonal and so are in 〈SZ〉. Applying the results
in Section 3 of Ref. [15], we can also determine the size of the group 〈G〉 once we have the canonical
generator form.

In Appendix B, we demonstrate an algorithm for calculating the canonical generators and prove
Proposition 4.1.

4.2 Finding a Basis of the Codespace
In this section, we will show how to find a basis of the codespace stabilised by the canonical
generators SZ ,SX of Section 4.1. The result is a set of independent codewords that span the
codespace.

The codespace is the intersection of the simultaneous +1 eigenspace of the diagonal generators
and the +1 eigenspace of the non-diagonal generators:

C = CZ ∩ CX (26)

The diagonal generators determine the Z-support of the codewords. We define the Z-support of
a state |ψ〉 inHn2 as the set of length n binary vectors e such that the coefficient of the corresponding
computational basis vector |e〉 in |ψ〉 is non-zero. That is:

ZSupp(|ψ〉) = {e ∈ Zn2 : 〈e|ψ〉 6= 0} (27)

12

Because all elements in SZ are diagonal, we can write a basis of CZ as a set of computational basis
vectors:

CZ = SpanC{|e〉 : e ∈ Zn2 , B|e〉 = |e〉,∀B ∈ SZ} (28)

Let E := ZSupp(CZ) be the binary vectors corresponding to the computational basis vectors in CZ .
Any codeword expressed in terms of the computational basis must be a linear combination over C
of |e〉, e ∈ E.

The non-diagonal generators determine the relative phases of the computational basis vectors
in the codewords. The relative phase information is captured by the orbit operator. Let SX be the
non-diagonal canonical generators {Ai : 0 ≤ i < r} ordered as in Section 4.1. Using the generator
product notation of Eq. (25), the orbit operator is defined as:

OSX
:=
∑

v∈Zr
2

Sv
X (29)

Where e ∈ E, the image of |e〉 under the orbit operator, OSX
|e〉, is fixed by all elements of the

stabiliser group 〈SZ ,SX〉 (see Proposition C.1). In the next section, we demonstrate how to find
an independent set of codewords of this form which span the codespace.

4.2.1 Coset Structure of E and Orbit Representatives

In this section, we assume we are given E, the Z-support of CZ as in Eq. (28), and show how
to identify a subset Em of E such that the image of Em under the orbit operator is a basis of
the codespace (i.e. an independent spanning set). The resulting basis is a set of un-normalised
codewords |κi〉 such that:

|κi〉 := OSX
|mi〉 : mi ∈ Em (30)

The normalisation constant is 1√
2r

where r is the number of non-diagonal canonical generators,
and is omitted for clarity. Once we have Em, we know the dimension of the codespace:

dim(C) = |Em| (31)

We identify the subset Em by looking at the coset structure of E. First, we show that the Z-
support of a codeword in the form of Eq. (30) can be viewed as a coset in the group Zn2 under
component-wise addition modulo 2. Let SX be the binary matrix formed from the X-components
of the SX which is in RREF by construction (See Proposition 4.1). Then SpanZ2(SX) = 〈SX〉 is a
subgroup of Zn2 of size 2r where r = |SX |. The Z-support of OSX

|e〉 can be identified with a coset
in the group of binary vectors Zn2 :

ZSupp(OSX
|e〉) = e + 〈SX〉 := {(e + uSX) mod 2 : u ∈ Zr2} (32)

Next, we introduce the residue function which tells us whether two vectors are in the same
coset, and hence occur in the Z-support of the same codeword. Let m = ResZ2(SX , e) be defined
as: (

1 m
0 SX

)
:= RREFZ2

(
1 e
0 SX

)
(33)

Two vectors e1, e2 ∈ E are in the same coset if and only if ResZ2(SX , e1) = ResZ2(SX , e2). The
residue of e is zero if and only if e ∈ 〈SX〉.

We use the residue function to identify a subset of E of minimal size whose image under the
orbit operator yields a basis of the codespace. The set of orbit representatives Em is defined as
the image of E under the residue function:

Em := {ResZ2(SX , e) : e ∈ E} (34)

The cosets of Em partition E (see Proposition C.3). Accordingly, the image of Em under the orbit
operator is a basis of the codespace (see Proposition C.4).

13

4.2.2 Codewords Notation

The following notation for codewords is used throughout this paper. Let SX be the matrix formed
from the X-components of the non-diagonal canonical generators SX . As SX is in echelon form,
rows have a natural ordering and we interchangeably consider SX to be a set of binary vectors. Let
SX have r non-zero rows or |SX | = r. The set of codewords generated from the orbit representatives
is uniquely determined. When written in terms of the computational basis, we refer to the following
as the orbit form of the codewords:

|κi〉 = OSX
|mi〉 :=

∑
0≤j<2r

ωpij |eij〉 : mi ∈ Em,∃pij ∈ Z2N , eij ∈ Zn2 (35)

The Z-support of the codewords is the same as the Z-support of CZ , the simultaneous +1 eigenspace
of the SZ , and is denoted E:

E = ZSupp(CZ) =
⋃
i

ZSupp(|κi〉) (36)

We can write a coset decomposition of E in terms of Em as follows:

E = Em + 〈SX〉 = {(mi + uSX) mod 2 : mi ∈ Em,u ∈ Zr2} (37)

There is a direct relationship with the Z-support of each codeword as follows:

Ei := ZSupp(|κi〉) = mi + 〈SX〉 (38)

In addition, there is a unique coset decomposition of Em so that Em = Eq+〈LX〉 for sets of binary
vectors Eq and LX so that E = Eq+〈LX〉+〈SX〉. We demonstrate how to find this decomposition
in Section 6.3.2. The full coset decomposition is useful for the following reasons:

• The X-components of logical operators must be in 〈LX〉 + 〈SX〉, and we can calculate a
generating set of non-diagonal logical operators with X components in LX (Section 6.3.2)

• The size of Eq gives rise to a natural classification of XP codes (Section 6.5).

• We assign quantum numbers to each codeword (Section 6.4) based on the coset decomposition
of Em which then allows us to analyse the logical action of operators (Section 6.7).

4.3 Calculating Orbit Representatives from the Canonical Generators
We have demonstrated that the image of the orbit representatives under the orbit operator is a
basis of the codespace, and that the dimension of the codespace is given by the number of orbit
representatives. In previous sections we have assumed that we have been given E, the Z-support
of the simultaneous +1 eigenspace of the SZ , as a starting point. In practice, we generally start
with the stabiliser generators of a code, and calculating E from them is an NP-complete problem
for XP codes (see Ref. [18] Section VII).

In this section, we show how to calculate the orbit representatives from the canonical generators.
Orbit representatives have a specific form which reduces the search space significantly compared
to searching for the whole of E. We use a graph search algorithm to make finding the orbit
representatives tractable for ‘reasonable’ codes.

4.3.1 Exhaustive Algorithm to find E

We first show how to find E using an exhaustive inefficient algorithm. Let
SZ = {Bi = XPN (pi|0|zi) : 0 ≤ i < s}. Calculating the +1 eigenspace of SZ is equivalent
to solving the following equation in binary vectors e:

Bi|e〉 = ωpi+2e·zi |e〉 = ω0|e〉,∀Bi ∈ SZ (39)

14

For this equation to have solutions in e, pi must be divisible by 2 in Z2N . Let SZp be the matrix
with rows (zi|pi/2). Let (e|1) represent the column vector e with an entry of 1 appended. Eq. (39)
can be written in matrix form as:

STZp(e|1) modN = 0 . (40)

Solutions are of form:

(e|1) = aK modN , (41)

where K is the Howell basis of KerZN
(SZp) (see Section A.2). To find solutions for binary vectors

e, we seek a ∈ ZnN such that (e|1) = aK modN is a vector of zeros and ones. Linear algebra
techniques cannot be used to find the vectors a. We would in principle need to search through all
possible values of a to find valid solutions. Given that there are N |K| possible values of a, this is
of exponential complexity.

4.3.2 Graph Search Algorithm for Orbit Representatives

Rather than searching through all possible values of a in Eq. (41) to find E, we employ a more
efficient graph search algorithm which uses the special form of the orbit representatives to speed
up the the search.

The special form of the orbit representatives is as follows. Let xj be the jth row of SX and let
lj be the leading index of xj - i.e. xj [lj] = 1 and xj [k] = 0,∀k < lj . In Proposition C.5, we show
that for any orbit representative mi ∈ Em,mi[lj] = 0 for all leading indices lj , 0 ≤ j < |SX |. In
each coset of SX , mi is the unique vector with this property. As SX is in RREF, there are exactly
r = |SX | leading indices lj where mi[lj] is guaranteed to be zero.

We modify the exhaustive search algorithm presented in Section 4.3.1 to take into account the
special form of the orbit representatives:

1. Find the Howell basis K of KerZN
(SZp)

2. Search for solutions (e|1) = aK modN where e is a binary vector

3. As we only need a orbit representative mi for each codeword, we can restrict e[l] = 0 where
the l are the indices of the leading entries in SX .

The search is made more efficient by storing and re-using partial solutions (dynamic programming)
and results in a graph object from which the solutions can be generated. The main advantage over
the exhaustive algorithm is due to the reduction of the search space by a factor of 2r by using
the special form of the orbit representatives. Where all stabiliser generators are diagonal and
r = |SX | = 0, the advantage over the exhaustive algorithm is not as significant. However, for
‘reasonable’ codes which have both diagonal and non-diagonal generators, and which encode a
relatively low number of logical qubits, the graph search algorithm is efficient in practice.

It is possible that the search algorithm returns an empty set. In this case, the simultaneous
+1 eigenspace of the SZ is empty and there is no codespace. In this case, the XP stabiliser group
does not define a code.

4.4 Summary of Codewords Algorithm
In summary, the algorithm for identifying the codespace stabilised by an arbitrary set of XP
operators G is:

1. Calculate the canonical generators SZ and SX such that 〈G〉 = 〈SZ ,SX〉 using the algorithm
in Section 4.1. If ωqI ∈ SZ for q 6= 0, the codespace is empty.

2. Find the orbit representatives Em = {mi} using the graph search algorithm in Section 4.3.2.
The dimension of the codespace is dim(C) = |Em|. If Em = ∅, the codespace is empty as the
simultaneous +1 eigenspace of the SZ is of dimension zero.

3. A basis of the codespace is given by {|κi〉 = OSX
|mi〉 : mi ∈ Em} using the orbit operator

of Eq. (29).

15

4.5 Example: Calculating Codewords - Code 1
We illustrate our algorithm to find the codewords with an example. We will use this same example
throughout this paper to illustrate various concepts. The detailed calculations for this example
are set out in the linked Jupyter notebook. We start with the following stabiliser generators of
precision N = 8 on n = 7 qubits:

G =
XP8(8|0000000|6554444)
XP8(7|1111111|1241234)
XP8(1|1110000|3134444)

(42)

Step 1: Canonical Generators Using the algorithm in Appendix B, the canonical generators
for this code are:

SZ = XP8(8|0000000|2334444)
XP8(0|0000000|0440000) (43)

SX = XP8(9|1110000|1240000)
XP8(14|0001111|0001234) (44)

Note that a single diagonal generator yields multiple diagonal canonical generators. This be-
haviour is typical of XP groups.

Step 2: Orbit Representatives The graph search algorithm in Section 4.3.2 yields the follow-
ing orbit representatives:

Em =


0000001
0000010
0000100
0000111

 (45)

The dimension of the codespace is dim(C) = |Em| = 4.

Step 3: Image of orbit representatives under orbit operator is a basis Finally, we
form an independent set of codewords {κi} by applying the orbit operator OSX

of Eq. (29) to the
computational basis elements corresponding to the Em:

|κ0〉 = OSX
|0000001〉 = |0000001〉 +ω6|0001110〉 +ω9|1110001〉 +ω15|1111110〉

|κ1〉 = OSX
|0000010〉 = |0000010〉 +ω4|0001101〉 +ω9|1110010〉 +ω13|1111101〉

|κ2〉 = OSX
|0000100〉 = |0000100〉 +ω2|0001011〉 +ω9|1110100〉 +ω11|1111011〉

|κ3〉 = OSX
|0000111〉 = |0000111〉 +|0001000〉 +ω9|1110111〉 +ω9|1111000〉

(46)

4.6 Calculating Codewords - Discussion and Summary of Results
Given a set of XP operators G, we can determine a basis for the codespace stabilised by 〈G〉. We
first determine a set of canonical generators using linear algebra techniques over rings (Section 4.1).
The method uses the unique vector representation of XP operators of Section 3.1 and can be done
efficiently. This mirrors the result for generalised Pauli groups in Ref. [11].

Once we have the generators in canonical form, we find the orbit representatives Em using a
graph search algorithm (Section 4.3.2). The codespace dimension corresponds to the number of
orbit representatives, and applying the orbit operator defined in Eq. (29) to the orbit representatives
results in a basis of the codespace. The graph search algorithm works for any XP code, but its
efficiency depends on the precision of the code and the number of non-diagonal stabiliser generators.
In the worst case, where we have only diagonal stabilisers, finding the orbit representatives reduces
to an NP-complete problem.

16

https://github.com/m-webster/XPFpackage/blob/main/Examples/4.5_code_words.ipynb

5 Classification of XP Stabiliser States
Now that we have some familiarity with the XP stabiliser formalism, it is natural to ask which
quantum states can be represented within the formalism. In this chapter, we demonstrate an
equivalence between XP stabiliser states and ‘weighted hypergraph states’ - a generalisation of
both hypergraph [23] and weighted graph states [14].

In the Pauli stabiliser formalism, any stabiliser state can be mapped via local Clifford operators
to a graph state [26]. In the XS Formalism [18], the authors show that the phases of an XS stabiliser
state are described by a phase function which is a polynomial of maximum degree 3. In this chapter,
we generalise these results to the XP formalism.

In Section 5.1, we introduce definitions for weighted hypergraph states. In Section 5.2, we
describe the phases which are possible for XP stabiliser states. In Section 5.3, we show how to
represent any XP stabiliser state as a weighted hypergraph state. Finally, in Section 5.4 we show
how to represent any weighted hypergraph state as an XP stabiliser state. In general, this requires
us to embed the weighted hypergraph state into a larger Hilbert space.

5.1 Weighted Hypergraph State Definitions
In this section, we introduce the concept of weighted hypergraph states - a class of states which
includes graph, hypergraph and weighted graph states. A generalised controlled phase operator
CP (p/q,v) is specified by a rational number p/q and a binary vector v of length r. The action of
the operator on a computational basis state |e〉, e ∈ Zr2 is:

CP (p/q,v)|e〉 :=
{

exp(i2πp/q)|e〉 : ev = v
|e〉 : Otherwise

. (47)

Multiplication of vectors in the above equation is component wise. We construct a weighted
hypergraph state by applying a series of generalised controlled phase operators to the |+〉⊗r state.

In the Pauli stabiliser formalism, all stabiliser states can be mapped to graph states by applying
a set of local Clifford unitaries. A graph state on r vertices is specified by a set of edges E = {(i, j) :
i < j ∈ [0 . . . r − 1]}. The graph state is formed by applying controlled Z operators corresponding
to the edges to |+〉⊗r i.e. |φ〉 = (

∏
(i,j)∈E CZij)|+〉⊗r.

We now show how graph states generalise to weighted hypergraph states. For a binary vector
v, the support of v defines an edge (i.e. supp(v) := {i ∈ [0 . . . r − 1] : v[i] = 1}). Graph states
have edges composed of 2 vertices only so wt(v) = |supp(v)| = 2. Generalised controlled phase
operators can have edges involving between 1 and r vertices. The condition ev = v means that we
apply the phase when supp(v) ⊂ supp(e).

For graph states, only phases of ±1 are possible as we apply controlled Z operators. Generalised
controlled phase operators, on the other hand, can apply any phase of form exp(i2πp/q). Where
p/q = 1/2, the operator acts as a generalised controlled Z operator because it applies a phase of
exp(iπ) = −1 if ev = v.

5.2 Phase Functions of XP States
In this section, we describe which relative phases are possible for XP stabiliser states. The phase
function of an XP stabiliser state |φ〉 of precision N is an integer valued function f on vectors
e ∈ ZSupp(|φ〉) such that:

|φ〉 :=
∑

e∈ZSupp(|φ〉)

ωf(e)|e〉 =
∑

e∈ZSupp(|φ〉)

ωf(e0...en−1)|e〉 . (48)

We generally consider f to be a function of the binary variables ei := e[i], 0 ≤ i < n. In this
chapter, phase functions are defined by a vector q ∈ Z2n

and are polynomials of form:

f(e0 . . . en−1) =
∑

s⊂[0...n−1]

q[s]
∏
j∈s

ej (49)

17

For phase functions of this form, we can identify each term of the polynomial with a generalised
controlled phase operator. The term q[s]

∏
j∈s ej corresponds to the controlled phase operator

CP (q[s]/2N,v) where v[j] = 1 if j ∈ s or 0 otherwise. It is known that for Pauli stabiliser states
(N = 2 = 21), the phase function is a polynomial of the form in Eq. (49) of degree at most 2 in the
variables ei, whilst for XS codes (N = 4 = 22), the maximum degree is 3. Our aim is to generalise
these results to XP codes.

We first show how to express the Z-support of any XP stabiliser state in terms of a set of binary
variables {ui}, which are a subset of the {ei} variables defined above. We will then express the
form of the phase function of an XP stabiliser state in terms of the {ui}. Due to the results of
Section 4.4, any XP stabiliser state can be written in the following canonical form:

|φ〉 = OSX
|m〉 =

∑
u∈Zr

2

Su
X |m〉 (50)

for non-diagonal canonical generators SX , r = |SX | and where m is the single orbit representative.
The orbit operator OSX

is defined in Eq. (29) and the generator product Su
X is defined in Eq. (25).

Let SX = {XPN (pi|xi|zi) : 0 ≤ i < r}. We can write |φ〉 in terms of the binary variables
ui := u[i], 0 ≤ i < r as follows:

|φ〉 =
∑
ui∈Z2

∏
0≤i<r

XPN (uipi|uixi|uizi)|m〉 . (51)

The sum in the above equation ranges over all possible values of ui ∈ Z2, for 0 ≤ i < r. The
Z-support of |φ〉 can be expressed in terms of the {ui} as follows:

ZSupp(|φ〉) = {m⊕
⊕

0≤i<r
uixi : ui ∈ Z2} . (52)

We now show that the binary variable ui can be identified with the value of a particular component
e[li] of the vectors e ∈ ZSupp(|φ〉). Let li be the leading index of xi (see 4.3.2). Because SX is
in canonical form and m is an orbit representative, we have xj [li] = δij ,m[li] = 0. Hence for
e := m⊕

⊕
0≤i<r uixi ∈ ZSupp(|φ〉), e[li] = ui.

In the following Proposition, we express the phase function for an XP stabiliser state in terms
of the {ui} and describe its form:

Proposition 5.1 (Phase Functions of XP States)
Let |φ〉 = OSX

|m〉 =
∑

u∈Zr
2

Su
X |m〉 be an XP stabiliser state in the canonical form of Eq. (50)

with r := |SX |. Let ui, 0 ≤ i < r be binary variables such that ui := u[i]. Then:

(a) The phase function is of the following form for some vector q ∈ Z2r indexed by the subsets
s of [0 . . . r − 1]:

f(u0, u1, . . . , ur−1) =
∑

s⊂[0...r−1]

q[s]2|s|−1
∏
j∈s

uj . (53)

(b) For N = 2t, the maximum degree of the phase function is t+ 1.

Proof of Proposition 5.1 is in Appendix D.

5.3 Representation of XP States as Weighted Hypergraph States
We now demonstrate a method for determining the phase function for a given XP state. This
allows us to represent XP stabiliser states as weighted hypergraph states.

5.3.1 Algorithm: Weighted Hypergraph Representation of a Given XP State

Input: An XP state |φ〉 = OSX
|m〉 of precision N . Let SX = {XPN (pi|xi|zi) : 0 ≤ i < r}.

18

Output: A set of generalised controlled phase operators {CP (pi/2N,vi)} such that |φ〉 =(∏
i CP (pi/2N,vi)

)∑
e∈ZSupp(|φ〉) |e〉.

Method

1. Let li be the leading index of xi and define the r × n binary matrix L by setting Lij = 1 if
j = li and 0 otherwise.

2. Let p be a vector whose entries are indexed by rows u ∈ Zr2 such that p[u] is the phase
component of Su

X |m〉

3. For u in Zr2, ordered by weight then lexicographic order:

(a) If p[u] 6= 0, add the operator CP (p[u]/2N,uL) to the list of operators
(b) For all v ∈ Zr2 such that vu = u, set p[v] = (p[v]− p[u]) mod 2N

If the precision N = 2t is a power of 2, we only need to consider rows of weight at most t+ 1
due to Proposition 5.1. By multiplying the 1× r vector u by the r × n matrix L in step 3(a), we
create a 1× n vector v such that v[li] = ui.

Example 5.1 (Weighted Hypergraph Representation of XP State - Union Jack State)
The following example illustrates the operation of the algorithm to determine the phase function
of an XP stabiliser state and hence the weighted hypergraph representation. For precision N = 4,
let |φ〉 = OSX

|m〉 with:

m = 0 (54)

SX =

XP4(0|1000111000|0112000033)
XP4(0|0100100110|1001003000)
XP4(0|0010010101|1001003000)
XP4(0|0001001011|2110330000)

(55)

Calculating the phase component of Su
X |m〉 for all values of u ∈ Zr2, we find that the phase is zero

for all values of u, apart from u = 1011 and 1101 where the phase is −1. For precision N = 4, ω =
exp(iπ/4) so ω4 = −1. Hence, the phase function of |φ〉 is f(u0, u1, u2, u3) = 4u0u2u3 + 4u0u1u3.
The degree of f is 3, which is the maximum degree for states of precision N = 4 = 22. We can write
|φ〉 as a weighted hypergraph state by applying CP (1/2, 1011000000) and CP (1/2, 1101000000) to∑

e∈ZSupp(|φ〉) |e〉.
The state |φ〉 is the unit cell of the ‘Union Jack’ state introduced in Ref. [17]. This is a

hypergraph state with 2-dimensional Symmetry Protected Topological Order (SPTO) and is a
universal resource for quantum computation using only single qubit measurements in the X, Y,
and Z basis - see Figure 1. Detailed working for this example is available in the linked Jupyter
notebook.

5.4 Representation of Weighted Hypergraph States as XP Stabiliser States
In this section, we show how to represent any weighted hypergraph state as an XP stabiliser
state. In general, this involves embedding the state into a larger Hilbert space using an embedding
operator. We first demonstrate this for a single generalised controlled phase operator i.e. |φ〉 =
CP (p/q,v)|+〉⊗r. There are two possible cases depending on the weight of the vector v.

Case 1 wt(v) = 1: Let wt(v) = 1 and let i be the single non-zero component of v. For a given
precision N , we can identify CP (1/2N,v) with the operator

√
P = diag(1, ω) acting on qubit i

because for a computational basis vector |e〉,
√
P i|e〉 = ω|e〉 if e[i] = 1 and |e〉 otherwise. Hence,

to create a phase of exp(pq 2πi), we can let 2N = q. We also need N to be an integer ≥ 2 so we set
N as follows:

N =
{
q/2 : if q > 2 and qmod 2 = 0
q : Otherwise.

(56)

19

https://github.com/m-webster/XPFpackage/blob/main/Examples/5.1_xp_to_whg.ipynb
https://github.com/m-webster/XPFpackage/blob/main/Examples/5.1_xp_to_whg.ipynb

0 1

2 3

(a) Unit Cell of the Union Jack State of Ref. [17] which
is a hypergraph state. Qubits on the corners of each of
the shaded triangles represent the edge size 3 operators
CP (1/2, 1101) and CP (1/2, 1011) which act on |+〉⊗4.

0 1

2 3

(b) Unit Cell of the weighted graph state in Ref. [13].
Qubits connected by bold lines are acted on by controlled
Z operators and those by dashed lines by controlled S oper-
ators. The weighted graph state is formed by the operator
CP (1/2, 1100)CP (1/2, 0011)CP (1/4, 1001)CP (1/4, 0110)
acting on |+〉⊗4 and can be represented as a precision 4
XP stabiliser state.

Figure 1: Examples of Weighted Hypergraph States which can be be represented as XP stabiliser states.

The state |+〉⊗r is stabilised by {Xj : j ∈ [0 . . . r − 1]} where Xj is the Pauli X operator
acting on qubit j. We can also write Xj = XPN (0|xj |0) where xj is the jth row of Ir. The
result of conjugating Xj by

√
P i is ωXjPi if i = j and Xj otherwise. This can also be written√

P iXj

√
P
−1
i = XjDN (xjv) as is a generalisation of the identity SXS−1 = X(iZ) = Y for Pauli

operators. Hence the state |φ〉 is stabilised by SX = {XPN (0|xj |0)DN (pq 2Nxjv)}.

Case 2 wt(v) ≥ 2: For m := wt(v) ≥ 2, we in general need to embed the weighted graph state
|φ〉 into a larger Hilbert space to represent it as an XP stabiliser state. The embedding operator is
defined in terms of Mr

m, the binary matrix whose columns are the bit strings of length r of weight
between 1 and m inclusive. We order the columns of Mr

m first by weight then by lexicographic
order. The embedding operator Erm acts on computational basis vectors as follows:

Erm|e〉 = |eMr
m mod 2〉 . (57)

Our aim is to find a precision N and a set of stabiliser generators SX ,SZ which stabilise the
embedded state |ψ〉 := Erm|φ〉.

We set the precision N = q2m−2 - this is because phase function terms of degree m include a
factor of 2m−1 modulo 2N (see Proposition 5.1) and we need to allow for phases of form exp(2πi/q).
If N is odd, we multiply it by 2 so that we can form the diagonal stabiliser generators (see Eq. (62)
below).

The non-diagonal stabiliser generators SX determine the phase function and are defined as
follows. The X-components of the SX are the rows xj of Mr

m. The Z-components are obtained
by multiplying the xj by an ‘alternating vector’ a and an ‘inclusion vector’ w. The vector a is
indexed by the columns u of Mr

m and is 1 if the weight of u is even, and −1 otherwise:

a[u] := (−1)wt(u) . (58)

The inclusion vector w with respect to v is:

w[u] :=
{

1 : uv = u
0 : Otherwise

. (59)

Multiplying the rows xj of Mr
m by the inclusion vector w ensures that we only consider columns

of Mr
m whose support is a subset of the support of v. As a result of Proposition D.3, the following

operators generate the required phase function:

SX = {XPN (0|xj |
p

q

2N
2m−1 axjw) : 0 ≤ j < r} . (60)

20

We now show how to construct the diagonal stabiliser generators SZ . We calculate a basis of
KerZ2(Mr

m) as follows. Because the columns of weight 1 occur first, Mr
m is of form Mr

m =
(
I|A
)

for some binary matrix A. Hence the kernel of Mr
m over Z2 is spanned by:

Kr
m :=

(
AT |I

)
. (61)

It is easy to see that Kr
m(Mr

m)T mod 2 = 0. Let zj be the jth row of Kr
m so that xi · zj mod 2 = 0.

The following operators commute with the elements of SX :

SZ := {XP2(0|0|zj)} = {XPN (0|0|Nzj/2)} . (62)

This can be seen by using the COMM rule of Table 4 and noting that Nxj · zj mod 2N = 0:

[XPN (0|xj |wj), XPN (0|0|Nzj/2)] = DN (Nxjzj) = XPN (Nxj · zj |0|0) = I . (63)

We are now in a position to state the algorithm for weighted hypergraph states with multiple
generalised controlled phase operators.

5.4.1 Algorithm: Representation of Weighted Hypergraph States as XP Stabiliser States

Input: A weighted hypergraph state |φ〉 =
(∏

i CP (pi/qi,vi)
)
|+〉⊗r with pi, qi mutually prime

and vi of weight mi ≥ 0.

Output: A precision N , an embedding operator Erm and stabiliser generators SX ,SZ of an XP
code whose codespace is spanned by |ψ〉 := Erm|φ〉, a state with the same phase function as |φ〉.

Method:

1. Let m = max({mi}) - we use the embedding operator Erm. Note that when m = 1, the
embedding operator is trivial as Mr

1 = Ir.

2. We set the precision of the code as N := LCM(2, {Ni}) where we define the Ni as follows:

• If mi ≥ 2: set Ni = qi2m1−2.

• If mi = 1: if qi > 2 and qi mod 2 = 0 set Ni = qi/2; otherwise set Ni = qi.

3. If m = 1, Ker(Ir) = ∅ so we do not require any diagonal stabiliser generators. For m > 1,
the diagonal stabiliser generators are SZ := {XPN (0|0|N/2zj)} where zj is the jth row of
Kr
m as in Eq. (61).

4. The non-diagonal stabiliser generators SX := {Aj} are determined as follows:

(a) Set Aj = XPN (0|xj |0) for j ∈ [0 . . . r − 1] and xj the jth row of Mr
m.

(b) Update the Aj for each of the operators CP (pi/qi,vi):
• For mi = 1, Aj := AjDN (pi

qi
2Nxjwi).

• For mi ≥ 2, Aj := AjXPN (0|0|pi

qi

2N
2mi−1 axjwi) where a is the alternating vector of

Eq. (58) and wi is the inclusion vector of Eq. (59) with respect to vi.

The algorithm can be optimised by only including qubits which for some operator Aj has a
non-trivial Z-component. In Proposition D.4, we show that we can further optimise for generalised
controlled Z operators with pi/qi = 1/2 by replacing the factor axj in step (b) by vi[j]a(xj − 1).
This has the effect of clearing the Z-component of Aj indexed by column vi of Mr

m. This implies,
for instance, that we can represent graph states, which are created using CZ operators, with a
trivial embedding.

21

Example 5.2 (Representing Weighted Hypergraph States as XP Stabiliser States)
In Ref. [13], an example of a weighted graph state is given which is a universal resource for
measurement-based quantum computation; see Figure 1. The unit cell of this state is

|φ〉 = CP (1/2, 1100)CP (1/2, 0011)CP (1/4, 1001)CP (1/4, 0110)|+〉⊗4 . (64)

The weighted graph state |φ〉 can be represented as an embedded state |ψ〉 = E4
2 |φ〉 stabilised by

the following XP code of precision N = 4 on 10 qubits:

SX =

XP4(0|1000111000|1000201000)
XP4(0|0100100110|0100200100)
XP4(0|0010010101|0010000102)
XP4(0|0001001011|0001001002)

SZ =

XP4(0|0|2200200000)
XP4(0|0|2020020000)
XP4(0|0|2002002000)
XP4(0|0|0220000200)
XP4(0|0|0202000020)
XP4(0|0|0022000002)

(65)

Using the optimised method of Proposition D.4 and deleting redundant qubits, we find a more
compact representation on 6 qubits as follows:

SX =

XP4(0|100010|320010)
XP4(0|010001|230001)
XP4(0|001001|003201)
XP4(0|000110|002310)

SZ = XP4(0|0|200220)
XP4(0|0|022002) (66)

Detailed working for this example is available in the linked Jupyter notebook.

5.5 Discussion and Summary of Results
In this chapter we have shown an equivalence between XP stabiliser states and weighted hypergraph
states. For any XP stabiliser state, we can write a weighted hypergraph representation and vice-
versa. A very wide range of states can be represented within the XP stabiliser formalism, including
all weighted graph states and hypergraph states.

These results may prove useful in implementing fault-tolerant versions of quantum algorithms.
The Grover and Deutsch-Jozsa algorithms both employ real equally weighted (REW) pure states.
In Ref. [23], the authors showed that each REW state has an associated hypergraph state. As
we can represent any hypergraph state within the XP formalism, this could be an interesting
application.

6 Logical Operators and the Classification of XP Codes
The objective of this section is to understand the logical operator structure of a given XP code.
Our aim is to determine all XP operators that act as logical operators on the codespace (“logical
XP operators”), and classify the logical actions that arise.

We start by setting out definitions for logical XP operators and introduce the notion of a phase
vector which allows us to describe the logical action of diagonal operators (Section 6.1).

In the Pauli stabiliser formalism, the stabiliser group 〈G〉 is unique for a given codespace and
a Pauli operator acts as a trivial logical operator if and only if it is an element of 〈G〉. In the XP
formalism, there may be many different stabiliser groups for a given codespace. In Section 6.2, we
show how to find a set of XP operators M in the canonical form of Section 4.1 that generates the
set of trivial logical XP operators and which uniquely defines the codespace.

In Section 6.3, we show how to find a set of non-trivial logical XP operators L which together
with M generates all logical XP operators. Using the example of Reed-Muller codes, we show
that in some cases Pauli stabiliser codes can be viewed more naturally as XP codes and that we
can systematically determine all possible logical XP operators for such codes using our techniques.
Figure 2 explains how the various groups described above relate to each other.

In Section 6.4, we show how to assign quantum numbers to the codewords of Section 4.4 based
on the logical operator structure of the code. This in turn leads to a natural classification of XP

22

https://github.com/m-webster/XPFpackage/blob/main/Examples/5.2_whg_to_xp.ipynb

codes into XP-regular and non-XP-regular codes, which we discuss in Section 6.5. We show that
each XP-regular code can be mapped to a CSS code which has the same diagonal logical operators
and similar non-diagonal logical operators.

The algorithms for determining the generators for the logical XP group require the codewords of
Section 4.4 as input. In Section 6.6, we demonstrate modified algorithms which take the canonical
generators and orbit representatives of Section 4.2 rather than the codewords as input. These
methods are more efficient than using the codewords as a starting point.

In Section 6.7, we describe a framework for analysing the action of diagonal logical XP oper-
ators based on the codeword quantum numbers. We show how to determine all possible diagonal
logical actions for a given code and how to calculate an operator with a desired logical action. In
Section 6.8, we use this framework to classify diagonal logical XP operators into core and regular
operators and demonstrate that complex logical operators arise in non-XP-regular codes.

XPN,n

LXP = 〈ωI,M,L〉

IXP = 〈M〉

G = 〈G〉

Figure 2: Relationship between XP Operator Groups: Here, X PN,n is the group of all XP operators of
precision N on n qubits. The stabiliser group G = 〈G〉 is the same as the group generated by the canonical
generators SX , SZ . The logical identity group IXP = 〈M〉 fixes all elements of the codespace C. It contains
but is in general not equal to G. The logical operator group LXP = 〈ωI, M, L〉 is the set of XP operators that
preserve the codespace.

6.1 Definitions: Logical XP Operators
The logical XP identity group, denoted IXP, is the group of XP operators that fixes all elements
in the codespace C. The codewords {|κi〉} of Section 4.4 are a basis of the codespace, so we use
the following definition:

IXP := {A ∈ XPN,n : A|κi〉 = |κi〉,∀i} . (67)

In the Pauli stabiliser formalism, the logical identity group for a stabiliser code is the same as the
stabiliser group for the code. In the XP formalism, this is not necessarily the case and we show
an example of this in 6.1. Determining the logical identity group is non-trivial, so we present an
algorithm to construct it which takes the codewords as input.

The logical XP group, denoted LXP, is the group of XP operators that preserves the codespace
- that is, the set of XP operators A ∈ XPN,n such that A(C) = C. In the Pauli stabiliser formalism,
an operator A is a logical operator if and only if it commutes with all the stabiliser generators.
In the XP formalism, A is a logical operator if and only if the group commutator of A with any
logical identity operator is in the logical identity group (see Proposition E.2).

The action of a logical XP operator A on the codewords {|κi〉} can be described in terms of a
vector f and a permutation π of the codewords as follows:

A|κi〉 = ωf [i]|κπ(i)〉 . (68)

23

The vector f ∈ Zdim C
2N is referred to as the phase vector and tells us which phase is applied by

A to each codeword. The permutation π describes the non-diagonal action and π2 = 1 (see
Proposition E.1). We call a logical operator non-trivial if it is not a logical identity (i.e. A ∈
LXP \IXP). If the phase vector for a diagonal operator A is constant, say c, then the logical action
of A is ωcI. A diagonal operator is trivial iff its phase vector is zero.

6.2 Determining the Logical Identity Group
We present an algorithm to construct the generators of the logical identity group for an XP code.
This algorithm takes the codewords of the XP code, as in Section 4.4, as input. The result is a
list of XP operators M in the canonical form of Proposition 4.1 that generate the logical identity
group, or FALSE if the complex span of codewords is not the codespace of any XP code of precision
N . Detailed proofs of the results in this section are found in Appendix E.

We first demonstrate how to find generators for the diagonal logical identity group, then turn
to the non-diagonal generators.

6.2.1 Diagonal Logical Identity Group Generators MZ

Our algorithm for finding the diagonal logical identity group is as follows:

1. Let E be the Z-support of the codewords (as defined in Section 4.2.2) and let EM be the
matrix formed by taking {(e|1) : e ∈ E} ⊂ Zn2 × Z2 as rows.

2. Determine the Howell basis KM of KerZN
(EM) (see Section A.2).

3. Let (zk|qk) denote the rows of KM and let MZ = {XPN (2qk|0|zk)}.

4. Calculate the orbit representatives corresponding to MZ (see Section 4.3.2). If the number
of orbit representatives does not match the number of codewords, return FALSE.

We show that this algorithm produces a generating set of diagonal logical identity operators in
Proposition E.3.

6.2.2 Non-diagonal Logical Identity Group Generators MX

We now set out the algorithm to find the non-diagonal generators, which consists of two steps:
first, we find the X components of the generators; second, we find the phase and Z components that
are consistent with the relative phases between the computational basis elements in the codewords.

Step 1: Identifying the X-Components. Let Ei be the Z-support of the codeword |κi〉 as
defined in Section 4.2.2. Take any element ei ∈ Ei and let T be the binary matrix with rows formed
from {ei⊕e : e ∈ Ei}. Let SX = RREFZ2(T) and let mi = ResZ2(T, ei) using the residue function
defined in Eq. (142). Verify that Ei = mi + 〈SX〉 for each codeword. If not, return FALSE.

Step 2: Determining the Phase and Z-Components. We use linear algebra modulo N (see
Section A.3) to find valid phase and Z-components for the generators identified in Step 1. Assume
that the codewords |κi〉 are written in orbit form as in Eq. (35). For each x in SX we complete
the following steps:

1. Let e′ij = eij ⊕ x, and let p′ij be the phase of e′ij in the codewords

2. Let p′′ij = (p′ij − pij) mod 2N . For there to be a valid solution, the p′′ij are all either even (i.e.
divisible by 2 in Z2N) or odd. Let a = p′′00 mod 2 be an adjustment factor. Let p′′′ij = (p′′ij−a)/2
so that p′′′ij ∈ ZN . Let p′′′ be the vector formed from the p′′′ij

3. Find a solution (z|q) ∈ ZnN × ZN such that ETM (z|q) = p′′′ using linear algebra modulo N
(see Section A.3).

4. If there is no such solution, return FALSE

24

5. Otherwise, let KM be the Howell basis of KerZN
(EM). Let (z′|p′) = ResZN

(KM , (z|q)) and
add the operator XPN (a+ 2p′|x|z′) to MX .

We show that this algorithm produces a non-diagonal logical identity operator in Proposition E.6.

6.2.3 Properties of the Canonical Logical Identity Generators

The algorithm to find the logical identity generators take the codewords as input and results in a
set of generators M in canonical form. Hence, the set M uniquely identifies the codespace. Any
XP group stabilising the codewords is composed of operators that act as logical identities on the
codespace and so is a subgroup of 〈M〉. In Proposition E.14, we demonstrate an algorithm for
determining M that does not require the codewords as input, and so results in a test for whether
two sets of XP operators stabilise the same codespace.

The logical identity algorithm can also be used to determine if a given quantum state is a
stabiliser state of an XP code of precision N . We simply apply the algorithm - if it fails, the
state is not a valid XP stabiliser state. If it succeeds, the set of operators M is a set of stabiliser
generators for the state. The method can also be used for codespaces with dimensions greater than
1. We illustrate the algorithm for the logical identity generators using our main example:

Example 6.1 (Logical Identity Group - Code 1)
Taking the codewords calculated for the code in Example 4.5 as input, we find that the canonical
generators of the logical identity group are:

MX = XP8(9|1110000|0070000)
XP8(14|0001111|0001234) , MZ =

XP8(0|0000000|1070000)
XP8(0|0000000|0170000)
XP8(8|0000000|0004444)

(69)

Compare these to the canonical generators:

SX = XP8(9|1110000|1240000)
XP8(14|0001111|0001234) , SZ = XP8(8|0000000|2334444)

XP8(0|0000000|0440000) (70)

By definition, any stabiliser of the codespace is a logical identity so 〈SX ,SZ〉 ⊂ 〈MX ,MZ〉. In this
example, the diagonal generators SZ are not the same as MZ , but they have the same simultaneous
+1 eigenspace. In all cases, 〈SZ〉 ⊂ 〈MZ〉. For this example, we observe that none of the operators
in MZ are in 〈SZ〉, but all of the operators in SZ are in 〈MZ〉. For example:

XP8(8|0|2334444) = XP8(0|0|1070000)2XP8(0|0|0170000)3XP8(8|0|0004444) (71)

The non-diagonal generators SX are the same as MX , up to a product of elements of 〈MZ〉.
Full working for this example is in the linked Jupyter notebook.

6.3 Determining the Logical Operator Group
We now present an algorithm that will identify the logical XP operator group of an XP code. This
algorithm again takes as input the codewords of Section 4.4, and is similar to the algorithm for the
logical identity group. The result is a list of XP operators L that generate the logical XP operator
group together with M and ωI. Detailed proofs of these results are in Appendix E.

We first demonstrate how to find generators for the diagonal logical operator group, then turn
to the non-diagonal generators.

6.3.1 Diagonal Logical Operator Algorithm

The following algorithm gives a list of operators LZ which together with ωI and MZ generate all
diagonal logical XP operators. We assume we have the codewords {|κi〉} in orbit form as in Eq. (35)
expressed as a linear combination of computational basis elements |eij〉. The key to finding the
diagonal logical operators is to form a matrix from the binary vectors corresponding to the basis
vectors for each codeword, and an index which indicates which codeword the vector is from:

25

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.1_logical_identity_generators.ipynb

1. For each eij , let i be a binary vector of length dim(C) which is all zeros apart from the ith
component which is 1.

2. Let EL be the matrix formed by taking (eij |i) ∈ Zn2 × Zdim(C)
2 as rows.

3. Determine the Howell basis KL of KerZN
(EL) modulo N (see Section A.2).

4. Let (zk|qk) ∈ ZnN × Zdim(C)
N be a row of KL and let MZ be the matrix formed from the

Z-components of the diagonal logical identity operators MZ of Section 6.2.1. Let K be the
Howell basis of the matrix formed from the residue of each row of the zk over ZN with respect
to MZ .

5. Let zk be a row of K and let Bk = XPN (0|0|zk). Then the set LZ = {Bk} is a set of
non-trivial diagonal logical operators which together with MZ and ωI generate all diagonal
logical XP operators.

Note that the operator XP (1|0|0) = ωI is always a logical operator for any XP code - it has the
effect of applying a phase ω to all codewords. By convention, we do not include it in LZ . We show
that the algorithm produces a generating set of diagonal logical XP operators in Proposition E.4.

6.3.2 Non-diagonal Logical Operators

In this section, we demonstrate how to find a generating set of non-diagonal logical XP operators.
We first show how to find the X-components of a generating set of non-diagonal logical operators.
We then demonstrate how to find valid phase and Z-components for a logical operator with a given
X component.

Step 1: Identifying the X-Components. Here, we identify the valid X-components for all
non-diagonal logical operators by calculating a coset decomposition of the orbit representatives
Em. In Section 4.2.1, we showed that we can write the Z-support of the codewords, E, in coset
form E = Em + 〈SX〉. We can decompose the orbit representatives themselves into cosets Em =
Eq + 〈LX〉. To find the matrix LX and set of vectors Eq, we use the following result:

Proposition 6.1 (Coset Decomposition of Em)
Given a set of binary vectors Em ⊂ Zn2 there exists a unique binary matrix LX in RREF such that:

Em = Eq + 〈LX〉
Eq := {ResZ2(LX , e) : e ∈ Em} (72)

x ∈ 〈LX〉 ⇐⇒ x⊕ Em = Em

Proof. Let T = {x ∈ Zn2 : x ⊕ e ∈ Em,∀e ∈ Em}. Choose an arbitrary e0 ∈ Em. Then T is
a subset of E′m = {e ⊕ e0 : e ∈ Em}. We can check whether x ∈ E′m is in T by checking if
x⊕ e ∈ Em,∀e ∈ Em. If x ∈ T then it permutes the elements of Em so x⊕ Em = Em.

T is a group under component-wise addition modulo 2 because x1,x2 ∈ T =⇒ x1 ⊕ x2 ∈ T ,
so LX = RREFZ2(T) generates T under component wise addition modulo 2.

Finally, the residue function is an equivalence relation partitioning Em into cosets of 〈LX〉.

We can think of T = 〈LX〉 as the group of all vectors x such that x ⊕ Em = Em. The X-
component of any logical XP operator must be in 〈LX〉+ 〈SX〉 because logical operators preserve
the codespace. In Proposition E.8, we show that logical operators with X-components in LX
together with LZ , SX , SZ and ωI generate the full set of logical XP operators.

Step 2: Valid Phase and Z-components. Assume that the codewords |κi〉 are written in
orbit form as in Eq. (35). The algorithm for finding the phase and Z-components of the operators
for a given x ∈ LX is as follows:

1. Let e′ij = eij ⊕ x, and let p′ij be the phase of e′ij in the codewords

26

2. Let p′′ij = (p′ij − pij) mod 2N . For there to be a valid solution, for fixed i the p′′ij are all either
even or odd. Let ai = p′′i0 mod 2 be an adjustment factor

3. Let p′′′ij = (p′′ij − ai)/2 so that p′′′ij ∈ ZN , and let p′′′ be the binary vector with the p′′′ij as
components

4. Find a solution (z|q) ∈ ZnN × Zdim(C)
N such that ETL (z|q) modN = p′′′ using linear algebra

modulo N (see Section A.3). Then A = XPN (0|x|z) is a logical operator.

In Proposition E.5, we show that the above algorithm generates a valid logical operator with
X-component x, or returns FALSE if this is not possible. The resulting operator is non-diagonal,
but is not necessarily a logical X operator. For A to be a logical X operator, then A2 should be
a logical identity operator. Applying the SQ rule of Section 3.3, A2 is diagonal. Hence we require
A2 ∈ 〈MZ〉. We show how to adjust the phase and Z component to ensure this in Section E.8.

6.3.3 Examples: Logical Operators

We now illustrate this algorithm for the logical XP operator group for two example XP codes:

Example 6.2 (Logical Operators - Code 1)
The orbit representatives for Code 1 of Example 4.5 are given by Eq. (45). We calculate the coset
decomposition of Em which gives us the X-components of the non-diagonal logical generators.
Using the technique in Proposition 6.1, we find that LX has 2 rows and Eq is of size 1:

LX =
(

0000101
0000011

)
(73)

Eq =
(
0000001

)
(74)

By adding elements of 〈LX〉 to any orbit representative mi, we can reach any other orbit repre-
sentative mj . The logical operator group generators are:

LX = XP8(2|0000101|0000204)
XP8(1|0000011|0000034) , LZ =

XP8(0|0000000|0002226)
XP8(0|0000000|0000404)
XP8(0|0000000|0000044)

(75)

Full working for this example is in the linked Jupyter notebook. We look at the logical action of
these logical operators in Example 6.9.

Example 6.3 (Logical Operators - Code 2)
We now introduce our second main example, which is the code given by the following canonical
stabiliser generators:

S = XP8(0|0000000|1322224)
XP8(12|1111111|1234567) (76)

Using the graph search algorithm of Section 4.3.2, the orbit representatives for Code 2 are:

Em =



0000000
0000111
0001011
0001101
0011110
0011001
0010101
0010011


(77)

27

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.2_logical_operator_generators.ipynb

The algorithm in Section 4.4 yields the following codewords:

|κ0〉 = |0000000〉 +ω12|1111111〉
|κ1〉 = |0000111〉 +|1111000〉
|κ2〉 = |0001011〉 +ω14|1110100〉
|κ3〉 = |0001101〉 +ω12|1110010〉
|κ4〉 = |0011110〉 +|1100001〉
|κ5〉 = |0011001〉 +ω8|1100110〉
|κ6〉 = |0010101〉 +ω10|1101010〉
|κ7〉 = |0010011〉 +ω12|1101100〉

(78)

Calculating the coset decomposition of Em = Eq + 〈LX〉 using Proposition 6.1 we find that LX
contains only one row but Eq has 4 elements:

LX =
(
0011110

)
(79)

Eq =


0000000
0000111
0001011
0001101

 (80)

From the starting point mi, we can only reach orbit representatives mj = mi⊕0011110 by adding
elements of 〈LX〉 modulo 2. We could, however, apply a unitary U which permutes codewords as
follows.

|κ0〉 → |κ1〉 → |κ2〉 → |κ3〉 → |κ0〉 (81)
|κ4〉 → |κ5〉 → |κ6〉 → |κ7〉 → |κ4〉 (82)

Let the codewords in orbit form be |κi〉 =
∑

0≤j<2r ωpij |eij〉. Let k = (i+ 1) mod 4 then U is the
operator given by:

U =
∑

eij∈E
|ekj〉〈eij |+

∑
e∈Zn

2 \E

|e〉〈e| (83)

U cannot, however, be written as an XP operator.
Applying the algorithms in sections 6.3.1 and 6.3.2 we find the following generators for the

logical XP group:

LX =XP8(2|0011110|0012304) , LZ =

XP8(0|0000000|0211112)
XP8(0|0000000|0022220)
XP8(0|0000000|0004004)
XP8(0|0000000|0000404)
XP8(0|0000000|0000044)

(84)

Full working for this example is in the linked Jupyter notebook.

Example 6.4 (Reed Muller Codes)
In this example, we look at Reed Muller codes. These can be viewed as XP codes, and the algo-
rithms of this chapter make it straightforward to determine their full logical operator structure. By
varying the parameters of these codes, we show that they give rise to transversal logical operators
at any level of the Clifford hierarchy.

We can write the 15-qubit Reed Muller code as a precision 2 code (i.e. using Pauli group

28

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.2_logical_operator_generators.ipynb

operators) in terms of diagonal (SZ) and non-diagonal (SX) stabiliser generators:

SZ =

XP2(0|0|100011100011101)
XP2(0|0|010010011011011)
XP2(0|0|001001010110111)
XP2(0|0|000100101101111)
XP2(0|0|000010000011001)
XP2(0|0|000001000010101)
XP2(0|0|000000100001101)
XP2(0|0|000000010010011)
XP2(0|0|000000001001011)
XP2(0|0|000000000100111)

, SX =

XP2(0|100011100011101|0)
XP2(0|010010011011011|0)
XP2(0|001001010110111|0)
XP2(0|000100101101111|0)

(85)

The logical operators for precision N = 2 are:

X̄ = XP2(0|000011111100001|0), Z̄ = XP2(0|0|000000000011111) (86)

We can rescale this code to be of precision N = 8 by multiplying the Z-components of the
generators by 4. Applying the algorithm in Section 6.3, we find additional diagonal operators as
follows:

S̄† = XP8(0|0|000022222200002), T̄ † = XP8(0|0|111111111111111) (87)

Note that S̄† has an S operator on same qubits as X̄, whilst T̄ † has a T operator on all 15 qubits.
If we again rescale to precision N = 16, we do not obtain any additional logical operators. This
suggests that the code has a ‘natural precision’ of 8.

In the XPF, the stabiliser group for a given codespace is not unique. We can write a more
compact generating set of precision 4 operators that stabilise the same codespace. The operators
are symmetrical in X and S and generate a different stabiliser group to those in Eq. (85):

SZ =

XP4(0|0|100011100011101)
XP4(0|0|010010011011011)
XP4(0|0|001001010110111)
XP4(0|0|000100101101111)

, SX =

XP4(0|100011100011101|0)
XP4(0|010010011011011|0)
XP4(0|001001010110111|0)
XP4(0|000100101101111|0)

(88)

Note here that the X-components of the non-diagonal generators and the Z-components of the
diagonal generators are the rows of the binary matrix M4

4 as defined in Section 5.4.
In Proposition E.9, we generalise this example and show the Reed-Muller code on 2r−1 qubits

can be written as the codespace of a precision N = 2r−2 code whose stabiliser generators are
symmetric in X and P with X and Z-components the rows of the matrixMr

r respectively. Pleasingly,
this gives a self-dual set of stabiliser generators for all codes in this family. This generalises the
known result for the Steane code, where r = 3 and N = 2. Furthermore, to stabilise the code space
of n = 2r − 1 qubits, we require only 2r stabilisers, a logarithmic scaling. The code has natural
precision of 2r−1 and a transversal logical diag(1, exp(2πi/2r−1)) operator.

You can explore which logical operators arise in codes with different parameters for Reed Muller
codes in the linked Jupyter notebook.

6.4 Assigning Quantum Numbers to the Codewords
In this section, we demonstrate a natural way of assigning quantum numbers to the codewords of
Section 4.4. This view of the codewords gives rise to a classification of XP codes (Section 6.5).
It also allows us to develop more efficient algorithms to determine the logical operator group
(Section 6.6) and to analyse the logical action of operators (Sections 6.7, 6.8).

The assignment of quantum numbers is based on the coset structure of the Z-support of the
codewords E (see Section 4.2.2). Recall from Section 6.3.2 that LX is a set of binary vectors such

29

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.4_reed_muller.ipynb

that Em = Eq + 〈LX〉. Hence, we can write E in coset form as:

E = Eq + 〈SX〉+ 〈LX〉 (89)
= {(ql + uSX + vLX) mod 2 : ql ∈ Eq,u ∈ Zr2,v ∈ Zk2} (90)

We refer to Eq as the core of the code. We can index elements of E by writing:

el,u,v := (ql + uSX + vLX) mod 2 (91)

We can assign quantum numbers to the orbit representatives m ∈ Em of Section 4.2.2 as follows:

ml,v := (ql + vLX) mod 2 (92)

and these also apply to the codewords of Section 4.4:

|κl,v〉 := OSX
|ml,v〉 . (93)

We refer to l as the Core Index, u as the Stabiliser Index and v as the Logical Index. The
orbit distance is used to develop more efficient versions the logical identity and logical operator
algorithms (see Section 6.6), and is defined as:

dist(e) := wt(u) + wt(v) . (94)

Example 6.5 (Quantum Numbers - Code 1)
For Code 1 of Example 4.5, the orbit representatives can be written Em = Eq + 〈LX〉 where
Eq = {0000001}, LX = {0000100, 0000010}. The full decomposition of Eq + 〈SX〉 + 〈LX〉 and
associated quantum numbers as per Section 6.4 is:

Stabiliser Index
Logical Index Core Index 00 10 01 11

00 0 0000001 1110001 0001110 1111110
10 0 0000100 1110100 0001011 1111011
01 0 0000010 1110010 0001101 1111101
11 0 0000111 1110111 0001000 1111000

The vectors in the first column of the table with Stabiliser Index u = 0 correspond to the orbit
representatives Em. The vectors in row i of the table are the Z-support of the ith codeword |κi〉
as in Eq. (30). Each codeword can be identified by the quantum numbers (l,v) where v is the
Logical Index and l is the Core Index. In this case, the size of the core is 1, so the core index is
the same for all codewords. The dashed lines group together vectors with the same orbit distance.

Example 6.6 (Quantum Numbers - Code 2)
For code 2 of Example 6.3, the full decomposition of Eq + 〈SX〉+ 〈LX〉 and associated indexing as
per Section 6.4 is:

Stabiliser Index
Logical Index Core Index 0 1

0 0 0000000 1111111
0 1 0000111 1111000
0 2 0001011 1110100
0 3 0001101 1110010
1 0 0011110 1100001
1 1 0011001 1100110
1 2 0010101 1101010
1 3 0010011 1101100

The vectors with orbit distance 0, i.e. u = 0 and v = 0 correspond to the core Eq. In this case, the
size of the core is 4, so we need both the Logical Index and the core index to specify the codewords.
These examples are illustrated in the linked Jupyter notebook.

30

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.5_quantum_numbers.ipynb

6.5 Classification of XP Codes
In this section, we present a way of classifying XP codes into XP-regular and non-XP-regular codes.
The main result is that each XP-regular code can be mapped via a diagonal unitary operator to a
CSS code that has a very similar logical operator structure. We will see in Section 6.8 that non-
XP-regular codes have a much richer logical operator structure that is distinct from PSF codes
and so offer the possibility for interesting new classes of codes.

In Section 6.5.1, we introduce the concept of XP-regular codes and give some examples and
elementary properties. In Section 6.5.2, we demonstrate that each XP-regular code can be mapped
to a CSS code with identical diagonal logical operators, and similar non-diagonal logical operators.

6.5.1 Definition of XP-Regular and Non-XP-Regular Codes

Consider an XP code, and let Eq be the core of a code as defined in Section 6.4. If |Eq| = 1, the
code is XP-regular. Otherwise, the code is non-XP-regular.

One major difference between XP-regular and non-XP-regular codes is the codespace dimension.
The codespace dimension for an XP code is dim(C) = |Eq|2k where k = |LX | (see Section 6.4).
For an XP-regular code, |Eq| = 1 so the codespace dimension is a power of 2 and it encodes k
logical qubits. The codespace dimension of non-XP-regular codes may or may not be a power
of 2. Non-XP-regular codes are not additive, and their structure resembles that of the codeword
stabilised (CWS) quantum codes of Ref. [7]. The CWS class is very broad and includes all Pauli
stabiliser and qudit stabiliser codes. There are examples of CWS codes which have better error
correction properties than any known additive code with the same number of physical qubits. [21].

In Ref. [18], a ‘regular code’ is defined as one where the diagonal stabiliser generators of the
code are elements of 〈−I, Z〉⊗n. All regular codes are XP-regular and in Section 6.5.2 we will show
a link between the two definitions. The examples below illustrate our definition of XP-regular
codes:

Example 6.7 (XP-Regular and Non-XP-Regular Codes)
Examples of XP-Regular and Non-XP-Regular codes include:

1. All XP stabiliser states (i.e. XP codes with one-dimensional codespaces) are XP-regular;

2. All Pauli codes (i.e. XP codes with precision N = 2) are XP-regular;

3. Code 1 of Example 4.5 is XP-regular as |Eq| = 1, though it is not regular according to the
definition in Ref. [18];

4. Code 2 of Example 6.3 is non-XP-regular, as |Eq| = 4;

6.5.2 Mapping XP-Regular Codes to CSS Codes

In this section, we show that each XP-regular code can be mapped via a diagonal unitary operator
to a CSS code with a very similar logical operator structure. This is significant because it shows that
the logical operator structure of an XP-regular code is no more complex than the corresponding
CSS code.

The algorithm for mapping a regular code whose canonical generators are SX ,SZ is:

1. Determine a set of diagonal Pauli operators RZ with the same simultaneous +1 eigenspace
as the SZ

2. If SX = {(pi|xi|zi)} then let RX = {(0|xi|0)}

3. The mapped CSS code has stabiliser generators RX ,RZ .

We first show how to calculate a set of diagonal Pauli operators RZ which have the same
simultaneous +1 eigenspace as SZ . This links to the definition of ‘regular code’ in Ref. [18], where
regular codes were defined as those in which all diagonal generators are diagonal Paulis and implies
that all ‘regular codes’ are XP-regular.

31

Lemma 6.2 (Regular Diagonal Generators)
If a code is XP-regular with diagonal canonical stabilisers SZ , then there exist diagonal Pauli
operators whose simultaneous +1 eigenspace is the same as SZ .

Proof. If the code is XP-regular, it has core size 1. Let q be the sole element in the core. The
Z-support of the simultaneous +1 eigenspace of the SZ can be written as:

E = q + 〈SX〉+ 〈LX〉 (95)

Let GX be the matrix formed from the rows of LX and SX . The rows of GX are independent.
Find the Howell basis K of KerZ2(GX). Because there are |SX |+ |LX | = r + k independent rows
in GX , there are n− r − k independent rows in K.

Let RZ = {XP2(−2q ·z,0, z) : z ∈ K} and let the Z-support of the simultaneous +1 eigenspace
of the RZ be E′. Operators in RZ stabilise all elements e ∈ E so E ⊂ E′.

Because RZ has n− k− r independent diagonal Pauli operators, |E′| = 2r+k = |E|. Hence the
simultaneous +1 eigenspaces of SZ ,RZ are the same.

We are now in a position to prove the main result of this section:

Proposition 6.3 (Mapping XP-Regular Codes to CSS Codes)
Given a XP-regular code C with canonical generators SX ,SZ , there is a mapping to a CSS code
C′ with generators RX ,RZ such that:

1. If |κi〉 =
∑

0≤j<2r ωpij |eij〉 is codeword of C then |κi〉′ =
∑

0≤j<2r |eij〉 is a codeword of C′;

2. C′ has the same diagonal logical operators as C;

3. If XPN (p|x|z) is a non-diagonal logical operator of C, then XPN (0|x|0) is a logical operator
of C′.

Proof. Let SX and SZ be the canonical generators for C. Because C is XP-regular, by Proposi-
tion 6.2 we can find a decomposition E = q + 〈SX〉 + 〈LX〉 and RZ which from 〈−I, Z〉⊗n and
which have the same simultaneous +1 eigenspace as the SZ . Let RX = {XPN (0|x|0) : x ∈ LX}
and let C′ be the code defined by the stabiliser generators RX ,RZ .

By construction, the simultaneous +1 eigenspaces of the diagonal generators are the same (and
so are the respective Z-supports i.e. E = E′). The matrices formed from the X-components of the
non-diagonal canonical generators are the same (i.e. SX = RX). Hence, the orbit representatives
are the same (i.e. E′m = Em = {mi}), and so |κi〉′ = ORX

|mi〉 =
∑
j |eij〉 form a basis for the

codespace of C ′.
The algorithm for computing the diagonal logical operators in Section 6.3.1 depends only on

the Z-support of the codewords. As E′ = E, the diagonal logical operators are the same.
In Section 6.3.2, we showed that the X components of the logical operators depend only on

E = E′, so for any logical operator XPN (p|x|z) of C, XPN (0|x|0) is a logical operator of C′.

We can transform the codespaces C′ to C by applying the diagonal unitary U specified by:

U =
∑

eij∈E
ωpij |eij〉〈eij |+

∑
e∈Zn

2 \E

|e〉〈e| . (96)

Example 6.8 (Map XP-Regular Code to CSS - Code 1)
Code 1 of Example 4.5 is an XP-regular code. Applying Proposition 6.3 regular generators are
given by:

RZ =
XP2(0|0000000|1010000)
XP2(0|0000000|0110000)
XP2(2|0000000|0001111)

RX = XP2(0|1110000|0000000)
XP2(0|0001111|0000000) . (97)

Full working for this example is in the linked Jupyter notebook.

32

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.8_mapping_XP-regular_code.ipynb

6.5.3 Error Correction for XP-Regular Codes

We now briefly consider error correction for XP codes. One of the complexities associated with
this problem is that the stabiliser generators of XP codes are not guaranteed to commute, so
simultaneous measurements may not be possible. A possible error-correction routine for XP-
regular codes is as follows. In this case, we calculate the regular diagonal generators RZ which are
diagonal Pauli operators. By measuring the RZ first and correcting for errors, we guarantee that
we are in a subspace where all stabiliser generators commute and can complete the error-correction
process by measuring the non-diagonal generators SX . A similar process is outlined in section V
of Ref. [18].

Another approach would be to adopt the error correction methods for codeword stabilised
(CWS) quantum codes presented in Ref. [7]. In this approach, the codewords of a Pauli stabiliser
code are viewed as translations of a graph state |S〉 by tensors of Pauli Z operators XP2(0|0|wi).
The vectors wi are called word operators and form a classical code over Zn2 . Any single-qubit error
can be propagated along the edges of the graph state by applying stabilisers of |S〉 and converted
into a tensor of Pauli Z operators XP2(0|0|z). This allows decoding using classical techniques
using the bit string z. To use this approach, we would need to be able to convert an arbitrary XP
code into a graph state translated by tensors of Pauli Z operators. We have seen in Chapter 5 that
XP states can be represented as weighted hypergraph states. The orbit representatives Em of XP
codes play a similar role to the word operators of CWS codes so this approach may have potential.

6.6 Modified Logical Operator Algorithms
The logical identity and logical operator algorithms presented in sections 6.2 and 6.3 require as
input the codewords in the orbit form of Eq. (35). In the Pauli stabiliser formalism, there are
algorithms for determining the logical Z and X operators that do not require us to first calculate
the codewords. Can we find such algorithms in the XP formalism?

In this section, we demonstrate modified algorithms for determining the logical operator group
which do not require the codewords as input. Instead, we take the the canonical generators
and orbit representatives of Chapter 4 as a starting point. We show that the modified logical
identity algorithm is significantly more efficient than the original version. As a result, the modified
algorithm can be used to determine if two different XP groups have the same codespace.

6.6.1 Modified Logical Identity Algorithm

The modified algorithm for determining the logical XP identity group generators can be used where
the precision of the code is a power of 2. The logical identity algorithm uses the Z-support E of
the codewords (see Section 4.2.2). If N = 2t, we only need to consider elements of E at most orbit
distance t from the core (see Section 6.4, Proposition E.14).

The main steps of the modified algorithm are as follows.

1. Given a set of generators G for the stabiliser group, we calculate the canonical generators S
and orbit representatives Em (see Chapter 4).

2. From S, Em, we can efficiently calculate Eq, SX and LX without calculating E in full.

3. The elements of E at most orbit distance t from the core are Et = {(q +uSX +vLX) mod 2 :
q ∈ Eq,u ∈ Zr2,v ∈ Zk2 ; wt(u) + wt(v) ≤ t}. We can then use Et instead of E to determine
M in the algorithm set out in Section 6.2.

Next, we look at the computational complexity of the modified logical identity algorithm versus
that of the original version. Let the coset decomposition of E = Eq + 〈SX〉+ 〈LX〉 as in Eq. (89).
The number of elements in E is |E| = q2k+r where q = |Eq|, r = |SX |, k = |LX |. Hence, the
complexity of the original logical identity algorithm, which requires us to perform row operations
on a matrix of size |E|, is O(q2k+r).

We now consider the computational complexity of the modified logical identity algorithm for
codes of various precisions. For PSF codes, N = 2 = 21 and we only need to consider elements of
E1 which are at most orbit distance 1 from the core to find the logical identity group. The total

33

number of elements to consider is q+ q(k+ r). Because q = 1 for all Pauli stabiliser codes, the run
time of the modified algorithm is O(k + r) in this case.

For XS stabiliser codes, N = 4 = 22. We need to consider elements of E2 which are up to
orbit distance 2 from the core. Hence, the logical identity algorithm is O(q+ q(k+ r) + q

(
k+r

2
)
) =

O(q(k + r)2)
In general, we see that for precision N = 2t, the modified logical identity algorithm is O(q(k+

r)t). For small N and large r or k, this can result in significantly faster run time compared to
the original version which is O(q2k+r). Topological codes tend to have a small number of logical
qubits but a large number of stabiliser generators, so this is an important improvement. We can
also express the complexity in terms of the number of qubits n as O(nt) because 2n ≥ |E| = q2k+r.

6.6.2 Modified Logical Operator Algorithm

Similarly, we can use a modified version of the logical operator algorithm where the precision of
the XP code is a power of 2 (say N = 2t). Instead of calculating the codewords, we only need to
consider the elements of E up orbit distance t from the orbit representatives Em. Proof of this
claim is in Section E.4.

6.7 Diagonal Logical Actions Arising in an XP Code
In the Pauli stabiliser formalism, methods exist to find the logical Z operators for a code. In the
XP formalism, a code may have logical operators with a wider range of actions - for instance,
logical S, T or

√
T operators, as well as logical controlled phase operators - for example logical

CZ,CCZ and CT operators. In this section, we show how to describe all possible logical actions
a diagonal logical operator can apply for a given code. We show how to determine whether a
particular logical action is possible, and if so how to calculate a logical operator with this action.

We first show how to describe all possible actions which can be applied by the diagonal logical
operators of a code. We use the phase vectors of Section 6.1 to describe the logical action of a
diagonal operator. Let L′Z be the set of diagonal logical operators plus ωI - the logical operator
that applies a phase of ω to each codeword. Let FZ be the matrix whose rows are the phase
vectors of L′Z . We can calculate the Howell basis FD = HowZ2N

(FZ) by using the techniques in
Appendix A so that FD = UFZ for some matrix U . The phase vectors which can be applied by a
diagonal logical operator of the code are given by SpanZ2N

(FD).
We next show how to find a logical operator whose action is given by a phase vector in

SpanZ2N
(FD). Let fi,ui be rows of FD, U respectively. Then the operator Li = L′ui

Z has the
logical action given by fi, using the generator product notation of Eq. (25). The operators
LD = {Li : 0 ≤ i < |FD|} generate diagonal logical operators with all possible phase vectors.
Let the required phase vector be f ∈ SpanZ2N

(FD) so that f = uFD mod 2N for some u ∈ Z|FZ |
2N ,

then the XP operator L′uD has phase vector f .

Example 6.9 (Logical Action - Code 1 and Code 2)
For Code 1 of Example 4.5, the phase vectors for each logical operator in L are:

LZ =
XP8(0|0000000|0002226) f : 12 4 4 4
XP8(0|0000000|0000404) f : 8 8 0 0
XP8(0|0000000|0000044) f : 8 0 8 0

(98)

LX = XP8(10|0000101|0000600) f : 0 0 0 0
XP8(9|0000011|0004434) f : 0 0 0 0 (99)

Hence operator XP8(0|0|0002226) applies a phase of ω12 on the first codeword and ω4 on the other
codewords. Calculating FZ and FD we find:

FZ =


1 1 1 1
12 4 4 4
8 8 0 0
8 0 8 0

 , FD = HowZ8(FZ) =


1 1 1 1
0 8 0 0
0 0 8 0
0 0 0 8

 (100)

34

The following diagonal operators generate diagonal logical operators with all possible phase vectors:

LD =

XP8(1|0000000|0000000) f : 1 1 1 1
XP8(4|0000000|0006266) f : 0 8 0 0
XP8(12|0000000|0002262) f : 0 0 8 0
XP8(4|0000000|0002666) f : 0 0 0 8

(101)

The action of operator XP8(4|0|0006266) is to apply ω8 = −1 to the second codeword only. As
we have two logical qubits, this is a logical CZ operation.

In fact, the logical effects we can obtain are generated by ωI, and CZ on logical indices 01, 10
and 11. We can make combinations of these operators to generate the Z operators on the first and
second logical qubit:

Z̄10 = XP8(8|0000000|0000044) f : 0 8 0 8
Z̄01 = XP8(0|0000000|0004040) f : 0 0 8 8 (102)

For Code 2 of Example 6.3, we have the following logical operators and corresponding phase
vectors:

LZ =

XP8(0|0000000|0211112) f : 0 8 8 8 8 8 8 8
XP8(0|0000000|0022220) f : 0 8 8 8 0 8 8 8
XP8(0|0000000|0004004) f : 0 8 0 0 8 0 8 8
XP8(0|0000000|0000404) f : 0 0 8 0 8 8 0 8
XP8(0|0000000|0000044) f : 0 0 0 8 8 8 8 0

(103)

LX = XP8(14|0011110|0074160) f : 0 0 0 0 0 0 0 0 (104)

Note that the bar in the phase vector groups together codewords with the same logical index, but
with different core indices. Calculating the Howell basis of FZ , we obtain the generators:

LD =

XP8(1|0000000|0000000) f : 1 1 1 1 1 1 1 1
XP8(0|0000000|0237336) f : 0 8 0 0 0 0 8 8
XP8(0|0000000|0026260) f : 0 0 8 0 0 0 8 0
XP8(0|0000000|0026620) f : 0 0 0 8 0 0 0 8
XP8(0|0000000|0277772) f : 0 0 0 0 8 0 0 0
XP8(0|0000000|0673332) f : 0 0 0 0 0 8 8 8

(105)

The logical Z operator on the single logical qubit is:

Z̄1 = XP8(0|0000000|0062224) f : 0 0 0 0 8 8 8 8 (106)

Full working for these examples is in the linked Jupyter notebook.

Example 6.10 (Logical Action - Hypercube Codes)
In Example 6.4, we saw that the Reed Muller code on 2r − 1 qubits has a transversal logical
diag(1, exp(i2π/2r−1) operator. In this example, we view the Hypercube code of dimension D as
an XP code of precision N = 2D. We show that it has transversal generalised controlled Z logical
operators at the (D−1)st level of the Clifford hierarchy. This fact was first pointed out in Ref. [6],
but is easily verified using the techniques of this section and we calculate the corresponding XP
operators in the linked Jupyter Notebook.

6.8 Classification of Logical Operators
We now introduce a classification scheme for diagonal logical operators based on the quantum
numbers assigned to the codewords in Section 6.4. A regular XP logical operator is an XP operator
that applies the same phase to codewords with the same logical index. A core logical XP operator
is an XP operator that applies the same phase to codewords with the same core index.

To determine if an operator is regular or core, we reshape the phase vector for the operator so
that rows correspond to codewords with the same logical index and columns to codewords with
the same core index.

35

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.9_logical_action.ipynb
https://github.com/m-webster/XPFpackage/blob/main/Examples/6.10_hypercube_codes.ipynb

Example 6.11 (Regular and Core Operators - Code 2)
For Code 2 of Example 6.3, which is a non-XP-regular code, consider the operator
A = XP8(0|0|0062224). The phase vector for A is:

Core Index
Logical Index 0 1 2 3
0
1

0 0 0 0
8 8 8 8

The operator A applies a phase of ω8 = −1 for logical index 1, so it is a regular operator. Now
consider operator B = XP8(0|0|0026620). The phase vector for B is:

Core Index
Logical Index 0 1 2 3
0
1

0 0 0 8
0 0 0 8

The operator B applies a phase of −1 to codewords with core index 3, so it is a core operator.
Now consider C = XP8(0|0|0277772) which has phase vector:

Core Index
Logical Index 0 1 2 3
0
1

0 0 0 0
8 0 0 0

One might think that all logical operators are either core operators, regular operators, or products
of core and regular operators. However, the operator C is a counterexample to this hypothesis and
demonstrates that more complex logical operators arise in non-XP-regular codes. The operator C
applies a phase of −1 when the core index is 0 and the Logical Index is 1. Because it applies a
phase of −1 to one of the 8 codewords, the operator can be thought of as a CCZ gate. Full working
for these examples is in the linked Jupyter notebook.

6.9 Logical Operators - Summary and Discussion
In this chapter, we have shown how to determine the logical operator structure for any XP code.
We have presented algorithms to calculate generators for the logical operator and logical identity
groups using linear algebra techniques (Sections 6.2 and 6.3). In contrast to the Pauli and qudit
stabiliser formalism, XP codespaces are not uniquely identified by the stabiliser group. Two XP
codes have the same codespace if and only if they have the same logical identity generators. The
efficiency of these algorithms depends on the precision N of the XP code. Where N = 2t, the
algorithms are of O(nt) complexity where n is the number of qubits (see Section 6.6). In the worst
case, we need to determine the codewords in full to determine the logical operator group.

By allocating quantum numbers to the codewords, we can analyse the logical action of diagonal
XP operators and fully classify which logical actions arise. We can determine all possible logical
actions applied by operators of XP form, which can include logical operators at various levels of the
Clifford hierarchy. These techniques give a more complete picture of the logical operator structure
than previous methods, even when looking at Pauli stabiliser codes.

The coset decomposition of the orbit representatives Em yields the core Eq of the code (Sec-
tion 4.2.1), and allows us to determine the non-diagonal logical operators. The size of the core Eq
leads to a classification of XP codes into XP-regular and non-XP-regular codes. Any XP regular
code can be mapped to a CSS code which has a similar logical operator structure via a unitary
transformation. Non-XP regular codes have a more complex logical operator structure. Though
not fully developed in this paper, there appear to be several possible approaches for error-correction
of XP codes, despite the fact that stabiliser generators do not commute in general.

The main limitation of the above algorithms is that we consider only logical operators of XP
form. An area for further investigation would be to develop algorithms to find the non-XP unitary
operators which act as logical operators.

36

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.11_logical_operator_classification.ipynb

7 Measurements in the XP Formalism
Determining the extent to which computations on a quantum computer can be classically simulated
is one of the central questions in the field of quantum information. In the Pauli stabiliser formalism,
the Gottesman-Knill theorem states that stabiliser circuits can be classically simulated efficiently.
In particular, given a Pauli stabiliser code, we can efficiently simulate the measurement of any
Pauli operator on the codespace, including both exact calculation of the Born rule probabilities for
such measurements as well as the update rule to determine the post-measurement state. In this
chapter, we look at whether a similar result holds in the XPF - i.e. can the measurement of XP
operators can be simulated efficiently in the XPF?

In Section 7.1, we set out our assumptions and criteria for an XP operator to be ‘XP-measurable’
on an XP code. In Section 7.2, we show how to determine the outcome probabilities for measure-
ment of arbitrary XP operators on an XP codespace. In Section 7.3, we present an efficient stabiliser
algorithm for measuring diagonal Pauli operators on XP codes. We consider whether we can do
the same for precision 4 diagonal XP operators in Section 7.4 and show that estimating outcome
probabilities is not tractable for these. We also give examples showing that the measurement of
some XP operators takes us outside the XP formalism.

7.1 Measurement Definitions
We first define what we mean by an operator being measurable within the XP formalism.

Let C be an XP code with canonical stabiliser generators S. Assume the system is described
by the density operator ρ which is proportional to the projector onto the codespace defined by S.
We can write ρ in terms of the codewords and the Z-support E of the codewords of Section 4.2.2
as follows:

ρ := 1
|E|

∑
i

|κi〉〈κi| (107)

Let A be an XP operator, and Aλ the projector onto the λ eigenspace of A. The operator A is
XP-measurable on C if for each eigenvalue λ of A:

1. We can calculate the probability of obtaining outcome λ which is given by
Pr(λ) = Tr(AλρAλ); and

2. We can find a set of XP operators Sλ such that the projector onto the codespace defined by
Sλ is proportional to AλρAλ.

Note that in the above definition, we are only concerned with whether the above tasks can be done
in principle, not whether they can be done efficiently.

7.2 Outcome Probabilities for Measurements of XP Operators
In this section, we demonstrate how to calculate the outcome probabilities for measurement of
arbitrary XP operators on an XP code. We assume that we are given the codewords in orbit
format as input (as in Eq. (35)).

For diagonal operators, we can calculate the outcome probabilities by looking at the Z-support
of the codewords E (see Section 4.2.2). Let A be the diagonal XP operator we wish to measure and
assume it has +1 as an eigenvalue. Let E+ be the set of binary vectors E+ = {e ∈ E : A|e〉 = |e〉}.
We show in Proposition F.1 that the probability of obtaining outcome +1 when measuring A is
Pr(+1) = |E+|

|E| .
We can also calculate outcome probabilities for non-diagonal operators if given the codewords.

The method is set out in Proposition F.2 and is somewhat more complex than for diagonal XP
operators.

Hence, given the codewords, we can in principle determine the outcome probabilities when
measuring any XP operator. This does not necessarily mean that the probabilities can be estimated
efficiently or that we can express the resulting state of the system as an XP code as we see in
Section 7.4

37

7.3 Stabiliser Method for Measurement of Diagonal Pauli Operators
We now consider the measurement of diagonal Pauli operators - i.e. elements of 〈−I, Z〉⊗n. In this
special case, we can estimate the outcome probabilities efficiently and we can always express the
resulting state as an XP code.

In this section, we demonstrate an efficient, stabiliser-based update algorithm to simulate mea-
surements of diagonal Pauli operators. The algorithm provides update rules for the core form of
an XP code after measurement. We first describe the core form of an XP code. We then state
the algorithm for measuring diagonal Pauli operators and give some examples which illustrate the
algorithm.

7.3.1 Core Form of an XP Code

In Ref. [1], measurements are simulated by determining update rules for the stabiliser generators,
logical Z operators, logical X operators and anti-commutators.

Our algorithm gives update rules for XP codes in core form. The core form of an XP code
consists of the following data: the core Eq, which was introduced in Section 6.4 and is a set of
binary vectors; the non-diagonal canonical generators SX of Section 4.1; and the logical X operators
LX - of Section 6.3.2.

The core form encapsulates the key properties of the code in a compact way. From Eq, SX and
LX we can generate the orbit representatives and the codewords (see Section 6.4). If necessary, we
can efficiently calculate the diagonal logical operators and logical identities using the algorithms
in sections 6.2 and 6.3.

7.3.2 Algorithm for Measuring Diagonal Paulis

Assume we have an XP code in core form (i.e. the non-diagonal stabiliser generators SX generating
non-diagonal logical operators LX and core Eq as in Section 7.3.1). As per our discussion in
Section 3.1, if the precision of the code N is not a multiple of 2, then Z operators do not exist. We
can if necessary re-scale the code to be of precision 2N by doubling the phase and Z components of
all stabiliser generators. Assume we wish to measure the diagonal Pauli operator A = XP2(0|0|z).
Note that A has zero phase component but the algorithm can be generalised to operators with
non-trivial phase components very easily. Our aim is to determine an XP code in core format
representing the post-measurement system, as well as the probability of measuring each eigenvalue
of A (in this case, ±1).

The algorithm uses the parity function of a binary vector x with respect to the binary vector
z which is defined as:

Parz(x) := x · z mod 2 (108)

Step 1: Determine if there exists B ∈ SX or failing that, B ∈ LX with X-component x such
that Parz(x) = 1. If B does not exist, go to Step 2. If B exists, we update SX ∪ LX and Eq via
the following steps:

• Remove B from SX ∪ LX

• For any C ∈ SX ∪ LX with X-component y such that Parz(y) = 1, replace C with BC.

• Update Eq by setting Eq = Eq ∪ {ql ⊕ x : ql ∈ Eq}

Step 2: Split Eq into two sets:

E+
q := {q ∈ Eq : Parz(q) = 0} (109)

E−q := {q ∈ Eq : Parz(q) = 1} (110)

The probability of obtaining the outcome +1 is Pr(+1) = |E+
q |
|Eq| and the post-measurement core is

E+
q . The probability of obtaining −1 is Pr(−1) = |E−q |

|Eq| and the updated core is E−q .

38

In Appendix F, we explain in detail why the algorithm works. Essentially this is because the
parity function of Eq. (108) commutes with the addition of vectors modulo 2. Once we have the
code in core format, the above algorithm simulates measurement of diagonal Paulis in O(|Eq| +
|SX |+ |LX |) time complexity.

The algorithm generalises the method of simulating measurements in the Pauli stabiliser for-
malism (e.g. in Ref. [1]). When simulating measurements in the Pauli stabiliser formalism, we
look for stabiliser generators which do not commute with the operator being measured. The parity
function serves a similar purpose in our algorithm. Any operator B with X-component x com-
mutes with A if Parz(x) = 0 and anticommutes otherwise. Any computational basis vector |e〉 with
Pare(x) = q is in the (−1)q eigenspace of A. In Step 1, we need to remove at most 1 non-diagonal
operator from SX ∪ LX , which is also the case for the Pauli stabiliser formalism.

One significant difference between the XPF and the Pauli stabiliser formalism is the possible
outcome probabilities which arise. In the Pauli stabiliser formalism, outcome probabilities are
always a multiple of 1

2 when measuring a single operator. This is not the case in the XPF because for
non XP-regular codes, the sizes of Eq, E+

q and E−q may not be powers of 2. Outcome probabilities
in the XPF may be irrational numbers - in particular when measuring non-diagonal operators (see
Proposition F.2).

7.3.3 Examples - Measurement of Diagonal Paulis

Below are examples of the measurement of diagonal Paulis for Code 2 of Example 6.3 to illustrate
the operation of the algorithm. Full working for these examples is in the linked Jupyter notebook.

Example 7.1 (No update to SX ∪ LX - Code 2, Non-XP-Regular Code)
Code 2 expressed in core form is:

Eq ={0000000, 0000111, 0001011, 0001101} (111)
SX =XP8(12|1111111|0334567) (112)
LX =XP8(14|0011110|0012340) (113)

In this example, we measure A = XP2(0|0000000|0111111). Looking at elements of SX ∪ LX , the
parity of all operators is 0, so we do not need to update them in Step 1 of the algorithm.

Moving to Step 2, we calculate E+
q , E

−
q as follows:

E+
q ={0000000} (114)

E−q ={0000111, 0001011, 0001101} (115)

The probability of measuring +1 is Pr(+1) = |E+
q |/|Eq| = 1/4, whilst the probability of measuring

−1 is Pr(−1) = |E−q |/|Eq| = 3/4. These probabilities do not arise when measuring a single operator
in the Pauli stabiliser formalism.

Example 7.2 (Update SX ∪ LX - Code 2, Non-XP-Regular Code)
In this example, we measure A = XP2(0|0000000|0000100) on Code 2.

For Step 1, we find for B = XP8(12|1111111|0334567) the X-component x = 1111111 has parity
+1. We remove B from SX . In LX , we also find C = XP8(14|0011110|0012340) with X-component
y = 0011110 has parity 1. Replace C with BC = XP8(14|1100001|0700003). Update Eq by adding
x⊕ q for q ∈ Eq to Eq so the updated code in core format is:

Eq = {0000000, 0000111, 0001011, 0001101,
1111111, 1111000, 1110100, 1110010} (116)

SX =∅ (117)
LX =XP8(14|1100001|0700003) (118)

For Step 2, we calculate E+
q , E

−
q :

E+
q ={0000000, 0001011, 0010011, 0011001} (119)

E−q ={0000111, 0001101, 1111111, 1110100} (120)

39

https://github.com/m-webster/XPFpackage/blob/main/Examples/7.1_measure_diagonal_Pauli.ipynb

We obtain measurement outcomes +1 or −1 with equal probability of 1
2 . This is always the

case when we update SX ∪ LX in Step 1 because for the binary vector q, exactly one of q,q ⊕ x
has parity +1.

7.4 Measuring Precision 4 XP Operators
In the previous section, we showed that diagonal Paulis are XP-measurable on any XP code. In this
section, we look at the measurement of precision 4 XP operators, which can be considered the next
most complex case. We show that determining the outcome probabilities for diagonal precision 4
operators is in general computationally complex. We look at two examples which illustrate that
precision 4 XP operators are not in general XP-measurable because the post-measurement states
cannot be expressed as an XP codespace.

7.4.1 Estimating Outcome Probabilities of Diagonal Precision 4 Operators is Intractable

Consider measuring a diagonal precision 4 XP operator A = XP4(0|0|z). The probability of
obtaining outcome +1 when measuring A is |E

+|
|E| where E is the Z-support of the pre-measurement

codewords and E+ = {e ∈ E : A|e〉 = |e〉} (see Proposition F.1). Hence, determining probability
outcomes reduces to the problem of finding the simultaneous +1 eigenspace of the XP operators
SZ ∪ {A}.

Now consider simulating measurements on an XP code stabilising |+〉⊗m for some large value
of m. Assume we have a series of diagonal XP operators Ai of precision 4 which all share +1 as an
eigenvalue. Proposition F.1 states that the probability of obtaining the result +1 after measuring
the series of operators depends on the dimension of the simultaneous +1 eigenspace of the Ai.
Determining E+ is known to be an NP-complete problem [18]. No matter which algorithm we use,
we must calculate |E+| so this complexity seems unavoidable in the general case.

7.4.2 XP Formalism is not Closed under Measurement of XP Operators

The following examples illustrate that when measuring precision 4 operators, it is not always
possible to represent the post-measurement system as the codespace of an XP code. Full working
for these examples is in the linked Jupyter notebook:

Example 7.3 (Measurement of Diagonal Precision 4 Operator)
Let us measure the diagonal operator A = S1S

3
2S

3
3 on the code defined by the stabiliser generators

SX = {X1, X2, X3},SZ = ∅ where Xi denotes the Pauli X operator applied to the ith qubit. The
codespace is one dimensional and spanned by |κ〉 = |+〉⊗3.

The operator A has 4 eigenvalues, with Z-supports of the corresponding eigenspaces as follows:

E+1 = {000, 101, 110} E+i = {100} (121)
E−1 = {011} E−i = {001, 010, 111} (122)

The probability of obtaining each measurement result is:

Pr(+1) = 3/8 Pr(+i) = 1/8 (123)
Pr(−1) = 1/8 Pr(−i) = 3/8 . (124)

In the case of outcome +1, the post-measurement state is

|κ+〉 = |000〉+ |010〉+ |111〉 . (125)

In Section 4.2.1, we demonstrated that the codewords of XP codes have Z-support of size 2r for
some integer r so this state cannot be written as the codespace of any XP code.

Similarly, for non-diagonal precision 4 operators, we can easily find examples of operators where
the post-measurement system cannot be represented as the codespace of an XP code:

40

https://github.com/m-webster/XPFpackage/blob/main/Examples/7.3_measure_precision_4.ipynb

Example 7.4 (Measurement of Non-diagonal Precision 4 Operator)
Now let us measure the non-diagonal operator B = XP4(2|111|123) on an XP code stabilising
|κ〉 = |+〉⊗3. The square of B is B2 = I, so the eigenvalues are ±1.

Let ω = exp(iπ/4) and note that 1+ω2

2 = 1+i
2 = ω√

2 and 1+ω6

2 = 1−i
2 = ω7

√
2 .

Applying the projector B+ to |κ〉 using Proposition 3.4, we obtain:

|κ+〉 = 1
2(|κ〉+B|κ〉) (126)

= 1
2

(
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉

+ ω6|000〉+ |001〉+ ω2|010〉 − |011〉 − |100〉+ ω6|101〉+ |110〉+ ω2|111〉
)

(127)

= 1√
2

(
ω7|000〉+

√
2|001〉+ ω|010〉+ ω7|101〉+

√
2|110〉+ ω|111〉

)
(128)

Calculating the probability of obtaining outcome +1:

Pr(+1) = 〈κ
+|κ+〉
〈κ|κ〉

(129)

= 1 + 2 + 1 + 1 + 2 + 1
2 · 8 = 1

2 (130)

Similarly

|κ−〉 = 1
2(|κ〉 −B|κ〉) (131)

= 1√
2

(
ω|000〉+ ω7|010〉+

√
2|011〉+

√
2|100〉+ ω|101〉+ ω7|111〉

)
(132)

Pr(−1) = 1 + 1 + 2 + 2 + 1 + 1
2 · 8 = 1

2 (133)

The state |κ+〉 cannot be represented as the codespace of an XP code because:

• The size of the Z-support ZSupp(|κ+〉) is not a power of 2,

• The coefficients of the computational basis elements have different moduli,

• It is not possible to find a set of diagonal XP operators S+
Z where the Z-support of the

simultaneous +1 eigenspace of the S+
Z is equal to ZSupp(|κ+〉).

7.5 Measurement in the XP Formalism - Summary of Results
We have demonstrated that it is not in general possible to efficiently simulate measurement of XP
operators in the XP formalism, apart from the special case of measuring diagonal Pauli operators.
Firstly, measurement of an XP operator on an XP code may result in a state which cannot be
described as an XP codespace. We have seen two examples which illustrate this. Secondly, calcu-
lating outcome probabilities when measuring a series of diagonal operators requires us to determine
the simultaneous +1 eigenspace of these operators. This is known to be an NP-complete problem
when the operators are of precision 4.

Hence, there appears to be no obvious generalisation of the Gottesman-Knill theorem to XP
codes. This suggests that XP codes can describe states which display computationally complex,
non-classically simulable behaviour.

8 Discussion and Open Questions
In this paper, we have set out the foundations for the XP formalism. We have formulated XP
versions of many of the algorithms available in the Pauli stabiliser formalism - for instance de-
termining a basis for the codespace, generators for the logical operator group and simulating the

41

measurement of diagonal Pauli operators. The computational complexity of these algorithms de-
pends on the precision N of the XP code, and certain edge cases have exponential complexity. We
have given examples of XP operators which cannot be measured within the formalism or where
estimating outcome probabilities is NP-complete. Hence, there appears to be no obvious general-
isation of the Gottesman-Knill theorem to XP codes. XP codes are on the boundary of what is
classically simulable, and so there are good reasons to believe that XP codes allow us to engineer
states which exhibit useful, non-classically simulable behaviour.

The rich logical operator structure of XP codes may make them useful for applications such
as magic state distillation, which requires codes with non-Clifford logical operators. In Ref. [22],
the authors showed that triorthogonal CSS codes have optimal error correction parameters for
Pauli stabiliser codes with a transversal logical T operator. We note that this result only applies
to XP codes of precision 2, and in particular does not apply to non-XP-regular codes. XP codes
with transversal logical non-Clifford operations (for instance T or CCZ gates) could be used for
fault-tolerant preparation of magic states. We have focused so far on XP codes where the precision
is a power of 2. Where the precision is not a power of 2, XP codes may have logical operators
which are outside the Clifford hierarchy.

We have described the states and phase functions which arise within the XP formalism. As
part of this, we have shown that two important classes of states, hypergraph and weighted graph
states, can be represented as XP stabiliser states. Hence, we can use the algorithms presented in
this paper to analyse these. One of the main benefits of looking at them as XP stabiliser codes is
that we can very easily determine the symmetries of the states as these are just the elements of
the logical identity group. In Figure 3 and the the linked Jupyter notebook, we illustrate how the
algorithms in this paper make it easy to determine the Z2 symmetries of the Union Jack state of
Ref. [17].

(a) Stabiliser Generators for Union Jack State: Using the
techniques in this paper, we can represent the Union Jack
State as an XP code. This makes it easier to study the
Z2 symmetries of the state. In this figure, we illustrate a
sample set of stabiliser generators for the XP code. There
are qubits on each vertex and each edge of the cellulation.
The different coloured dots represent the application of
operators for the stabiliser generator as follows. Grey: X;
yellow Z; red S; blue: S3.

(b) Onsite Symmetry for Union Jack State: By multi-
plying together all non-diagonal stabiliser generators, we
find an onsite symmetry which is preserved apart from a
phase component on certain qubits on the boundary. This
is indicative of symmetry protected topological order. In
the linked Jupyter notebook, we show that there are 3 on-
site symmetries for the Union Jack state on a square plane
with open boundary, two of which are are preserved on the
lattice and one which is not.

Figure 3: Finding Z2 Symmetries of the Union Jack state by representing it as an XP code.

In the Pauli and qudit stabiliser formalisms, operators commute up to a phase. In the XP
stabiliser formalism, operators commute up to a diagonal operator. This suggests that non-Abelian
anyon models arise naturally in the XP formalism, and the existence of such codes in the XS
stabiliser formalism had already been established in Ref. [18]. Such models may be useful in
achieving fault-tolerant quantum computation [16] as well as understanding physical phenomena
such as the fractional Quantum Hall Effect [24]. In Ref. [10], the authors showed that all twisted
quantum doubles (TQDs) with Abelian anyons can be represented as qudit stabiliser codes. It
would be interesting to see if there is a similar result for non-Abelian TQDs represented as XP

42

https://github.com/m-webster/XPFpackage/blob/main/Examples/8.1_union_jack_symmetries.ipynb
https://github.com/m-webster/XPFpackage/blob/main/Examples/8.1_union_jack_symmetries.ipynb

codes. You can explore the logical operator structure of various topological codes, including Twisted
Quantum Doubles, in the linked Jupyter notebook.

One of the most exciting implications of this work is that no-go theorems which apply to Pauli
stabiliser codes and commuting stabiliser codes do not necessarily apply to XP codes. Such results
exist, for instance, in the area of self-correcting quantum memories (Ref. [4] on page 23). Rather
than rely on active error correction, a self-correcting quantum memory is a system where large
scale errors would be suppressed by a macroscopic energy barrier. As XP codes involve stabilisers
which are not Paulis and which may not commute, they are worth investigating for potential use
as self-correcting memories.

Acknowledgements
This research was supported by the Australian Research Council via the Centre of Excellence in
Engineered Quantum Systems (EQUS) project number CE170100009. BJB also received support
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 897158. Mark Webster was supported by the Sydney
Quantum Academy, Sydney, NSW, Australia. We would also like to thank Paul Webster who
reviewed early drafts of this paper and provided valuable feedback.

A Linear Algebra over Rings
Most readers will be familiar with linear algebra techniques for vector spaces over a field - for
instance, solving linear equations or finding a basis of a subspace. In this paper, we work with
vectors over ZN , which is a ring in general rather than a field. Linear algebra over rings is not
covered in standard linear algebra textbooks, so we give an introduction here (for more background,
see Refs. [25] and [5]).

We start with basic concepts from ring theory in Section A.1. We then consider the row span of
a matrix over a ring. For vector spaces, we can calculate the Reduced Row Echelon Form (RREF)
of a matrix and this gives us a basis for the subspace spanned by the rows of the matrix. In
Section A.2, we introduce the Howell matrix form which is a generalisation of the RREF for rings.
Calculation of the Howell basis is central to many of the algorithms in this paper.

We show how to solve linear equations modulo N in Section A.3 and how to find the intersection
of spans in Section A.4. These techniques are used when calculating the logical operators of XP
codes.

A.1 Ring Concepts
A ring R is a set of elements with addition and multiplication binary operations. Elements of a
ring are not guaranteed to have multiplicative inverses. Elements which do have inverses are called
units. In contrast, a zero divisor is an element a 6= 0 where ab = 0 for some b 6= 0.

We define an equivalence relation such that a ∼ b ⇐⇒ a = ub for some unit u (or a is an
associate of b). For each element a of ZN , we can calculate a minimal associate ma := GCD(N, a).
We can show that a ∼ b ⇐⇒ ma = mb.

Example A.1 (Ring Definitions for Z8)
Using the ring Z8 as an example:

1. The units are: {1, 3, 5, 7}.

2. The zero divisors are: {2, 4, 6}

3. The minimal associates are:

a 0 1 2 3 4 5 6 7
ma 0 1 2 1 4 1 2 1 (134)

Notice that ma = 1 if and only if a is a unit.

43

https://github.com/m-webster/XPFpackage/blob/main/Examples/8.2_topological_codes.ipynb

A.2 Spans of Matrices and the Howell Matrix Form
We can define the span of a matrix B ∈ Rm×n with rows bi over a ring R as:

SpanR(B) := {
∑
i

aibi : ai ∈ R} = {aB : a ∈ Rm} ⊆ Rn (135)

Spans over rings can be considered subgroups of Rn under component-wise addition over R (i.e.
SpanR(B) = 〈B〉(R,+) ≤ Rn = 〈I〉(R,+)).

Where R is a field (e.g. R = Zq where q is prime), the RREF gives us a basis of the span and
two matrices have the same span if and only if they have the same RREF. The Howell form plays
an analogous role for spans over rings.

The Howell matrix form or Howell basis of B ∈ Rm×n over a ring R, denoted HowR(B), is an
n× n matrix of form:

HowR(B) =


a ∗ · ∗ ·

b ∗ ·

c

 (136)

The entries of HowR(B) are subject to the following constraints:

• Diagonal entries (marked a, b, c above) are minimal associates in ZN .

• If the diagonal entry is zero, the whole row is zero

• Entries below the diagonal entries are zero

• Entries above the diagonal entries are strictly less than the diagonal entry (marked · above),
unless the diagonal entry is 0 in which case they are unrestricted (marked ∗ above).

The Howell matrix is the unique matrix of the above form which has the Howell property. Let Si
be the subset of SpanR(B) where the first i entries are zero. The n× n matrix H has the Howell
property if Si is the span of the last n− i rows of H. Two matrices have the same span over R if
and only if they have the same Howell matrix. Methods of constructing the Howell matrix form
of a given matrix are set out in Refs. [15], [25] and [5], and we use a simplified more intuitive
algorithm in the XPF package. You can view examples of calculating the Howell matrix form in
the linked Jupyter notebook.

Where R is a field, HowR(B) = RREFR(B). In the special case of binary matrices (i.e. where
R = Z2), the RREF has a particular form. In particular, for any leading index l the entries in
column l are strictly less than 1 and hence are zero. This fact is useful when determining the
special form of orbit representatives (see Section 4.3.2).

A.3 Solving Linear Equations over Rings
In this section, we show how to solve linear equations over rings using the Howell matrix form.
Given the matrix A ∈ Rm×n and a constant vector c ∈ Rm, we wish to solve for the vector x ∈ Rn
in the linear equation:

xAT + c = 0 (137)

We calculate the Howell form of the transpose AT so that:

T := HowR(AT) = SAT (138)

where T ∈ Rm×m and S ∈ Rm×n. As part of this calculation, we also obtain the Howell basis K
for KerR(A) such that KAT = 0. We can solve Eq. (137) if c ∈ SpanR(T) so that for some vector
v ∈ R1×m:

c = vT (139)

44

https://github.com/m-webster/XPFpackage/blob/main/Examples/A.1_howell_matrix.ipynb

In this case, the solutions for x are given by:

x = −vS + aK (140)

where a ranges over all values of Rn. That x is a solution to Eq. (137) can easily be verified
by substitution. We can also write the solution set as an affine span x ∈ −vS + SpanR(K) (see
Eq. (141) below).

A.4 Intersections of Spans and Affine Spans
When calculating the codewords (Chapter 4) and logical operators (Chapter 6) of an XP code,
we work with affine spans which can be identified with cosets of row spans. To find the logical X
operators, we need to determine the intersection of affine spans (see Section E.2.3). In this section,
we explain how to compute the intersection of two affine spans and introduce the residue function
which identifies which coset a vector belongs to.

A.4.1 Affine Span Definition

Given an offset a ∈ Rn and a matrix B ∈ Rr×n, the affine span is defined as:

a + SpanR(B) := {a + b : b ∈ SpanR(B)} (141)

Because SpanR(B) is a subgroup of Rn, we can also consider affine spans to be cosets (i.e. a +
SpanR(B) = a + 〈B〉(R,+)). The residue function identifies the coset of a vector and can be used
to determine if two vectors are in the same affine span. The residue function is defined as:

m = ResR(B,a), where:
(

1 m
0 B

)
= HowR

(
1 a
0 B

)
(142)

A vector is in a span if and only if its residue is zero - i.e. a ∈ SpanR(B) ⇐⇒ ResR(B,a) = 0.
Vectors are in the same coset if and only their residues are the same - i.e. a + SpanR(B) =
b + SpanR(B) ⇐⇒ ResR(B,a) = ResR(B,b).

A.4.2 Algorithm for Intersection of Spans

Given two matrices A ∈ Rr×n and B ∈ Rs×n, we can find the intersection of the respective spans
(SpanR(A) ∩ SpanR(B)) as follows:

1. Form the (r + s)× n matrix C =
(
A
B

)
2. Calculate the Howell basis

(
KA KB

)
of Ker(CT) whereKA is (r+s)×r andKB is (r+s)×s

so that KAA+KBB = 0.

3. Let D = KAA = −KBB.

4. The intersection is SpanR(A) ∩ SpanR(B) = SpanR(HowR(D))

A.4.3 Algorithm for Intersection of Affine Spans

The intersection of two affine spans is either empty or an affine span. Assume we are given two
affine spans a + SpanR(A) and b + SpanR(B). There exists a vector c in the intersection if and
only if we can find vectors u ∈ Rr and v ∈ Rs such that:

c = a + uA = b + vB (143)

This is possible only when a − b ∈ SpanR(A) ∪ SpanR(B) which is true if and only if:

HowR

1 a − b
0 A
0 B

 =

1 0
0 A
0 B

 (144)

In this case, we set c = (b + ResR(A,a − b) and the intersection is given by:

(a + SpanR(A) ∩ (b + SpanR(B)) = c + SpanR(A) ∩ SpanR(B) (145)

45

B Canonical Generator Algorithm - Proof of Result
In this appendix, we provide a proof of Proposition 4.1. This is an important result which states
that we can calculate a set of canonical generators of unique form for any XP group. This allows
us to determine whether two sets of XP operators generate the same group and also identify a set
of generators for the diagonal subgroup. The proof of the proposition is constructive and relies on
the following algorithm:

Canonical Generator Algorithm
The algorithm for producing the canonical generators from an arbitrary set of XP operators G is:

1. Simplify X Components: let GX be the binary matrix whose rows are the X components of
the operators in G. We can put GX into RREF by using row operations over Z2. These
row operations correspond to group operations between elements of G and we update G
accordingly.

2. Split G into diagonal and non-diagonal operators: let SX be the non-diagonal operators and
SZ be the diagonal operators.

3. Add squares and commutators of SX : squares and commutators of operators in SX are
diagonal - add these to SZ .

4. Add commutators between SZ and SX : add to SZ all possible commutators between elements
of SZ and elements of SX . Where N = 2t is a power of 2, we do this step t− 1 times.

5. Simplify SZ : Let SZp be matrix whose rows are the image of SZ under the Zp map of
Section 3.4 - i.e. Zp(XPN (p|0|z)) = (2z|p) . The final set of diagonal generators are the XP
operators corresponding to the rows of HZp := HowZ2N

(SZp) i.e. SZ = Zp−1(HZp).

6. Simplify Z Components of SX : Let A = XPN (p|x|z) ∈ SX and let
(2z′|p′) = ResZ2N

(HZp, (2z|p)) (see Eq. (142)). Replace A with A′ = XP (p′|x|z′).

We restate Proposition 4.1 here for clarity:

Proposition 4.1 (Canonical Generators of an XP Group)
For any set of XP Operators G = {G1, . . . , Gm}, there exists a unique set of diagonal operators
SZ := {Bj : 0 ≤ j < s} and non-diagonal operators SX := {Ai : 0 ≤ i < r} with the following
form:

1. Let SX be the binary matrix formed from the X-components of the SX . SX is in Reduced
Row Echelon Form (RREF).

2. Let SZp be matrix whose rows are the image of SZ under the Zp map of Section 3.4 (i.e.
Zp(XPN (p|0|z)) = (2z|p)). The matrix SZp is in Howell Matrix Form (see Appendix A).

3. For XPN (p|x|z) ∈ SX ,
(

1 (2z|p)
0 SZp

)
is in Howell Matrix Form.

The following properties hold for the canonical generators:

Property 1: All group elements G ∈ 〈G〉 can be expressed in the generator product form of
Eq. (25) G = Sa

XSb
Z where a ∈ Z|SX |

2 , b ∈ Z|SZ |
N , Sa

X =
∏

0≤i<|SX |A
a[i]
i and Sb

Z =
∏

0≤j<|SZ |B
b[j]
j

Property 2: Two sets of XP operators of precision N generate the same group if and only if
they have the same canonical generators.

Proof. Steps 1-2 of the algorithm create a list of non-diagonal operators SX whose X-components
are in RREF, plus diagonal operators SZ . We claim that after these operations, 〈SX ,SZ〉 = 〈G〉.
Over Z2, the row operations to convert the matrix GX into RREF involve either:

46

1. Swapping the order of rows; or

2. Adding rows i.e. r′i = (ri + rj) mod 2

The row operations can be translated into group operations on G as follows:

1. Swapping the order of generators; or

2. Replacing a generator by a product of generators i.e. G′i = GiGj .

For case 2, we need to check if Gi is still in the group after the row operations. Because Gj is
unchanged, G−1

j remains in the group so we have Gi = (GiGj)G−1
j = G′iG

−1
j .

Steps 3-4 of the algorithm ensure that all possible squares and commutators of the generators
are added to the list of diagonal operators SZ . Now we show that where N = 2t, that t− 1 rounds
of adding commutators is sufficient. When we calculate the commutator of operators A1, A2, the
resulting degree (see Section 3.5) is at most half the degrees of A1, A2: recall the COMM rule of
Section 3.3:

A1A2A
−1
1 A−1

2 = DN (2x1z2 − 2x2z1 + 4x1x2z1 − 4x1x2z2) (146)

As X2 = PN = I, the maximum degree of a precision N operator is N = 2t. Hence, after t − 1
rounds of taking commutators, a further round of commutators yields operators of degree 1 (i.e.
phase multiples of I). Note that all of the operators added to SZ are in 〈G〉 so there is no change
to 〈SX ,SZ〉 in this step.

Step 5 ensures that SZp, the matrix formed from the phase and Z-components of SZ under
the Zp map is in Howell matrix form. In Section 3.4, we showed that the Zp map is a group
homomorphism so group generators in Zn+1

2N , i.e. the rows of the Howell matrix, correspond to
diagonal group generators in XPN,n, i.e. SZ so there is no change to the group generated by SZ
in this step.

In Step 6, the residue function of Eq. (142) ensures that the Z-components of the non-diagonal
canonical generators are of the correct form. The adjustment corresponds to multiplication of
elements in 〈SZ〉 so we are assured that the final set of generators meets the invariant 〈G〉 =
〈SX ,SZ〉.

To prove Property 1, we need to show that any element G ∈ 〈G〉 can be expressed n the
generator product form of Eq. (25) G = Sa

XSb
Z . We have already shown that 〈G〉 = 〈SX ,SZ〉.

Hence, we can write G as a string of operators from SX ,SZ . Now assume we have a diagonal
operator B ∈ SZ which occurs immediately before a non-diagonal operator A ∈ SX . We can write:

BA = AB(B−1A−1BA) (147)

The commutator B−1A−1BA ∈ 〈SZ〉, so we can always move diagonal operators to the right of
non-diagonal operators.

Now assume we have two non-diagonal operators Aj , Ai ∈ SX which occur immediately next
to each other in the string, but out of order (i.e. i < j). We can move Aj to the right of Ai by
using commutators as follows:

AjAi = AiAj(A−1
j A−1

i AjAi) (148)

The commutator (A−1
j A−1

i AjAi) ∈ 〈SZ〉, so we can ensure Ai, Aj occur in the correct order with
a diagonal operator to the right.

Reordering the non-diagonal operators may result in squares or higher powers of non-diagonal
operators arising in the string. As A2 ∈ 〈SZ〉 for any A ∈ SX , any power of A can be written as
Aq = AB for q odd or Aq = B for some B ∈ 〈SZ〉. Hence, G can be written with powers of A in
Z2. Accordingly, any G ∈ 〈G〉 can be written as a string of the form in Property 1.

To establish Property 2, note that the Howell matrix form and RREF are unique. Thus, for
any operators which generate the same group, the canonical form will be the same.

47

C Coset and Orbit Structure of Codewords
In Chapter 4, we gave an algorithm for generating the codewords by applying the orbit operator
to the orbit representatives. In this appendix, we provide proofs underlying the algorithm. The
results in this appendix assume we have the canonical generators SX and SZ (see Section 4.1) and
the set of binary vectors E, which is the Z-support of the simultaneous +1 eigenspace of SZ (see
Section 4.2.2). Our aim is to calculate a basis of the codespace stabilised by SX ,SZ .

In Proposition C.1, we show that the image under the orbit operator of any |e〉 where e ∈ E is
stabilised by SX ,SZ . Let SX be the binary matrix formed from the X-components of the SX and
Em = {ResZ2(SX , e) : e ∈ E} be the orbit representatives. In Proposition C.2, we show that E is
closed under addition by elements of the span 〈SX〉. In Proposition C.3, we show that the cosets
mi + 〈SX〉,mi ∈ Em partition E. In Proposition C.4, we show that the image of Em under the
orbit operator forms a basis of the codespace. Finally, we show that the orbit representatives have
a unique form, which is used in the graph search algorithm of Section 4.3.2.

Proposition C.1 (Codewords as Orbits)
Given canonical generators for a code SX and SZ , let E = {e : e ∈ Zn2 , B|e〉 = |e〉,∀B ∈ 〈SZ〉} be
the Z-support of the simultaneous +1 eigenspace of SZ .

Then OSX
|e〉 is stabilised by all elements of 〈SX ,SZ〉, for any |e〉 ∈ E.

Proof. It is sufficient to prove this for the generators Ai ∈ SX and Bj ∈ SZ . Let Bj ∈ SZ be a
diagonal generator. Then we have:

BjOSX
|e〉 =

∑
v∈Zr

2

BjSv
X |e〉 (149)

=
∑

v∈Zr
2

Sv
XDv|e〉 for Dv = (Sv

X)−1BjSv
X (150)

=
∑

v∈Zr
2

Sv
X |e〉 because Dv is diagonal, Dv ∈ 〈SZ〉 and so Dv|e〉 = |e〉 (151)

= OSX
|e〉 (152)

Let Ai ∈ SX be a non-diagonal operator.

AiOSX
|e〉 =

∑
v∈Zr

2

AiSv
X |e〉 (153)

We can move Ai to the right by applying commutators. We can then move the commutators to
the right. Let i be the length r binary vector which is all zero, apart from component i which is 1
and let v′ = v⊕ i. As all commutators are diagonal and so are in 〈SZ〉, we can write:

AiOSX
|e〉 =

∑
v∈Zr

2

Sv′
XDv|e〉, ∃Dv ∈ 〈SZ〉 (154)

=
∑

v′∈Zr
2

Sv′
X |e〉 since Dv|e〉 = |e〉 (155)

= OSX
|e〉 (156)

Proposition C.2 (E closed under addition by 〈SX〉)
If e ∈ E, then e⊕ x ∈ E for all x ∈ 〈SX〉.

Proof. Let x := uSX mod 2 ∈ 〈SX〉 and C := Su
X . Then C|e〉 = ωp|e⊕ x〉 for some p ∈ Z2N . Let

B ∈ SZ and D = B−1C−1BC ∈ 〈SZ〉. Then because B,D ∈ 〈SZ〉, BD|e〉 = |e〉 and so:

B(C|e〉) = CBD|e〉 = C|e〉 (157)

Hence, C|e〉 = ωp|e⊕ x〉 is in the simultaneous +1 eigenspace of the SZ and so e⊕ x ∈ E.

48

Proposition C.3 (Cosets of Em partition E)
The cosets mi + 〈SX〉 partition E i.e.:

E =
⋃
i

(mi + 〈SX〉) (158)

(mi + 〈SX〉) ∩ (mj + 〈SX〉) = ∅,∀j 6= i (159)

Proof. By Proposition C.2, for all mi ∈ Em,mi + 〈SX〉 ⊂ E hence
⋃
i(mi + 〈SX〉) ⊂ E. But by

the definition of orbit representatives for any e ∈ E we can calculate ResZ2(SX , e) ∈ Em hence
e ∈mi + 〈SX〉 for some mi ∈ Em.

The fact that cosets of a subgroup partition the group is a well-known result from group theory.
Hence if (mi + 〈SX〉) ∩ (mj + 〈SX〉) 6= ∅ then mi ∈ mj + 〈SX〉. But then because the RREF is
unique mi = Res(SX ,mi) = mj so i = j.

Proposition C.4 (The |κi〉 are a basis of C)
Let |κi〉 = OSX

|mi〉,mi ∈ Em. The |κi〉 are a basis of the codespace C stabilised by the canonical
generators SX ,SZ .
Proof. First, we show that the |κi〉 are independent. The Z-support of the codeword |κi〉 is the
coset ZSupp(|κi〉) = mi+〈SX〉 and so by Proposition C.3 the Z-support of the codewords partition
E. Hence |κi〉 are independent.

Next, we show that the |κi〉 span the codespace C. Let |ψ〉 ∈ C. Then |ψ〉 is stabilised by all
elements B ∈ SZ . Let e ∈ ZSupp(|ψ〉) then because B is diagonal, B|e〉 = ωp|e〉,∃p ∈ Z2N and
this implies B|e〉 = |e〉,∀e ∈ ZSupp(|ψ〉). Hence ZSupp(|ψ〉) ⊂ E.

Now let λi be the coefficients of |mi〉 in |ψ〉 so that:

λi = 〈mi|ψ〉 ∈ C,mi ∈ Em. (160)

For e ∈ ZSupp(|ψ〉), we now show that the coefficient 〈e|ψ〉 is determined by the λi. Because
e ∈ E, there exists unique i,u ∈ Zr2 such that e = (mi + uSX). The operator Su

X ∈ 〈SX〉 and
so Su

X |ψ〉 = |ψ〉. The action of Su
X on |mi〉 is given by Su

X |mi〉 = ωp|e〉,∃p ∈ Z2N . Hence the
coefficient of |e〉 in |ψ〉 is given by 〈e|ψ〉 = λiω

p = λi〈e|κi〉. Hence:

|ψ〉 =
∑
i

λi|κi〉 (161)

Hence any |ψ〉 ∈ C can be written as a linear combination of the |κi〉 and the result follows.

The orbit representatives have a form which is unique for each coset, which proves useful in the
graph search algorithm of Section 4.3.2.

Proposition C.5
Let SX be an r × n binary matrix in RREF. Let e be a binary vector of length n and let m =
ResZ2(SX , e). Then m is the unique element of the coset e+〈SX〉 for which m[l] = 0 for all leading
indices l of SX .
Proof. We first show that m[l] = 0 for all leading indices l of SX . By the definition in Eq. (142),

the matrix
(

1 m
0 SX

)
is a binary matrix in Howell form. Hence, the entries above the leading

indices are strictly less than 1 and so are zero. Therefore m[l] = 0 for all leading indices l.
Now we show the uniqueness of the property. Assume there exists some binary vector a in the

coset with a[l] = 0 for all leading indices l. Then b = a⊕m is a vector in 〈SX〉 such that b[l] = 0
for all leading indices l of SX . The only member of 〈SX〉 with this property is 0 hence a = m.

D Proof of Results: Classification of XP Stabiliser States
In this appendix, we provide detailed proofs of the results in Chapter 5. In Section D.1, we set out
some basic results which are useful for working with integer and binary vectors. In Section D.2, we
prove Proposition 5.1 regarding the form of the phase function of an XP stabiliser state. Finally in
Section D.3, prove that the algorithm for representing weighted hypergraph states as XP stabiliser
states gives the correct result.

49

D.1 Operations on Binary and Integer Vectors
The results in Chapter 5 involve operations on binary and integer vectors. This section sets out
some basic results for these types of vectors. We use component wise addition and multiplication
of vectors and a dot product of vectors over the integers. Given two vectors a,b ∈ Zn the dot
product is defined as:

a · b =
∑

0≤i<n
a[i]b[i] =

∑
0≤i<n

(ab)[i] (162)

Hence, the dot product is the sum of the entries of the component wise product of two vectors.
Accordingly, we can write the following rule for dot product over the component wise product:

a · bc =
∑

0≤i<n
(a(bc))[i] =

∑
0≤i<n

((ab)c)[i] = ab · c (163)

We also have a distributive rule for dot product over component wise addition:

a · (b + c) = a · b + a · c (164)

The usual rule for scalar products also applies - for u ∈ Z:

a · (ub) = u(a · b) = (ua) · b (165)

The weight of a binary vector can also be thought of as a dot product. Let 1 be the all 1 vector
of length n. Considering the binary vector a a vector of zeros and ones in Zn:

wt(a) = 1 · a (166)

We can look at component wise multiplication and addition modulo 2 of binary vectors in terms
of the effect on the support of the vectors. The support of the component wise product of binary
vectors is the intersection of the supports:

supp(ab) = supp(a) ∩ supp(b). (167)

The support of the addition of binary vectors modulo 2 is the symmetric difference of the supports:

supp(a ⊕ b) = (supp(a) ∪ supp(b)) \ (supp(a) ∩ supp(b)). (168)

We often apply the following identity for binary vectors:

a ⊕ b = a + b− 2ab (169)

where operations on the RHS are over the integers. This generalises to the following identity for
binary vectors xj , j ∈ [0 . . . r − 1] of length n:⊕

0≤i<r
xi =

∑
s⊂[0...r−1]

(−2)|s|−1
∏
j∈s

xj (170)

D.2 Phase Functions of XP Stabiliser States
In this section, we prove Proposition 5.1 which classifies the form of the phase functions of XP
stabiliser states.

Proposition 5.1 [Phase Functions of XP States] Let |φ〉 = OSX
|m〉 =

∑
u∈Zr

2
Su
X |m〉 be an XP

stabiliser state in the canonical form of Eq. (50) with r := |SX |. Let ui, 0 ≤ i < r be binary
variables such that ui := u[i]. Then:

(a) The phase function is of the following form for some vector q ∈ Z2r

indexed by the subsets
s of [0 . . . r − 1]:

f(u0, u1, . . . , ur−1) =
∑

s⊂[0...r−1]

q[s]2|s|−1
∏
j∈s

uj . (171)

50

(b) For N = 2t, the maximum degree of the phase function is t+ 1.

Proof. Let SX = {XPN (pi|xi|zi)} and let si :=
⊕

i<j<r ujxj . Using Eq. (170) and the dot product
results of Section D.1, the phase component of Su

X |m〉 can be written as follows:

q =
∑

0≤i<r

[
uipi + 2uizi · (m⊕ si)

]
(172)

=
∑

0≤i<r

[
uipi + 2uizi · (m + si − 2msi)

]
(173)

=
∑

0≤i<r

[
ui(pi + 2zi ·m) + 2uizi(1− 2m) · si

]
(174)

=
∑

0≤i<r
(pi + 2zi ·m)ui +

∑
0≤i<r

c⊂[i+1···r−1]

2uizi(1− 2m) · (−2)|c|−1
∏
j∈c

ujxj (175)

=
∑

0≤i<r
(pi + 2zi ·m)ui +

∑
0≤i<r

c⊂[i+1···r−1]

[
(−1)|c|−1zi(1− 2m) ·

∏
j∈c

xj
]
2|c|ui

∏
j∈c

uj (176)

The first term in the above equation is linear in ui and setting s := c∪{i}, the second term is also
of the required form so part (a) follows.

Now let N be a power of 2 such that N = 2t. As ω2N = ω2t+1 = 1, any terms in the phase
function with degree d − 1 ≥ t + 1 or d > t + 1 have coefficients which are multiples of 2N and
hence generate trivial phases. Hence, the maximum degree of the phase function is t+ 1 and part
(b) follows.

D.3 Representing Weighted Hypergraph States as XP Stabiliser States
In this section, we show that the algorithm of Section 5.4 for representing weighted hypergraph
states as XP stabiliser states produces the required results. The embedding operator of Eq. (57) is
defined in terms of Mr

m, which is the binary matrix whose columns are the bit strings of length r
of weight between 1 and m inclusive. This construction is similar to that used in classical simplex
codes and Reed-Muller codes [3].

In the following proposition, we break Mr
r into blocks W r

k where the columns all have weight
k and calculate the weight of the product of t rows of W r

k .

Proposition D.1 (Weight of Vector Products)
LetW r

k be a matrix whose columns are the bit strings of length r with weight k. Let pt =
∏

0≤i<t xi
be the product of the first t rows of W r

k where t ≤ r. Then:

wt(pt) =
{

0 : t > k(
r−t
k−t
)

: t ≤ k
(177)

Proof. We can think of wt(
∏

0≤i<t xi) as the number of columns u ofW r
k such that

∏
0≤i<t u[i] = 1.

If t > k then
∏

0≤i<t u[i] = 0 for all columns because wt(u) = k < t and the product includes at
least one zero.

If t ≤ k then the first t entries in u must all be one, implying that the last r − t entries of u
must include k − t values of 1. There are

(
r−t
k−t
)
ways of constructing bit strings of weight k which

have the first t entries equal to 1.

We now consider dot products with the alternating vector a of Eq. (58) which is 1 when the
weight of the corresponding column of Mr

r is even and −1 when the weight is odd. The vector a
will be used to construct the Z-component of the non-diagonal stabilisers of the XP code.

Proposition D.2 (Dot Product with Alternating Vector)
Let xi be the ith row of Mr

r and let pt =
∏

0≤j<t xi for 1 ≤ t ≤ r. Let a be the vector such that
a[j] = (−1)wt(uj) where uj is the jth column of Mr

r . Then a ·pt = (−1)r if t = r and 0 otherwise.

51

Proof. From Proposition D.1:

a · pi =
∑
t≤k≤r

(−1)k
(
r − t
k − t

)
(178)

=
∑

0≤j≤r−t
(−1)t+j

(
r − t
j

)
. (179)

If t = r then a · pi = (−1)r. If t < r then a · pi = (−1)t(1− 1)r−t = 0.

We now show that the alternating vector a allows us to construct an XP stabiliser state which
has a phase function corresponding to a generalised controlled phase operator.

Proposition D.3 (Weighted Hypergraph States)
Let xi be the ith row of Mr

r and let Ai = XPN (0|xi|axi) for N > 2r and SX = {Ai : 0 ≤ i < r}
and a as defined in Eq. (58). Let ui be the variable representing the value of u[i] for the binary
vector u of length r. Then:

(a) The operators Ai, Aj commute; and

(b) The phase component of Su
X |0〉 is p = 2r−1∏

0≤i<r ui.

Proof. (a) Using the COMM rule of Table 4, the group commutator of Ai and Aj is:

AiAjA
−1
i A−1

j = D(2xizj − 2xjzi + 4xixjzi − 4xixjzj) (180)
= D(2xiaxj − 2xjaxi + 4xixjaxi − 4xixjaxj) (181)
= D(2axixj − 2axixj + 4axixj − 4axixj) (182)
= D(0) = I (183)

(b) Applying Eq. (176) and noting that the phase components of the Ai are all trivial, the
phase component of Su

X |0〉 is:

p =
∑

0≤i<r−1
s⊂[i+1...r−1]

2|s|(−1)|s|+1
(

axi · (
∏
j∈s

xj)
)
ui
∏
j∈s

uj (184)

=
∑

s⊂[0...r−1]

2|s|−1(−1)|s|a · (
∏
j∈s

xj)
∏
j∈s

uj . (185)

Applying Proposition D.2, a · (
∏
j∈s xj) = 0 if |s| < r and (−1)r otherwise. Hence, p =

2r−1∏
0≤j<r uj as required.

We now show how to optimise the embedding operator to reduce the number of qubits required
to represent the action of generalised controlled phase operators CP (p/q,v) where p/q = 1/2:

Proposition D.4 (Weighted Hypergraph States - Optimised Version)
Let the state |ψ〉, the precision N , the variables ui and the operators Ai be as defined in Proposition
D.3. Let C := XPN (0|0|a) where a is the alternating vector as defined in Eq. (58). LetBi = AiC

−1

and SX = {Bi : 0 ≤ i < r}. Then:

(a) The group commutator of the operators Bi, Bj fixes elements of the Z-support of |ψ〉; and

(b) The phase component of Su
X |0〉 is p = 2r−1∏

0≤i<r ui.

Proof. Calculating the group commutator between two of the elements of SX :

BiBjB
−1
i B−1

j = DN (2xizj − 2xjzi + 4xixjzi − 4xixjzj) (186)
= DN (2a(xi(xj − 1)− xj(xi − 1) + 2xixj(xi − 1)− 2xixj(xj − 1)) (187)
= DN (2a(xixj − xi − xixj + xj + 2xixj − 2xixj − 2xixj + 2xixj)) (188)
= DN (2a(xj − xi)) = XPN (2a · (xj − xi)|0|2a(xi − xj)) (189)

52

We now show that D(2a(xj −xi)) fixes all elements of the Z-support of |ψ〉. Let eu := uSX + m ∈
ZSupp(|ψ〉). Then using the notation of Proposition 5.1 and Eq. (170), the phase applied by
DN (2a(xj − xi)) to |eu〉 can be written

q = 2a · (xj − xi) + 4a(xi − xj) ·
[⊕

0≤k<r
ukxk

]
(190)

= 2a · (xj − xi) + 4a(xi − xj) ·
[∑
s⊂[0...r−1]

(−2)|s|−1
∏
k∈s

ukxk
]

(191)

= 2a · (xj − xi) + a ·
[∑
s⊂[0...r−1]

(−2)|s|+1(xi − xj)
∏
k∈s

ukxk
]

(192)

By Proposition D.2, if r > 1 then a·xj = a·xj = 0. Similarly, if |s∪{i}| < r then a·xi
∏
k∈s xk = 0.

If |s∪ {i}| = r, then a factor of 2r = 0 mod 2N always occurs - hence the operator applies a trivial
phase and part (a) follows.

Due to Proposition D.2, we can multiply the generators Ai by powers of C without changing
the phase function of the state |ψ〉, so part (b) follows.

We now show how to apply Proposition D.4 to reduce the number of qubits required to represent
|φ〉 = CP (1/2,1)|+〉⊗r as an XP stabiliser state. We set N = 2r−1 and let xi be the ith row of
Mr
r . We define the non-diagonal stabiliser generators SX = {Bi} where Bi = XPN (0|xi|a(xi−1))

- these are the same operators as in Proposition D.4. The phase function of |ψ〉 = OSX
|0〉 is

f(u0, . . . , ur−1) = 2r−1∏
0≤i<r ui. This imparts a phase of −1 = ωN when u = 1. Define the

SZ as in Eq. (62). By part (a) of Proposition D.4, the elements of SX commute up to a diagonal
operator which fixes elements of the Z-support of |ψ〉 hence SX ,SZ stabilises |ψ〉.

To extend this method to generalised controlled Z operators of form CP (1/2,v), we need to
ensure that uv 6= v for any other operator CP (p/q,u) involved in the weighted hypergraph state.
Otherwise, we cannot guarantee that the commutators of the operators in SX act trivially on the
Z-support of the embedded state.

E Logical Operators - Proof of Results
In this appendix, we provide proofs for the main results in Chapter 6. We first prove two results
about the properties of logical XP operators. We next show that the algorithms of Sections 6.2
and 6.3 produce valid logical operators, and that they produce all possible operators of XP form.
We then show how to find valid phase and Z components for logical X operators. We then prove
the observations of Example 6.4 regarding Reed-Muller codes. Finally, we prove that the more
efficient algorithms of Section 6.6 work correctly.

E.1 Properties of Logical XP Operators
In this section, we prove two results on the properties of logical XP operators. Given the codewords
|κi〉 of Section 4.4, the first result states that an XP operator is a logical operator if and only if its
action on the codewords can be described in terms of:

• A permutation of the codewords; and

• A phase applied to each codeword

This result is used to prove that the logical operator and logical identity algorithms work correctly.
The second result states that an XP operator is a logical operator if and only if its commutators

with logical identities are logical identities. It is an efficient way in practice to verify if an XP
operator is a logical operator on the codespace.

Proposition E.1 (Action of Logical Operators)
An XP operator A is a logical operator if and only if its action can be described by a permutation
π of the codewords such that π2 = 1 and a vector f ∈ Zdim(C)

2N specifying the phase applied to each
codeword.

53

Proof. Let A = XPN (p|x|z) be an XP operator. Applying the rule in Eq. (20), A acts on compu-
tational basis elements as follows:

A|e〉 = ωp+2e·z|e⊕ x〉 (193)

Hence, the image of a computational basis element under an XP operator cannot be a superposition
of computational basis elements.

Now consider how A acts on the codewords {|κi〉} of Section 4.4. Let Ei be the Z-support of
the codeword |κi〉 and let r be the number of non-diagonal canonical generators (i.e. r = |SX |).
Then |Ei| = 2r and Ei ∩ Ej = ∅ for i 6= j. Hence, the image of a codeword under an XP operator
cannot be a superposition of codewords.

Now assume A is a logical operator and so preserves the codespace C. As A|κi〉 ∈ C for
each codeword and A cannot create superpositions of codewords, then A|κi〉 = ωqi |κj〉 for some
codeword |κj〉 and qi ∈ Z2N . Because the image of the codewords under Amust span the codespace,
A must permute the codewords. The square of any XP operator is diagonal (see Section 3.3) so
the square of the permutation must be 1 and the action of A is as claimed.

In the PSF, any logical operator L on the codespace must commute with the stabiliser gen-
erators. In the XPF, we instead work with the generators M of the logical identity group. The
group commutator of a logical operator L with each element of M must be in the diagonal sub-
group 〈MZ〉. In practice, this gives an efficient test for determining if a given operator is a logical
operator on the codespace.

Proposition E.2 (Commutators Logical Operators and Logical Identities)
Let M be the logical identity generators as in Section 6.2. L is a logical XP operator if and only
if A−1L−1AL ∈ 〈MZ〉,∀A ∈M.

Proof. Assume A ∈M, L is a logical XP operator and {|κi〉} are the codewords of Section 4.4. By
Proposition E.1, there exists a phase vector f and a permutation π such that for all i:

AL|κi〉 = Aωf [i]|κπ(i)〉 = ωf [i]|κπ(i)〉 = ωf [i]A|κπ(i)〉 = LA|κi〉

Hence A−1L−1AL|κi〉 = |κi〉 so A−1L−1AL ∈ IXP. From Section 3.3, we know that group com-
mutators are always diagonal operators, hence A−1L−1AL ∈ 〈MZ〉.

Conversely, assume that A−1L−1AL ∈ 〈MZ〉,∀A ∈ M. This is also true for any A ∈ 〈M〉.
Then for each codeword |κi〉:

A−1L−1AL|κi〉 = |κi〉,∀A ∈ 〈M〉 (194)
A(L|κi〉) = LA|κi〉 = L|κi〉 (195)

Hence L|κi〉 is in the codespace for all |κi〉. Because L is an XP operator L|κi〉 cannot be a
superposition of codewords and so L|κi〉 = ωpi |κj〉 for some pi ∈ Z2N and |κj〉. Because L2 is
diagonal the map π : i 7→ j squares to 1 and hence is a permutation. Therefore we can describe
the action of L as L|κi〉 = ωpi |κπ(i)〉 and so L is a logical XP operator by Proposition E.1.

E.2 Logical Identity and Logical Operator Algorithms
In this section, we prove that the logical identity algorithm of Section 6.2 and the logical operator
algorithm of Section 6.3 yield generating sets of operators. We first consider the algorithms for
diagonal operators, then those for non-diagonal operators. We then show how to find logical X
operators by using the intersection of affine spans algorithm of Section A.4.

E.2.1 Diagonal Operator Algorithms

In this section, we show that the algorithms of Sections 6.3.1 and 6.2.1 produce sets of diagonal
logical generators and diagonal logical identity generators respectively.

Assume we have the codewords in the orbit form of Eq. (35) - i.e. |κi〉 =
∑

0≤j<2r ωpij |eij〉. Let
E be the Z-support of the codewords (see Section 4.2.2). We first look at diagonal logical identity
operators and prove the following proposition:

54

Proposition E.3 (Diagonal Logical Identity Group)
The algorithm in Section 6.2.1 produces a list of diagonal XP operators MZ which generate the
diagonal logical identity XP operators for the codespace.

Proof. The binary matrix EM is the matrix formed by taking (e|1) as rows, where e ∈ E. If
(zk|pk) is a row of the Howell basis KM of Ker(EM), then (zk|pk) · (eij |1) modN = 0. Let Ak :=
XPN (2pk|0|zk) then Ak|e〉 = ω2pk+2e·zk |e〉 = ω2(zk|pk)·(e|1)|e〉 = |e〉. Hence, Ak applies a trivial
phase on each element of E and hence on each codeword. Because KerZN

(EM) = SpanZN
(KM),

the Ak generate all diagonal logical identity operators and so MZ := {Ak}.

We next look at the diagonal logical operators and show the following:

Proposition E.4 (Diagonal Logical Operators)
The algorithm in Section 6.3.1 produces a list of diagonal XP operators LZ which together with
ωI and MZ generate the diagonal logical XP operators for the codespace.

Proof. We define the binary matrix EL used in the logical operator algorithm as follows. For each
eij in Eq. (35), let i be a binary vector of length dim(C) which is all zeros apart from the ith
component which is 1. The vector i is a “codeword index” that tells us which codeword the row
belongs to. Let EL be the matrix formed by taking (eij |i) as rows. Let KL be the Howell basis of
KerZN

(EL) and let (zk|pk) be a row ofKL. Then for all values of i and j, (zk|pk)·(eij |i) modN = 0
and so zk · eij modN = −pk[i] modN .

Now consider how the diagonal XP operator Bk := XPN (0|0|zk) acts on the Z-support of the
codewords:

Bk|eij〉 = ω2eij ·zk |eij〉 = ω−2pk[i]|eij〉 (196)

In other words, the action of Bk is constant on the Z-support of each codeword and so is a logical
operator with phase vector fk = −2pk. The Bk, together with the operator ωI, generate all
possible diagonal logical operators because KerZN

(EL) = SpanZN
(KL).

We now show how to find non-trivial diagonal operators LZ which together with ωI and MZ

generate the same group as the BZ := {Bk} and ωI, reflecting steps 4 and 5 of the algorithm in
Section 6.3.1. Because we include ωI as a generator, we can just consider the space spanned by
the Z components of the operators over ZN . Let MZ and BZ be the matrices whose rows are the
Z-components of the MZ and BZ respectively. For each row zk of BZ we let rk = ResZN

(MZ)
so that zk = (rk + uMZ) modN for some vector u ∈ Z|MZ |

N . Let LZ be the Howell basis of the
matrix with the rk as rows. Then clearly SpanZN

(BZ) = SpanZN
(MZ) + SpanZN

(LZ). Letting
LZ = {XPN (0|0|z) : z ∈ LZ} then we have that 〈ωI,MZ ,LZ〉 = 〈ωI,BZ〉.

E.2.2 Non-diagonal Operator Algorithms

In this section, we show that the algorithms for non-diagonal operators yield valid logical operators
and logical identities respectively. We then show that the operators produced are generating sets for
the respective groups. Assume we have the coset decomposition of the Z-support of the codewords
as in Eq. (89) i.e. E = Eq + 〈SX〉+ 〈LX〉. Recall that the rows of SX are the X-components of the
non-diagonal canonical generators and that the binary vector x ∈ 〈LX〉 if and only if Em⊕x = Em
(see Section 6.3.2).

Proposition E.5 (Non-diagonal Logical Operators)
Given a binary vector x ∈ LX , the algorithm in Section 6.3.2 yields a non-diagonal logical operator
with X-component equal to x or FALSE if no such operator exists.

Proof. Given x ∈ LX and applying Proposition E.1, we wish to find A = XPN (0|x|z) for which
A|κi〉 = ωf [i]|κπ(i)〉 for some phase vector f and some permutation π.

Because x ∈ LX , we know that mi⊕x = mj for orbit representatives mi,mj . Define π : i 7→ j
if mi ⊕ x = mj . Then π is a map which squares to 1 and so is a permutation.

Now assume we have the codewords in the orbit format of Eq. (35). Let e′ij = eij⊕x and let p′ij
be the phase of e′ij in the codewords. We require that Aωpij |eij〉 = ωf [i]+p′ij |e′ij〉,∀i, j. Calculating

55

the action of A on ωpij |eij〉:

Aωpij |eij〉 = ωpijω2eij ·z|e′ij〉 (197)

The phase of |e′ij〉 is ωf [i]+p′ij when:

(pij − p′ij − f [i] + 2eij · z) mod 2N = 0 (198)

As the phase f [i] is fixed for each codeword |κi〉, for there to be a valid solution pij − p′ij to be
either even or odd for all j. Let ai = (pij − p′ij) mod 2 and p′′ij = (pij − p′ij − ai)/2. Define the
vector q := (ai − f)/2. Hence:

(p′′ij + q[i] + eij · z) modN = 0 (199)

Letting p′′ be the vector corresponding to the p′′ij , we can write this in matrix form:

(p′′ + (z|q)ETL) modN = 0 (200)

Solutions to this equation are members of the affine span (see Eq. (141)):

(z|q) ∈ b + SpanZN
(KL) (201)

where KL is the Howell basis of KerZN
(EL) and b ∈ ZnN × Zdim(C)

N is a constant. We can either
find b or show that no solution exists by using linear algebra modulo N (see Section A.3). If
no such solution exists, return FALSE. Otherwise, the operator A = XPN (0|x|z) is the required
non-diagonal logical operator.

The algorithm for non-diagonal logical identity operators can be considered a special case of
the algorithm for non-diagonal logical operators, with the matrix EM substituted for EL and the
proof is omitted.

Corollary E.6 (Non-diagonal Logical Identity Group)
Given codewords |κi〉 in orbit format and x ∈ SX , the algorithm in Section 6.2.2 yields a non-
diagonal operator A with X-component x such that A|κi〉 = |κi〉,∀i, or returns FALSE if no such
operator exists.

We next show that the operators produced by the algorithms give us a generating set. We first
show that the logical identity group is generated by the operators yielded by the logical identity
algorithm.

Proposition E.7 (Logical Identity Group is Generated by M)
The logical identity group for an XP code is the group generated by M as calculated in Section 6.2:

IXP = 〈M〉 (202)

Proof. If A ∈ 〈M〉 then A|κi〉 = |κi〉 for all codewords |κi〉 by construction so A ∈ IXP, and so
IXP ⊃ 〈M〉.

We now prove the converse. In Proposition E.3, we showed that MZ generates the diagonal
subgroup of IXP

Let B = XPN (p|x|z) be a non-diagonal operator in IXP. Then x ∈ SpanZ2(SX) as defined
above. Hence, we can find a binary vector v such that x = vSX mod 2. Let B′ = Mv

X ∈ 〈M〉. Then
B and B′ have the same X component so B′ = XPN (p′|x|z′). Then A′ = BB′ = XPN (p′′|0|z′) is
a diagonal logical identity operator because both B and B′ are logical identities. Hence A′ ∈ 〈M〉.
Therefore B = A′B′−1 ∈ 〈M〉.

Finally, we show that the logical operators with X-components in LX , along with the stabiliser
generators and the diagonal logical operators generate the entire logical operator group.

56

Proposition E.8
Let E be the Z-support of the codewords of an XP code and let E = Eq + 〈SX〉 + 〈LX〉 be the
coset decomposition of E as in Eq. (89). Let M be the logical identity group as in Section 6.2,
let LZ be the set of diagonal operators as in Section 6.3.1 and let LX be a set of logical operators
with X-components drawn from the rows of LX . Then the logical operator group is given by:

LXP = 〈ωI,M,LZ ,LX〉 (203)

Proof. Say we have a logical operator with a non-trivial X-component of the form A = XPN (p|x|z).
The action of A on |e〉 for e ∈ E is A|e〉 = ωp+2e·z|e ⊕ x〉. We have shown that the codespace is
spanned by the |κi〉 which have Z-support exactly equal to E. Because logical operators preserve
the codespace, X-components of logical operators must satisfy the constraint:

e⊕ x ∈ E,∀e ∈ E (204)

All possible X-components for logical operators are given by 〈SX〉+ 〈LX〉. To see this, assume
there exists some x /∈ 〈SX〉+ 〈LX〉 meets the constraint in Eq. (204). Then ResZ2(SX ,x) /∈ 〈LX〉
meets the constraint in Eq. (204), which is a contradiction.

Next, we show that any logical operator can be written as A = XPN (p|x|z) = LS where L has
X-component in 〈LX〉 and S ∈ 〈MX〉. We know that x ∈ 〈SX〉+ 〈LX〉 so x = (uSX + vLX) mod 2
for some binary vectors u,v. Let S = Mu

X then L = AS−1 is a logical operator with X component
in 〈LX〉.

Now assume that there are two different logical operators with X-component x ∈ 〈LX〉 - say
A1 and A2. The product B = A1A

−1
2 is a diagonal logical operator so A1 is the same as A2 up to

a product of a diagonal logical operator. Applying Proposition E.4, B ∈ 〈ωI,MZ ,LZ〉
Accordingly, we can generate all possible logical operators by finding the non-diagonal logical

operators with X-components in LX . Together with the logical identity generators M, ωI and LZ ,
these generate the full set of logical operators.

E.2.3 Diagonal Component of Logical X Operators

We have demonstrated how to find a non-diagonal logical operator with X-component in LX . This
will not necessarily act as a logical X operator. In particular, a logical X should square to a logical
identity and in this section, we show how to ensure that this is the case.

Assume we have used the algorithm in Section 6.3.2 to find a logical operator B = XPN (0|x|b).
Our aim is to calculate a logical X operator A = XPN (p|x|z) such that A2 is a logical identity. As
A2 is diagonal, we require A2 ∈ 〈MZ〉. Our strategy is to first find the Z component of A, then
adjust the phase component.

We first look at which Z components are possible for logical operators with the same X com-
ponent as B. We can multiply B by any diagonal logical operator in 〈MZ ,LZ〉 and get a logical
operator, and all possible Z components of such operators arise in this way. Let MZ , LZ be the
matrices formed from the Z components of MZ ,LZ respectively. Writing 〈C〉 = SpanZN

(C), the
possible Z components are given by the affine span:

z ∈ Spb := b + 〈MZ〉+ 〈LZ〉 (205)

We next address the condition that the Z component of A2, which we denote z2 here, has to be in
〈MZ〉. By applying the square rule of Section 3.3:

z2[i] =
{

2z[i] : x[i] = 0
0 : x[i] = 1

(206)

When x[i] = 1, z2[i] = 0. Hence, z2 has to be an element of 〈MZ〉 which is zero when x[i] = 1.
Because z2 is the Z component of a square, we also know that it is a multiple of 2. Hence
z2 ∈ Sp2 := 〈MZ〉∩ 〈2diag(1−x)〉. All generators of Sp2 are divisible by 2, so let SpM be the span
with generators from Sp2 divided by 2. Any z ∈ SpM will have z2 ∈ 〈MZ〉.

Where the precision N is a multiple of 2 and x[i] = 0, adding N
2 to z[i] does not change whether

z2 ∈ 〈MZ〉 because z2[i] = 2z[i]. Hence, we can add any element of 〈N2 diag(1− x)〉 to z.

57

We can add any element of 〈diag(x)〉 to z and still ensure z2 ∈ 〈MZ〉 because where x[i] = 1,
z2[i] is guaranteed to be zero. Hence z2 ∈ 〈MZ〉 when z ∈ Spa defined as:

Spa := SpM + 〈N2 diag(1− x)〉+ 〈diag(x)〉 (207)

Hence, z ∈ Spa ∩ Spb. If this span is not empty then we can find z such that z2 = uMZ modN ∈
〈MZ〉 for some vector u. Let pz, pu be the phase components of XPN (0|x|z)2 and Mu

Z respectively.
We set the phase component of A to be p = (pu − pz)/2.

E.3 Reed-Muller Codes
Reed-Muller codes are well-known Pauli Stabiliser codes. We can also look at them as XP codes
and better understand their logical operator structure. In the Proposition below, we show that
they are self-dual codes and have transversal logical operators at precision N > 2. To demonstrate
the results, we apply the techniques of Appendix D.

Proposition E.9 (Reed-Muller XP Codes)
The Reed-Muller code on 2r − 1 qubits can be written as the codespace of a precision N = 2r−2

code whose stabiliser generators are symmetric in X and P. The code has a transversal logical
diag(1, exp(−2πi/2r−1)) operator.

Proof. Let N = 2r−2 and the number of qubits n = 2r − 1. Let SX = {XPN (0|xi|0)} and
SZ = {XPN (0|0|xi)} where xi is the ith row of Mr

r as in Section 5.4. Let |0〉L = OSX
|0〉 and let

|1〉L = XPN (0|1|0)|0〉L where 1 is the vector of length 2r − 1 with all entries 1.
We claim that the codespace of SX ,SZ is spanned by {|0〉L, |1〉L}. For this, we need to show that

the simultaneous +1 eigenspace of the SZ is given by {|e〉} where e ∈ SpanZ2{1,xi : 0 ≤ i < r}.
Let u ⊂ [0 . . . r − 1] and let su :=

⊕
j∈u xj . Note that XPN (0|0|xk)|su〉 = ω2xk·su |su〉. Hence we

need to show that xk · su mod 2r−2 = xk · (1⊕ su) mod 2r−2 = 0.
Applying Proposition D.1 the weight of the product of t distinct xi is 2r−t because:

1 ·
∏

0≤i<t
xi =

∑
k≤t≤r

(
r − t
k − t

)
=

∑
0≤j≤r−t

(
r − t
j

)
= 2r−t (208)

Now consider the dot product of xk with su and apply Eq. (170):

xk · su =
∑
s⊂u

(−2)|s|−1xk ·
∏
i∈s

xi =
∑
s⊂u

(−2)|s|−12r−|s|−1 =
∑
s⊂u

(−1)|s|−12r−2 = 0 mod 2r−2 (209)

By setting t = 1 in Eq. (208) we see that xk · 1 = 2r−1. Hence:

xk · (1⊕ su) = xk · (1− su) = xk · 1− xk · su = 0 mod 2r−2 (210)

Now rescale the code to precision N = 2r−1 consider the action of B = XPN (0|0|1) on |0〉L and
|1〉L. We can write |0〉L =

∑
u⊂[0...r−1] su. Now B|su〉 = ω21·su |su〉. Calculating 1 · su:

1 · su =
∑
s⊂u

(−2)|s|−11 ·
∏
i∈s

xi =
∑
s⊂u

(−2)|s|−12r−|s| =
∑
s⊂u

(−1)|s|−12r−1 = 0 mod 2r−1 (211)

Hence, the phase applied by B to each basis element making up |0〉L is trivial and so B|0〉L = |0〉L.
The action of B on |1〉L is B|1〉L = XPN (0|0|1)XPN (0|1|0)|0〉L = XPN (0|1|1)D(2)|0〉L. The

phase component of D(2) is 2(2r−1) = −2 modN . Hence B|1〉L = ω−2|1〉L and B acts as a logical
diag(1, exp(−2πi/2r−1)) operator.

E.4 Modified Algorithms for Logical Identity Group and Logical Operators
Our objective here is to show that where N = 2t, we can calculate the logical identity group and
logical operators without first calculating the codewords in full. Assume that the codewords in
orbit form are as in Eq. (35) and let E be the Z-support of the codewords.

58

• To calculate the logical identity group generators, we just need to consider the elements of
E at most orbit distance t from the core elements Eq = {ql}.

• For the logical operators, we need to consider the elements of E at most orbit distance t from
the orbit representatives Em = {mi}.

We need a number of preliminary results to prove the main propositions. In these results, we
work with a binary matrix L in RREF. Let the rows of L be the binary vectors xi, 0 ≤ i < r. Sums
and products of vectors are component wise in Z (i.e. (x + y)[i] = x[i] + y[i], (xy)[i] = x[i]y[i]).

We first write an expression for the sum modulo 2 of a subset of the xi:

Lemma E.10
Let L be a binary matrix in RREF, with non-zero rows xi, 1 ≤ i < r and let c ⊂ [0 . . . r − 1].
Define:

sc :=
(∑
i∈c

xi
)

mod 2 (212)

and for d ⊂ c define :

pd := (−2)|d|−1
∏
i∈d

xi (213)

then:

sc =
∑

d⊂c,|d|≥1

pd (214)

where we work in Z on the RHS.

Proof. Induction on |c|.

Base Step: Let |c| = 1 so that c = {j}. Then the LHS of Eq. (214) is:(∑
i∈c

xi

)
mod 2 = xj (215)

While the RHS is: ∑
d⊂c,|d|≥1

(−2)|d|−1
∏
i∈d

xi = xj (216)

So the base step holds.

Induction Step: Assume |c| > 1 and the lemma is true for any sets d : |d| < |c|. Let j ∈ c and
c′ = c \ {j}. For binary vectors x,y:

(x + y) mod 2 = x + y− 2xy . (217)

Hence, the LHS of Eq. (214) is:

sc = (xj + sc′) mod 2 = xj + sc′ − 2xjsc′ (218)

Because |c′| = |c| − 1 < |c|, we can apply the induction hypothesis:

sc = xj +
∑

d⊂c′,|d|≥1

pd − 2xj
(∑
d⊂c′,|d|≥1

pd
)

(219)

=
∑

d⊂c,|d|≥1,j /∈d

pd +
∑

d⊂c,|d|≥1,j∈d

pd (220)

=
∑

d⊂c,|d|≥1

pd . (221)

The induction step holds and the result follows.

59

Next, we let N = 2t and consider spans over ZN of the binary vectors E = Eq + 〈L〉. We first
show that certain products are in the span:

Lemma E.11 (Products of q,xi of Degree ≤ t)
Let E be a set of binary vectors with coset decomposition E = Eq + 〈L〉 as in Eq. (89). Let the
nonzero rows of L be xi, 1 ≤ i < r. Let N = 2t where t ∈ [1 . . . r]. Let Et be the elements of E
at most orbit distance t from Eq so that Et := {(q + vL) mod 2 : q ∈ Eq,v ∈ Zr2,wt(v) ≤ t}. Let
c ⊂ [0 . . . r − 1], 1 ≤ |c| ≤ t and let pc := 2|c|−1∏

i∈c xi. Then:

pc − 2qpc ∈ SpanZN
(Et) (222)

Proof. Induction on |c|.

Base Case: let |c| = 1 so that c = {j}. Then:

pc − 2qpc = xj − 2qxj = (q + xj) mod 2− q. (223)

As t ≥ 1, (q+xj) mod 2 ∈ Et and so is q (as it is of orbit distance 0). Hence the linear combination
is in SpanZN

(Et) and the base case holds.

Induction Step: Assume |c| > 1 and that the lemma is true for any sets d : |d| < |c|. As |c| ≤ t,
the binary vector e = (q +

∑
i∈c xi) mod 2 = (q + sc) mod 2 ∈ Et. Expanding the expression for e

using Eq. (214):

e = q + sc − 2qsc (224)

= q +
∑

d⊂c,|d|≥1

pd − 2q
∑

d⊂c,|d|≥1

pd (225)

= q +
∑

d(c,1≤|d|<|c|

(pd − 2qpd) + (pc − 2qpc) (226)

By the induction hypothesis pd − 2qpd ∈ SpanZN
(Et) for any |d| < |c|. As e,q are also in the

span, the induction step holds.

We next show that the product of up to t of the binary vectors xi is in SpanZN
(Et):

Corollary E.12 (Products of xi of Degree t)
Let |c| = t and pc, N,Et be defined as in Lemma E.11. Then:

pc ∈ SpanZN
(Et) (227)

Proof. For |c| ≤ t, we have shown in Lemma E.11 that pc − 2qpc ∈ SpanZN
(Et). Expanding the

second pc we have:

pc − 2qpc = pc − 2(−2)|c|−1
∏
i∈c

xi = pc + (−2)t
∏
i∈c

xi (228)

As the span is over ZN , any multiples of N = 2t can be disregarded so pc ∈ SpanZN
(Et).

The results for the modified algorithms follow directly from the following proposition:

Proposition E.13
Let E,Et, N be as in Lemma E.11. Then:

SpanZN
(E) = SpanZN

(Et) (229)

60

Proof. Let e = (q + uL) mod 2 ∈ E. Let c = supp(u) := {0 ≤ i < r : u[i] 6= 0}. Using Eq. (214)
we can write:

e = (q + sc) mod 2 (230)
= q + sc − 2qsc (231)

= q +
∑

d⊂c,|d|≥1

(pd − 2qpd) (232)

= q +
∑

d⊂c,|d|≥1

(
(−2)|d|−1

∏
i∈d

xi + (−2)|d|q
∏
i∈d

xi
)
. (233)

We can disregard any multiples of N = 2t so we can write:

e modN =
(

q +
∑

d⊂c,1≤|d|≤t−1

(pd − 2qpd) +
∑

d⊂c,|d|=t

pd
)

modN (234)

By Lemma E.11 and Corollary E.12, we know that all elements on the RHS are in SpanZN
(Et)

hence e ∈ SpanZN
(Et),∀e ∈ E. Hence, all linear combinations of elements of E are also in the

span and the result follows.

The main results of the section now follow by application of the previous proposition:

Proposition E.14 (Modified Logical Identity Algorithm)
Let EM be as defined in the algorithm of Section 6.2.1 i.e. the rows of EM are the binary vectors
e ∈ E, plus a final column of all 1’s. Let N = 2t and Et be the elements of E of orbit distance
at most t from the core Eq. Let E′M be the matrix formed from the rows of Et plus a row of 1’s.
Then:

SpanZN
(EM) = SpanZN

(E′M) (235)

Proof. Let E = Eq + 〈SX〉+ 〈LX〉 be the coset decomposition of E. Let E′q be the vectors in Eq
with an appended 1 (i.e. E′q = {(q|1) : q ∈ Eq. Let GX = RREF(LX ∪SX) and let L be GX with
an appended 0 so L = {(x|0) : x ∈ GX}. Then EM = E′q + 〈L〉. The result follows by applying
Proposition E.13.

Proposition E.15 (Modified Logical Operator Algorithm)
Let EL be as defined as in the algorithm of Section 6.3.1 i.e. the rows of EL are the binary vectors
e ∈ E, plus a codeword index i which identifies which codeword the row belongs to. Let N = 2t
and Et be the elements of E of orbit distance at most t from the orbit representatives Em. Let
E′L be the matrix formed from the rows of Et plus the codeword index. Then:

SpanZN
(EL) = SpanZN

(E′L) (236)

Proof. Let E = Em + 〈SX〉 as in Section 4.2.2. Let E′m be the vectors in Em with an appended i
as in the Logical Operator Algorithm - i.e. E′m = {(m|i) : m ∈ Em}. Form L from the rows of SX
with an appended 0 of length dim(C) so L = {(x|0) : x ∈ SX}. Then EL = E′m + 〈L〉. The result
follows by applying Proposition E.13.

F Measurements in the XP Formalism - Proof of Results
In this appendix, we prove the results discussed in Chapter 7. We first prove the results for
determining the outcome probabilities for measurement of XP operators. We then explain the
stabiliser algorithm for measurement of diagonal Pauli operators of Section 7.3.2.

61

F.1 Measurement Outcome Probabilities - Proof of Results
In this section, we show how to determine the outcome probabilities for measurement of XP
operators assuming we are given the codewords in the orbit form of Eq. (35). We first show
how to determine probabilities for measurement of diagonal operators, then look at non-diagonal
operators.

Proposition F.1 (Outcome Probabilities - Diagonal XP Operators)
Let A be a diagonal XP operator which has +1 as an eigenvalue. Let E be the Z-support of the
codewords |κi〉. Let E+ be the set of binary vectors E+ = {e ∈ E : A|e〉 = |e〉}. Let ρ be an
even superposition of the codewords as in Eq. (107) so that ρ = 1

|E|
∑
i |κi〉〈κi|. The probability

of obtaining outcome +1 when measuring A on ρ is:

Pr(+1) = |E
+|
|E|

(237)

Proof. Let the projector onto the +1 eigenspace of A be A+ and let |κ+
i 〉 := A+|κi〉. The probability

of obtaining outcome +1 is Tr(A+ρA+) = 1
|E|
∑
i〈κ

+
i |κ

+
i 〉.

Applying Eq. (22) with λ = +1, the action of the projector A+ on a computational basis vectors
|e〉 is given by:

A+|e〉 =
{
|e〉 : if A|e〉 = |e〉
0 : if A|e〉 6= |e〉

(238)

Let E+
i := {e ∈ ZSupp(|κi〉) : A|e〉 = |e〉}. The action of A+ on the codeword |κi〉 is:

|κ+
i 〉 := A+|κi〉 = A+

(∑
0≤j<2r

ωpij |eij〉
)

=
∑

eij∈E+
i

ωpij |eij〉 (239)

〈κ+
i |κ

+
i 〉 =

∑
eij∈E+

i

|ωpij |2 = |E+
i | (240)

The result follows by noting that Pr(+1) = 1
|E|
∑
i〈κ

+
i |κ

+
i 〉 and E+ =

⋃
iE

+
i .

Proposition F.2 (Outcome Probabilities - Non-diagonal XP Operators)
Let ρ be an even superposition of the codewords as in Eq. (107). Let A = XPN (p|x|z) be a
non-diagonal XP operator with eigenvalue +1. Let E be the Z-support of the codewords |κi〉 as
calculated in Chapter 4 and let SX be the canonical non-diagonal generators as in Section 4.1. Let
E± be the set of binary vectors E± := {e ∈ E : A2|e〉 = |e〉}.

If there exists B = XPN (pM |x|zM) ∈ SX with the same X-component as A then let C :=
XPN (pM − p|0|zM − z) and let C|e〉 = ωqe |e〉. The probability of obtaining outcome +1 when
measuring A on ρ is:

Pr(+1) =
{

1
2|E|

(∑
e∈E±(1 + cos qeπ

N)
)

: if B exists
1

2|E| |E
±| : otherwise.

(241)

Proof. Let A = XPN (p|x|z) be the operator we wish to measure, and assume we obtain outcome
+1. Applying Eq. (23) with λ = +1, the action of A+ on a basis vector |e〉 is:

A+|e〉 =
{

1
2 (|e〉+A|e〉) : if A2|e〉 = |e〉
0 : if A2|e〉 6= |e〉

(242)

Any elements e ∈ ZSupp(|κi〉) where A2|e〉 6= |e〉 will be eliminated, so let:

E±i = {e ∈ ZSupp(|κi〉) : A2|e〉 = |e〉} (243)

By calculating ResZ2(SX ,x), we can determine if there exists some B ∈ 〈SX〉 with the same
X-component as A. There are two possible cases:

62

Case 1: B does not exist: In this case, whenever e ∈ ZSupp(|κi〉), e ⊕ x /∈ ZSupp(|κi〉).
Applying Eq. (242):

|κ+
i 〉 := A+|κi〉 =

∑
eij∈E±i

ωpij

2 (|eij〉+A|eij〉) = 1
2
∑

eij∈E±i

(ωpij |eij〉+ ωqij |eij ⊕ x〉) (244)

for some qij ∈ Z2N . Hence:

〈κ+
i |κ

+
i 〉 = 1

4
∑

eij∈E±i

(1 + 1) = |E
±
i |
2 (245)

Case 2: B exists: Let B be the element of 〈SX〉 with the same X-component as A and let
e ∈ E±i so that A2|e〉 = |e〉. Let B|e〉 = ωb|e ⊕ x〉 and A|e〉 = ωa|e ⊕ x〉 for some phases
a, b ∈ Z2N . Then e, e ⊕ x ∈ ZSupp(|κi〉) with relative phase ωb. Consider the effect of the
projector A+ on |e〉+ ωb|e⊕ x〉:

A+(|e〉+ ωb|e⊕ x〉) = A+(|e〉+ ωb−aA|e〉) (246)

= 1
2

(
|e〉+A|e〉+ ωb−aA|e〉+ b

a
A2|e〉

)
(247)

= 1
2

(
|e〉+A|e〉+ ωb−a(A|e〉+ |e〉)

)
(248)

= 1 + ωb−a

2 (|e〉+A|e〉) (249)

Now we determine
∣∣ 1+ωb−a

2
∣∣:
∣∣1 + ωb−a

2
∣∣ = 1

4(1 + ωb−a)(1 + ωa−b) (250)

= 1
4(2 + 2 cos((b− a)π/N)) (251)

= 1
2(1 + cos((b− a)π/N)) (252)

Let B = XPN (pB |x|zB), let C := XPN (pM −p|0|zM −z) and let qe := b−a. Then C|e〉 = ωqe |e〉.
Hence:

〈κ+
i |κ

+
i 〉 =

∑
e∈E±

i

|〈e|κ+
i 〉|

2 = 1
2
∑

e∈E±
i

(1 + cos qeπ
N

) (253)

The result follows by noting that Pr(+1) = 1
|E|
∑
i〈κ

+
i |κ

+
i 〉 and E± =

⋃
iE
±
i .

F.2 Analysis of Algorithm for Measuring Diagonal Paulis
In this section, we explain why the algorithm of Section 7.3.2 for measurement of diagonal Pauli
operators works. We also consider implications for the complexity of measuring higher precision
diagonal operators.

Firstly, we show that simulating the measurement of a diagonal Pauli operator reduces to
determining the change in the Z-support of the codewords E. Let A = XP2(0|0|z) and let |κi〉 =∑
j ω

pij |eij〉 be the codewords of the code in orbit format of Eq. (35) with Z-support E = {eij}.
Let A+ be the projector onto the +1 eigenspace of A. The action of A+ on |κi〉 is given by Eq. (22):

A+|κi〉 =
∑

j:A|eij〉=|eij〉

ωpij |eij〉 . (254)

Hence, the Z-support of the codewords after measurement outcome +1 is E+ = {e ∈ E : A|e〉 =
|e〉}. As A is of precision 2, the action of A on |e〉 is A|e〉 = i2e·z|e〉 = (−1)e·z|e〉. Hence

63

E+ = {e ∈ E : Parz(e) = 0}. From Proposition F.1, the probability of obtaining outcome +1
is |E+|/|E| and the phase of any |eij〉 remaining in the codewords is unchanged. Similarly, the
Z-support of the codewords after obtaining outcome −1 is E− = E \E+ with probability |E−|/|E|.
Therefore, we can simulate measurement by determining E+ and E− which in turn requires us to
determine Parz(e) for all e ∈ E.

Next, we show how the algorithm in Section 7.3.2 correctly determines E+, E−. To calculate
E+, we need to determine Parz(e) for all e ∈ E. For any binary vectors x,y, taking parity with
respect to z commutes with taking the sum modulo 2. That is:

Parz(x⊕ y) = (x + y− 2xy) · z mod 2
= (x · z + y · z− 2xy · z) mod 2
= Parz(x)⊕ Parz(y) (255)

Looking at Step 1 of the algorithm, assume there exists operators B,C ∈ SX ∪ LX with X-
components x,y such that Parz(x) = Parz(y) = 1. Then the X-component of BC is x ⊕ y and
from Eq. (255), we know that Parz(x ⊕ y) = 1 ⊕ 1 = 0. Hence, updating SX ∪ LX in Step 1
ensures that Parz(xi) = 0, for all X-components xi of the updated set SX ∪ LX . We remove
B from SX ∪ LX so updating Eq by adding vectors of form ql ⊕ x,ql ∈ Eq to Eq ensures that
E = Eq + 〈SX〉+ 〈LX〉 is unchanged (SX , LX are the matrices formed from the X-components of
SX ,LX respectively).

Now looking at Step 2 of the algorithm, we can express the binary vectors e ∈ E as linear
combinations modulo 2 i.e. e = (ql + uSX + vLX) mod 2 (see Section 6.4). After Step 1, we have
ensured that Parz(xi) = 0, for all xi ∈ SX ∪ LX . Linear combinations of the xi also have parity 0
and so the parity of e is the same as the parity of ql because:

Parz(e) = Parz((ql + uSX + vLX) mod 2)
= Parz(ql)⊕ Parz(uSX)⊕ Parz(vLX)
= Parz(ql) . (256)

So e is in E+ if only if Parz(ql) = 0 which is equivalent to ql ∈ E+
q . Let r = |SX |, k = |LX |

then E = |Eq|2r+k, E+ = |E+
q |2r+k. Hence, the probability of obtaining outcome +1 is Pr(+1) =

|E+|/|E| = |E+
q |/|Eq|. By a similar argument, the result for the outcome −1 is also correct.

The underlying reason the algorithm works is that the parity function of Eq. (108) commutes
with addition of vectors modulo 2. Hence, the parity of the binary vector el,u,v ∈ E labelled in
accordance with the quantum numbers of 6.4 is the same as the parity of ql ∈ Eq (see Eq. (256)).
This relationship breaks down for higher precision XP operators (e.g. N = 4).

References
[1] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev.

A, 70:052328, Nov 2004. DOI: 10.1103/PhysRevA.70.052328.
[2] Juan Bermejo-Vega and Maarten Van Den Nest. Classical simulations of abelian-group nor-

malizer circuits with intermediate measurements. Quantum Info. Comput., 14(3–4):181–216,
Mar 2014. ISSN 1533-7146. DOI: 10.26421/QIC14.3-4-1.

[3] Juergen Bierbrauer. Introduction to coding theory. Discrete mathematics and its applications.
Taylor and Francis, Boca Raton, second edition, Sep 2016. ISBN 9781315371993. DOI:
10.1201/9781315371993.

[4] Benjamin J. Brown, Daniel Loss, Jiannis K. Pachos, Chris N. Self, and James R. Wootton.
Quantum memories at finite temperature. Rev. Mod. Phys., 88:045005, Nov 2016. DOI:
10.1103/RevModPhys.88.045005.

[5] Johannes Buchmann and Stefan Neis. Algorithms for linear algebra problems over principal
ideal rings. Technical Report TI-7/96, TU Darmstadt, Jan 1996. URL http://tubiblio.
ulb.tu-darmstadt.de/101111/.

[6] Earl T. Campbell. The smallest interesting colour code. Blog Post, Sep 2016. URL https:
//earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/.

64

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.26421/QIC14.3-4-1
https://doi.org/10.1201/9781315371993
https://doi.org/10.1201/9781315371993
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/RevModPhys.88.045005
http://tubiblio.ulb.tu-darmstadt.de/101111/
http://tubiblio.ulb.tu-darmstadt.de/101111/
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/

[7] Andrew Cross, Graeme Smith, John A. Smolin, and Bei Zeng. Codeword stabilized quan-
tum codes. IEEE Transactions on Information Theory, 55(1):433–438, Aug 2009. DOI:
10.1109/TIT.2008.2008136.

[8] Julio Carlos Magdalena de la Fuente, Nicolas Tarantino, and Jens Eisert. Non-Pauli topological
stabilizer codes from twisted quantum doubles. Quantum, 5:398, Feb 2021. DOI: 10.22331/q-
2021-02-17-398.

[9] David Elieser Deutsch. Quantum computational networks. Proceedings of the Royal Society
of London. Series A, Mathematical and physical sciences, 425(1868):73–90, Sep 1989. ISSN
1364-5021. DOI: 10.1098/rspa.1989.0099.

[10] Tyler D. Ellison, Yu-An Chen, Arpit Dua, Wilbur E. Shirley, Nathanan Tantivasadakarn, and
Dominic J. Williamson. Pauli stabilizer models of twisted quantum doubles. arXiv:2112.11394
[quant-ph], Dec 2021. DOI: 10.48550/arXiv.2112.11394.

[11] Vlad Gheorghiu. Standard form of qudit stabilizer groups. Physics Letters A, 378(5):505–509,
Jan 2014. ISSN 0375-9601. DOI: 10.1016/j.physleta.2013.12.009.

[12] D Gottesman. The Heisenberg representation of quantum computers. arXiv:quant-
ph/9807006, Jun 1998.

[13] D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia. Measurement-based quantum compu-
tation beyond the one-way model. Phys. Rev. A, 76:052315, Nov 2007. DOI: 10.1103/Phys-
RevA.76.052315.

[14] L Hartmann, J Calsamiglia, W Dür, and H J Briegel. Weighted graph states and applications
to spin chains, lattices and gases. Journal of Physics B: Atomic, Molecular and Optical
Physics, 40(9):S1–S44, Apr 2007. DOI: 10.1088/0953-4075/40/9/s01.

[15] John A. Howell. Spans in the module (Zm)s. Linear and Multilinear Algebra, 19(1):67–77,
Jan 1986. DOI: 10.1080/03081088608817705.

[16] A.Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of physics, 303(1):2–30,
Jan 2003. ISSN 0003-4916. DOI: 10.1016/S0003-4916(02)00018-0.

[17] Jacob Miller and Akimasa Miyake. Hierarchy of universal entanglement in 2D measurement-
based quantum computation. npj Quantum Information, 2:16036, Nov 2016. DOI:
10.1038/npjqi.2016.36.

[18] Xiaotong Ni, Oliver Buerschaper, and Maarten Van den Nest. A non-commuting stabilizer for-
malism. Journal of Mathematical Physics, 56(5):052201, May 2015. DOI: 10.1063/1.4920923.

[19] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge University Press, Dec 2010. DOI:
10.1017/CBO9780511976667.

[20] Román Orús. A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states. Annals of Physics, 349:117–158, Oct 2014. ISSN 0003-4916. DOI:
10.1016/j.aop.2014.06.013.

[21] Eric M. Rains, R. H. Hardin, Peter W. Shor, and N. J. A. Sloane. A nonadditive quantum
code. Phys. Rev. Lett., 79:953–954, Aug 1997. DOI: 10.1103/PhysRevLett.79.953.

[22] Narayanan Rengaswamy, Robert Calderbank, Michael Newman, and Henry D. Pfister. On
optimality of CSS codes for transversal T. IEEE Journal on Selected Areas in Information
Theory, 1(2):499–514, Aug 2020. DOI: 10.1109/JSAIT.2020.3012914.

[23] M Rossi, M Huber, D Bruß, and C Macchiavello. Quantum hypergraph states. New Journal
of Physics, 15(11):113022, Nov 2013. DOI: 10.1088/1367-2630/15/11/113022.

[24] Ady Stern. Anyons and the quantum Hall effect—a pedagogical review. Annals of Physics,
323(1):204–249, Jan 2008. ISSN 0003-4916. DOI: 10.1016/j.aop.2007.10.008.

[25] Arne Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Department of
Computer Science, Swiss Federal Institute of Technology – ETH, 2000. URL https:
//cs.uwaterloo.ca/~astorjoh/diss2up.pdf.

[26] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical description of the
action of local Clifford transformations on graph states. Phys. Rev. A, 69:022316, Feb 2004.
DOI: 10.1103/PhysRevA.69.022316.

65

https://doi.org/10.1109/TIT.2008.2008136
https://doi.org/10.1109/TIT.2008.2008136
https://doi.org/10.22331/q-2021-02-17-398
https://doi.org/10.22331/q-2021-02-17-398
https://doi.org/10.1098/rspa.1989.0099
https://arxiv.org/abs/2112.11394
https://arxiv.org/abs/2112.11394
https://doi.org/10.48550/arXiv.2112.11394
https://doi.org/10.1016/j.physleta.2013.12.009
https://arxiv.org/abs/quant-ph/9807006
https://arxiv.org/abs/quant-ph/9807006
https://doi.org/10.1103/PhysRevA.76.052315
https://doi.org/10.1103/PhysRevA.76.052315
https://doi.org/10.1088/0953-4075/40/9/s01
https://doi.org/10.1080/03081088608817705
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1038/npjqi.2016.36
https://doi.org/10.1063/1.4920923
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevLett.79.953
https://doi.org/10.1109/JSAIT.2020.3012914
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1016/j.aop.2007.10.008
https://cs.uwaterloo.ca/~astorjoh/diss2up.pdf
https://cs.uwaterloo.ca/~astorjoh/diss2up.pdf
https://doi.org/10.1103/PhysRevA.69.022316

	1 Introduction
	2 The XP Stabiliser Formalism
	2.1 Review of the Pauli Stabiliser Formalism
	2.2 Extending the Pauli Stabiliser Formalism - Existing Work
	2.3 The XP Stabiliser Formalism
	2.4 Summary of Results
	2.5 XPF Software Package

	3 Algebra of XP Operators
	3.1 Vector Representation of XP Operators
	3.2 Multiplication Rule and Generalised Symplectic Product
	3.3 Other Algebraic Identities
	3.4 Group Structure of XP Operators
	3.5 Eigenvalues and Projectors of XP Operators

	4 Calculating Codewords from Stabiliser Generators
	4.1 Canonical Generators of XP Groups
	4.2 Finding a Basis of the Codespace
	4.2.1 Coset Structure of E and Orbit Representatives
	4.2.2 Codewords Notation

	4.3 Calculating Orbit Representatives from the Canonical Generators
	4.3.1 Exhaustive Algorithm to find E
	4.3.2 Graph Search Algorithm for Orbit Representatives

	4.4 Summary of Codewords Algorithm
	4.5 Example: Calculating Codewords - Code 1
	4.6 Calculating Codewords - Discussion and Summary of Results

	5 Classification of XP Stabiliser States
	5.1 Weighted Hypergraph State Definitions
	5.2 Phase Functions of XP States
	5.3 Representation of XP States as Weighted Hypergraph States
	5.3.1 Algorithm: Weighted Hypergraph Representation of a Given XP State

	5.4 Representation of Weighted Hypergraph States as XP Stabiliser States
	5.4.1 Algorithm: Representation of Weighted Hypergraph States as XP Stabiliser States

	5.5 Discussion and Summary of Results

	6 Logical Operators and the Classification of XP Codes
	6.1 Definitions: Logical XP Operators
	6.2 Determining the Logical Identity Group
	6.2.1 Diagonal Logical Identity Group Generators MZ
	6.2.2 Non-diagonal Logical Identity Group Generators MX
	6.2.3 Properties of the Canonical Logical Identity Generators

	6.3 Determining the Logical Operator Group
	6.3.1 Diagonal Logical Operator Algorithm
	6.3.2 Non-diagonal Logical Operators
	6.3.3 Examples: Logical Operators

	6.4 Assigning Quantum Numbers to the Codewords
	6.5 Classification of XP Codes
	6.5.1 Definition of XP-Regular and Non-XP-Regular Codes
	6.5.2 Mapping XP-Regular Codes to CSS Codes
	6.5.3 Error Correction for XP-Regular Codes

	6.6 Modified Logical Operator Algorithms
	6.6.1 Modified Logical Identity Algorithm
	6.6.2 Modified Logical Operator Algorithm

	6.7 Diagonal Logical Actions Arising in an XP Code
	6.8 Classification of Logical Operators
	6.9 Logical Operators - Summary and Discussion

	7 Measurements in the XP Formalism
	7.1 Measurement Definitions
	7.2 Outcome Probabilities for Measurements of XP Operators
	7.3 Stabiliser Method for Measurement of Diagonal Pauli Operators
	7.3.1 Core Form of an XP Code
	7.3.2 Algorithm for Measuring Diagonal Paulis
	7.3.3 Examples - Measurement of Diagonal Paulis

	7.4 Measuring Precision 4 XP Operators
	7.4.1 Estimating Outcome Probabilities of Diagonal Precision 4 Operators is Intractable
	7.4.2 XP Formalism is not Closed under Measurement of XP Operators

	7.5 Measurement in the XP Formalism - Summary of Results

	8 Discussion and Open Questions
	A Linear Algebra over Rings
	A.1 Ring Concepts
	A.2 Spans of Matrices and the Howell Matrix Form
	A.3 Solving Linear Equations over Rings
	A.4 Intersections of Spans and Affine Spans
	A.4.1 Affine Span Definition
	A.4.2 Algorithm for Intersection of Spans
	A.4.3 Algorithm for Intersection of Affine Spans

	B Canonical Generator Algorithm - Proof of Result
	C Coset and Orbit Structure of Codewords
	D Proof of Results: Classification of XP Stabiliser States
	D.1 Operations on Binary and Integer Vectors
	D.2 Phase Functions of XP Stabiliser States
	D.3 Representing Weighted Hypergraph States as XP Stabiliser States

	E Logical Operators - Proof of Results
	E.1 Properties of Logical XP Operators
	E.2 Logical Identity and Logical Operator Algorithms
	E.2.1 Diagonal Operator Algorithms
	E.2.2 Non-diagonal Operator Algorithms
	E.2.3 Diagonal Component of Logical X Operators

	E.3 Reed-Muller Codes
	E.4 Modified Algorithms for Logical Identity Group and Logical Operators

	F Measurements in the XP Formalism - Proof of Results
	F.1 Measurement Outcome Probabilities - Proof of Results
	F.2 Analysis of Algorithm for Measuring Diagonal Paulis

