
Benchmarking the Planar Honeycomb Code
Craig Gidney1, Michael Newman1, and Matt McEwen1,2

1Google Quantum AI, Santa Barbara, California 93117, USA
2University of California, Santa Barbara, 93106, USA

September 14, 2022

We improve the planar honeycomb code by describing boundaries that need no ad-
ditional physical connectivity, and by optimizing the shape of the qubit patch. We
then benchmark the code using Monte Carlo sampling to estimate logical error rates
and derive metrics including thresholds, lambdas, and teraquop footprints. We deter-
mine that the planar honeycomb code can create a logical qubit with one-in-a-trillion
logical error rates using 7000 physical qubits at a 0.1% gate-level error rate (or 900
physical qubits given native two-qubit parity measurements). Our results cement the
honeycomb code as a promising candidate for two-dimensional qubit architectures with
sparse connectivity.

The source code that was written, the exact noisy circuits that were sampled, and the statistics
that were collected as part of this paper are available at doi.org/10.5281/zenodo.7072889 [10].

1 Introduction
Last year, Hastings and Haah introduced a new quantum error correcting code, the honeycomb
code, so-named due to its placement on a honeycomb lattice of physical qubits [12]. The logical
qubits of the honeycomb code are defined by pairs of anti-commuting logical observables that
change over time. This sidesteps a well-known issue with building a subsystem code out of Kitaev’s
honeycomb model, namely that it encodes no static logical qubits [13, 14, 16, 17].

The honeycomb code’s realization on a degree-3 (or less) grid of qubits has practical hard-
ware merits [4], and its construction out of weight-two parity measurements makes it natural for
architectures where such operations are native (such as Majorana-based architectures [5]). Histor-
ically, requiring this level of sparsity and locality has led to codes with steep losses in performance
[2, 15, 16]. But the honeycomb code’s low-weight parity checks and succinct measurement cy-
cle have yielded a robust memory under various circuit-level noise models [9]. Altogether, the
honeycomb code provides a foundation worth considering when building a fault-tolerant quantum
computer.

We were originally attracted to the honeycomb code as a test case for Stim [7], an open-source
tool for simulating and analyzing stabilizer circuits and stabilizer codes. Because the honeycomb
code breaks implicit assumptions about how logical qubits are typically defined, it provided an
excellent challenge to field test Stim’s capabilities. Using Stim, we numerically analyzed the per-
formance of the honeycomb code in [9]. Our Monte Carlo simulations of the honeycomb code
under circuit-level noise confirmed that it had a competitive threshold and low qubit overhead,
particularly compared to other low-connectivity codes.

When we originally analyzed the honeycomb code, it lacked an elegant embedding onto a planar
lattice. We ended [9] noting that this was an important open problem, because embedding on a
plane (instead of a torus) is a necessary ingredient for using the honeycomb code on two-dimensional
architectures. Fortunately, this problem was quickly solved by Haah and Hastings [11].

Craig Gidney: craig.gidney@gmail.com
Michael Newman: mgnewman@google.com
Matt McEwen: mmcewen@google.com

Accepted in Quantum 2022-09-12, click title to verify 1

ar
X

iv
:2

20
2.

11
84

5v
3

 [
qu

an
t-

ph
]

 1
3

Se
p

20
22

http://quantum-journal.org/?s=Benchmarking%20the%20Planar%20Honeycomb%20Code&reason=title-click
https://doi.org/10.5281/zenodo.7072889
mailto:craig.gidney@gmail.com
mailto:mgnewman@google.com
mailto:mmcewen@google.com

In this paper, using much of the same software infrastructure from [9], as well as some new
capabilities, we quantify the performance of this new planar honeycomb code. We perform Monte
Carlo sampling on planar honeycomb patches, estimate their threshold, and project how many
physical qubits they require to reach the teraquop regime (i.e. to hit one-in-a-trillion error rate
logical operations). In addition, we make a few modifications to the boundaries proposed by Haah
and Hastings that may prove advantageous. We use boundaries that have no extra connectivity
requirements beyond those that naturally sit in the bulk of the honeycomb code. A nice bonus
is that these boundaries can be found easily, using a construction that cuts them out of a larger
lattice. Along the way, we point out important error mechanisms we missed while writing [9], how
we caught them, and leverage this information to optimize the patch shape that we use.

The paper will proceed as follows. In Section 2, we define our version of boundaries for the
planar honeycomb code. We also discuss different geometries of patches and their effective dis-
tances. Then in Section 3, we present simulation results that compare this planar honeycomb
code to the periodic honeycomb code we benchmarked in [9]. We then make our conclusions in
Section 4. Appendix A describes the noise models we used in the main text. Appendix B includes
some additional figures that were too detailed to fit into the main text. Appendix C describes some
more physically-motivated noise models for direct parity measurements. Appendix D specifies the
exact circuit of a small planar honeycomb code memory experiment.

2 The Honeycomb Code with Boundaries
2.1 Defining the bulk
The bulk of the honeycomb code is defined on a hexagonal lattice with physical qubits placed on
the vertices. The faces of the lattice are three-colorable, and we associate to each color one of
the three non-identity Pauli operators. In diagrams we associate X-type operators to red-colored
faces, Y -type operators to green-colored faces, and Z-type operators to blue-colored faces. These
faces will form the six-body stabilizers that we repeatedly measure to check for errors.

Each edge of the hexagonal lattice travels between two faces of the same type, and is identified
as being of that same type. These edges will form the two-body measurements we perform - with
Pauli type determined by color. In each round we measure all edges of a particular color. For
example, an edge traveling between two green faces is a green edge and represents a two-body
Y -basis parity measurement. To avoid information overload in diagrams, we often don’t explicitly
color the edges and rely on the reader to infer the edge type from the surrounding faces.

Each stabilizer’s value is equal to the product of the six edge measurements that encircle the
stabilizer’s face. The three-coloring of the faces guarantees that the encircling edges are composed
of edges of the two Pauli types other than the face’s Pauli type. The value of a face’s stabilizer is
recomputed whenever the previous two edge measurement layers match the two Pauli types of the
face’s encircling edges.

In the periodic honeycomb code the edge colors are measured in a consistent cycle - red, green,
blue, red, green, blue, etc. During this process, the logical operators must move in order to avoid
anti-commuting with the next layer’s edge measurements. This dance requires multiplying some
of the previous layer’s edge measurement results into the logical operator - choosing a new logical
representative using the newly inserted weight-two stabilizers of the code state. See [9] for a
comprehensive summary.

2.2 Introducing boundaries
To form boundaries of a particular color, we begin with an unbounded honeycomb code and cut
out a finite sized patch - see Figure 1. We first cut through edges of one color A, then edges of a
second color B, then edges of color A, then finally edges of color B closing off the cut. The edge
color being cut through defines the type of the boundary along that part of the cut. The A-B-A-B
pattern around the patch is analogous to the X-Z-X-Z pattern of boundaries around surface code
patches.

All qubits outside the cut are excluded. The faces and edges inside the cut retain their roles
as stabilizers and parity measurements. This leads to face stabilizers of smaller sizes, and edge

Accepted in Quantum 2022-09-12, click title to verify 2

measurements along the boundary which correspond to single-qubit measurements. Note that no
extra qubit connectivity is required at the boundaries beyond what is available in the bulk. This is
a desirable property because it allows the underlying lattice of physical qubits to be homogeneous.
It doesn’t restrict where logical qubits can be placed.

Figure 1: Cutting a planar honeycomb code out of a hexagonal tiling. In the diagram, the cut line is blue when
cutting blue edges and green when cutting green edges. A boundary of type A is formed by repeatedly cutting
edges of type A. A logical qubit is formed when the boundaries are attached in an ABAB cycle. Boundary edges
(i.e. edges that are cut) retain their color from the original lattice, but represent single-qubit measurements
instead of two-qubit measurements.

Figure 2: Measurement ordering and observable locations in a planar honeycomb patch. The cycle of arrows
indicates edge measurement layers alternating between X,Y,Z and X,Z,Y orderings. The colored vertical bars
represent measuring all edges of the corresponding color (e.g. the green bar represents measuring all Y type
edges). Fully crossing a vertical bar represents performing the corresponding edge measurements, and then
multiplying the edges along an observable’s path into that observable. Note that red edges are never multiplied
into the observable. The two anti-commuting observables are supported along the horizontal and vertical
shaded paths, with colored circles indicating their Pauli product at that moment. Note that the left-hand red
measurement layer cannot be followed by a blue measurement layer, because the uppermost red operator in the
vertical observable would anti-commute with a blue boundary edge measurement whether or not red edges had
been multiplied into the observable. Similarly, the right-hand red measurement layer cannot be followed by a
green measurement layer.

Accepted in Quantum 2022-09-12, click title to verify 3

A logical qubit is formed out of two anti-commuting observables. These observables must
commute with the stabilizers of the honeycomb code. Additionally, between each round of edge
measurements, both observables must commute with the preceding edge measurements and also
the upcoming edge measurements. Unfortunately, if we reuse the cyclic X-Y -Z edge measurement
cycle that was used in the periodic honeycomb code, we will run into a problem where the logical
operators unavoidably anti-commute with some of the single-qubit measurements at the bound-
aries. However, it turns out that this problem can be avoided by alternating between two edge
measurement orderings [12], such as X-Y -Z and X-Z-Y . The resulting scheduling successfully
extracts the required stabilizers while allowing the logical observables to dance around the edge
measurements - see Figure 2.

A potential drawback of alternating between orderings is that there are longer gaps of time
between measuring certain stabilizers, resulting in some stabilizers accumulating more noise than
others. These manifest as zig-zag patterns in the rate that detection events occur as time passes -
see Figure 13. Another complication is that, due to destabilizing single-qubit boundary edge mea-
surements, certain boundary detectors (i.e. deterministic comparisons of face stabilizer outcomes)
are collected only once per six edge measurements, compared to twice per six edge measurements
in the bulk - see Figure 3 and Figure 4. We were initially worried that these issues would hurt per-
formance, compared to the periodic honeycomb code. Fortunately, as we will show, these changes
do not qualitatively affect the robustness of the code.

Figure 3: Face stabilizers collected after each edge measurement layer. Each edge measurement layer has a
subscript a or b to distinguish its location within the two-round X,Y,Z-then-X,Z,Y cycle of edge measurements.
The faces collected after a particular layer are color-filled. Boundary faces of the correct color but which could
not be collected in this layer due to commutation constraints - see Figure 4 - are white with ‘skip’ labels. In
particular, each boundary face stabilizer can only be collected in a layer that measures all of the face’s boundary
edges. Consequently, the red faces in the corners, having boundary edges of different colors, are never collected.
The remaining different-color faces are shaded grey. The detectors themselves - namely the measurement
comparisons to be checked - are labeled by ‘Check’. Each check is evaluated on the edges surrounding each of
the colored-in faces at that step.

2.3 Choosing the patch
One of the benefits of defining the planar honeycomb code in terms of cutting a patch out of the
unbounded honeycomb code is simplicity. It’s not hard to figure out how to move in a particular
direction while cutting a specific edge type. Additionally, every qubit and operation in the pla-
nar code is a qubit or operation inherited from the unbounded honeycomb code. From a circuit
perspective, the cutting approach is purely subtractive. It removes operations, or shrinks opera-
tions, but never introduces operations. This means it’s not hard to figure out how to “cap off” the
boundaries (i.e. which operations need to occur there in order for the circuit to be correct). This
is analogous to the boundaries of the surface code, which can be introduced in a similar way.

It is worth noting that not every edge measurement we make is used to form a detector. In
Figure 3, immediately after the edge measurement step labeled Xa, consider a red edge measure-
ment incident to a green face along the top boundary. This case is also illustrated at the bottom
of Figure 4. This red edge measurement can only contribute to the blue stabilizer below it and
the green stabilizer above it. The measurement doesn’t contribute to the blue stabilizer because
the step Xa is sandwiched between two blue edge steps, and blue stabilizers are only measured
when a red edge measurement step is next to a green edge measurement step. The measurement

Accepted in Quantum 2022-09-12, click title to verify 4

XbZa Xa Zb Ya

Measurements

Learn
ZaXa

Learn
XaZb

Measurements

Projection
into stab.X1X2X3X4X5X6

Stabilizers

Anti-
commuting
meas.

1 2

3 4

5 6

1 2

3 4

Plaquette

Y1Y2Y3Y4Y5Y6

Z1Z2Z3Z4Z5Z6

X1X2X3X4

Y1Y2Y3Y4

Z1Z2Z3Z4

Compare
to form
detector

Compare
to form
detector

Yb Za Xa

XbZa Xa Zb Ya

Learn
ZaXa

Learn
XaZb

compare
to form
detector

Yb Za Xa

Cannot

XbZa Xa Zb Ya

Learn
ZaXa

Learn
XaZb

compare
to form
detector

Yb Za Xa

Cannot

X5X6

5 6 Y5Y6

Z5Z6

Figure 4: The evolution of stabilizers for a bulk plaquette, for which two detectors are formed every six edge
measurement rounds, and for both kinds of a boundary plaquette, for which one detector is formed every six
edge measurement rounds. The vertical black bars represent the edge measurements, while the horizontal
colored lines represent the time during which a given stabilizer is valid (i.e. stabilizes the state of the qubits
on the plaquette). This illustrates that bulk plaquettes feature a stabilizer that remains consistently valid
through the measurement cycle. Filled circles represent measurements that project the plaquette qubits into
the subspace of the given stabilizer. Open circles represent occasions where we learn a stabilizer by combining
other measurements, as indicated by dashed arrows. Grey arrows indicate detectors, which are comparisons of
consistent values of stabilizers (or equivalently, products of all the check measurements from which we learned
the stabilizers in question). These detectors should yield deterministic parity in the absence of noise, and detect
errors in the presence of noise.

does appear in the equation used for checking the green stabilizer, but it appears twice (once on
the left and once on the right). These two contributions cancel out and can be omitted. Therefore
this specific edge measurement is never used. It could be removed from the circuit, freeing up
spacetime that could be used for other purposes. That would likely be beneficial but, to keep the
definition of our boundaries simple and uniform, we leave things as they are instead of removing
the unused measurements.

In [9], we used honeycomb codes covering regions of data qubits with a width:height aspect
ratio of 2:3. We picked this ratio by carefully thinking about what the fastest-horizontally-moving
and fastest-vertically-moving error mechanisms would be. For this paper, we used a new feature
in Stim which can automatically search for the smallest undetectable set of “graphlike” errors that
cause a logical error. A graphlike error is a physical error that produces at most two detection
events. For example, a single qubit X error on a data qubit immediately after a measurement is
a graphlike error, as it will trigger the detectors associated with the two non-commuting incident
faces. An example of a non-graphlike error in the honeycomb code is a single measurement error,
which causes 4 detection events - two for each of the faces it is incident to. The graphlike code
distance may be larger than the true code distance, because it neglects the possibility that errors
that trigger multiple detectors may produce faster moving errors. However, it can be computed
cheaply by reduction to a shortest path problem. The graphlike error distance therefore is a useful
heuristic for choosing e.g. patch dimensions, but the Monte Carlo sampling is the real arbiter
of code performance, as it will include the influence of all elements of the error model. Indeed,
departures from error scaling matching the graphlike code distance would be a good indication

Accepted in Quantum 2022-09-12, click title to verify 5

that non-graphlike errors are involved in the dominating error mechanism.
The graphlike code distance search immediately found error mechanisms that moved faster

vertically than we thought was possible in the SD6 and SI1000 circuits. We show an example of
such an error mechanism in Figure 5, where a non-obvious pattern of ‘X‘, ‘Z‘ and ‘YM‘ on every
2nd qubit along a vertical line connect the boundaries without producing any detection events. A
‘YM‘ error is a combination of a single qubit ‘Y‘ error and a classical measurement error during
one edge measurement. In the EM3 error model, the ‘YM‘ error is a native error case. In SD6
and SI1000 circuits, the ‘YM‘ error is a hook error caused by inserting an physical error on the
measurement ancilla halfway through the edge measurement. Note that you can’t simply replace
the ‘YM’ hook error with a ‘Y’ data error, due to time ordering constraints.

With hindsight on our side, we looked more closely at the data we collected for [9] and realized
this is actually noticeable from the plots included in the appendix of the paper (which separately
showed the logical error rates for the horizontal and vertical observables). Consequently, in this
paper, for the SD6 and SI1000 layouts, we now use a 1:2 aspect ratio instead of a 2:3 aspect ratio.

The graphlike code distance search also helped us choose a more efficient lattice geometry. Our
initial implementation of the planar honeycomb code used what we now call a sheared layout - see
Figure 11. We expected this layout to perform better because it made all the boundaries identical,
up to rotations of the hexagonal tiling and permutations of the colors. The graphlike code distance
search revealed that this expectation was wrong. Table 1 includes the horizontal and vertical
graphlike code distances for the three error models and both straight and sheared boundaries,
demonstrating the lower horizontal graphlike code distance of the sheared patch. The issue is that,
because of the rotational symmetry in a hexagonal tiling, there are fast moving diagonal error
mechanisms analogous to the fast moving vertical error mechanisms that forced us to change the
patch aspect ratio. Shearing the layout preserves the horizontal distance between the two vertical
boundaries, but it reduces the diagonal distance. Based on this information, we switched to using
vertical boundaries that moved straight up-and-down - see Figure 1 - squiggling back and forth in
a graphlike-code-distance-maximizing way.

Figure 5: A sparse long distance error mechanism along a vertical line of qubits in the honeycomb code, which
was found by a search for short undetectable sets of graphlike errors. Each white box represents a single physical
error, with the kind of error indicated by the text inside the box. The ‘YM‘ error corresponds to both a Y error
on one qubit and a classical flip of the reported measurement outcome for the indicated edge measurement.
Each white circle represents a detector from the circuit. The number in the circle is the edge measurement layer
where that detector is checked, potentially producing a detection event. An arrow from a white box to a white
circle indicates that the error triggers the detector to produce a detection event. Triggering a detector twice
cancels out the detection event. Below, we plot the error string traversing the lattice through time as well as
space, illustrating the importance of the ‘YM‘ measurement in resolving the time ordering.

Accepted in Quantum 2022-09-12, click title to verify 6

width » height h = 3 h = 6 h = 9 h = 12 h = 15 h = 18 h = 21 h = 24 h = 27 h = 30 h = 33 h = 36 h = 39
EM3 1 2 3 4 5 6 7 8 9 10 11 12 13
SD6 1 3 4 6 7 9 10 12 13 15 16 18 19

SI1000 1 3 4 6 7 9 10 12 13 15 16 18 19
(sheared) EM3 1 2 3 4 5 6 7 8 9 10 11 12 13
(sheared) SD6 1 3 4 6 7 9 10 12 13 15 16 18 19

(sheared) SI1000 1 3 4 6 7 9 10 12 13 15 16 18 19
height » width w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9 w = 10 w = 11 w = 12 w = 13 w = 14

EM3 1 1 2 2 3 3 4 4 5 5 6 6 7
SD6 1 2 3 4 5 6 7 8 9 10 11 12 13

SI1000 1 2 3 4 5 6 7 8 9 10 11 12 13
(sheared) EM3 1 N/A 2 N/A 3 N/A 4 N/A 5 N/A 6 N/A 7
(sheared) SD6 1 N/A 3 N/A 4 N/A 6 N/A 7 N/A 9 N/A 10

(sheared) SI1000 1 N/A 3 N/A 4 N/A 6 N/A 7 N/A 9 N/A 10

Table 1: Horizontal and vertical graphlike code distances of planar honeycomb patches under circuit noise.
Computed in four minutes using stim.Circuit.shortest_graphlike_error.

3 Simulations
In this section, we use Monte Carlo sampling to quantify the performance of the planar honey-
comb code. We compute the threshold, lambda factors, and teraquop footprints (the number of
qubits required to hit one-in-a-trillion failure rates) and to compare these numbers to the ones we
determined for the periodic honeycomb code in [9].

Our methodology is based on memory experiments simulated using Stim [7] and decoded us-
ing an internal software tool that performs uncorrelated and correlated minimum weight perfect
matching. A memory experiment initializes a logical qubit into a known state, idles the logical
qubit for some number of rounds while performing error correction to protect it against noise, and
then measures whether or not the logical qubit is still in the intended state. The Python code used
to generate circuits, run simulations, and render plots is attached to this paper in the ancillary file
directory code/ and is also available online at github.com/strilanc/honeycomb_threshold.

We worked with three different variations of the memory experiment: H-type, V-type, and
EPR-type. All three variations use the same physical operations to preserve their logical state,
but differ in which state they prepare and measure. The H-type experiment uses noisy transversal
initialization/measurement to fault-tolerantly prepare and measure the horizontal observable. The
V-type experiment uses noisy transversal initialization/measurement to fault-tolerantly prepare
and measure the vertical observable. The EPR-type experiment uses magically noiseless operations
to prepare a perfect EPR pair between the logical qubit and a magically noiseless ancilla qubit.
The Bell basis measurement at the end, between the logical qubit and the ancilla qubit, also uses
magically noiseless operations.

While we do not report Monte Carlo simulations of the EPR-type experiment, we used it ex-
tensively when writing and debugging our code. The EPR experiment checks that the honeycomb
code circuit preserves an entangled state, verifying that both observables are simultaneously pro-
tected and proving the logical qubit is actually a qubit. We didn’t use the EPR type experiment
for benchmarking because we were worried about distortions from the magically noiseless time
boundaries. Also, we prefer to report benchmarks that don’t impose requirements that a real
quantum computer couldn’t meet.

In plots, unless otherwise specified, the error rate that we focus on is “combined code cell logical
error rate". By “code cell" we mean that the error rates refer to the error rate per block of d rounds
where d is the graphlike code distance (the number of graphlike physical errors required to produce
an undetectable logical error). This differs from other per-round error rates often reported in the
literature, but is more relevant to the error rate of a logical operation, which we expect to have a
timelike extent on the order of the code distance. Beware that our definition couples the number
of rounds in a code cell to the noise model, because different noise models have different graphlike
code distances. These differences are relatively small on all log-log plots but good to keep in mind.
Also note that our memory experiment circuits are 3d rounds long.

The “combined” in “combined code cell logical error rate” refers to the fact that we are extrap-
olating the logical error rate for an arbitrary state by combining the error rates from the H-type
and V-type experiments (which use specific states not vulnerable to all errors). We combine the
error rates by assuming they are independent errors and that both must not occur. If EH and EV

Accepted in Quantum 2022-09-12, click title to verify 7

https://github.com/strilanc/honeycomb_threshold

are the H-type and V-type error rates then we define the combined error rate EHV to be

EHV = 1− (1− EH)(1− EV) (1)

We use three error models in this paper (see Table 3). The first error model we use is SD6
(standard depolarizing 6-step cycle), a standard circuit model with homogeneous component errors
relevant to the QEC literature. The second is SI1000 (superconducting-inspired 1000 ns cycle), a
superconducting-inspired error model where, for example, the measurements are significantly nois-
ier than the gates. Finally, we adopt the Majorana-inspired EM3 model (entangling-measurement
3-step cycle), which includes two-qubit entangling measurements, to compare with the surface code
benchmarking performed in [5]. Variations on this EM3 error model are discussed in Appendix C.

Figure 6 contains the raw logical error rates for both the periodic and planar honeycomb codes,
while Figure 7 shows line fits projecting logical error rates at larger code distances. Both are
computed using a custom MWPM decoder that includes correlations between the two connected
components of the error graph [6, 9]. From that data, we conclude that the threshold of the planar
honeycomb code is not appreciably lower than the periodic honeycomb code. Note that there was
reason to believe the threshold - which is often set by the bulk behavior - might decrease due to
the modification of the bulk syndrome cycles. In the SD6 model it even appears higher, likely an
artifact of scaling with more carefully chosen aspect ratios.

Comparing with the surface code thresholds obtained in an identical error model in [9], the
threshold of the honeycomb code is approximately half that of the surface code in SD6 and SI1000.
Similar to [9], in the EM3 model using two-qubit entangling measurements, the threshold is between
5x-10x greater than the surface code in a similar model [5].

Figure 6: Logical error rate plots of the performance of a periodic and planar honeycomb memory. Note that,
due to our optimizations of the patch shape, the old periodic honeycomb data (from [9]) uses different patch
sizes. Also, the new planar honeycomb data uses different patch sizes for different error models. The plotted
logical error rate is the combined code cell logical error rate (see Equation 1). Color highlights indicate statistical
uncertainty from Monte Carlo sampling. The highlight covers hypothetical logical error rates with a Bayes factor
of at most 1000 vs the maximum likelihood hypothesis probability, assuming a binomial distribution. In both the
planar and periodic cases, we see the noticeable effect of damaging correlated errors produced by the EM3 noise
model, which result in non-linear behaviour at low error rates, coinciding with [9]. The raw planar honeycomb
logical error rate data we collected for this paper is in ancillary file “stats_planar_honeycomb.csv". The periodic
honeycomb logical error rate data we are comparing against is in ancillary file “stats_from_previous_paper.csv"
(copied over from [9]).

Figure 8 and Figure 9 plot the lambda factors and teraquop footprints, respectively. From
Figure 8 we verify that lambda increases approximately linearly with error rate well below thresh-
old. Ultimately, the teraquop footprint plot answers the most important question of how much
qubit overhead is required to hit a target error rate. Essentially, we observe that enforcing pla-
nar constraints incurs no qualitative cost to the qubit overheads required for a teraquop mem-
ory. At a physical error rate of 10−3, a planar teraquop honeycomb memory costs approximately
7000/50000/900 qubits in the SD6/SI1000/EM3 models. SI1000 has a particularly bad teraquop

Accepted in Quantum 2022-09-12, click title to verify 8

Figure 7: Line fit plots. These are used to project the patch size required to achieve a desired logical error
rate per logical operation for various physical error rates, assuming error suppression grows linearly in log space
versus patch width. Fits are only included for error rates which demonstrate error suppression. From this, we can
surmise a threshold within 0.2% − 0.3% for SD6, a threshold within 0.1% − 0.15% for SI1000, and a threshold
within 1.5% − 2.0% for EM3. The corresponding thresholds in the surface code are 0.5% − 0.7% for SD6 [9],
0.3% − 0.5% for SI1000 [9], and at least 0.2% for EM3 [5]. The performance reversal in the Majorana-inspired
EM3 model is due to the large number of ancilla and extra operations required to extract syndrome information
in the surface code compared with the honeycomb code.

footprint at this physical error rate because 10−3 is close to threshold in the SI1000 model. Corre-
spondingly, the SI1000 teraquop footprint drops dramatically as the physical error rate decreases
below 10−3 (see Figure 9).

Figure 8: Lambda factor plots. These project the multiplicative factor by which the logical error rate is reduced
each time the code distance is increased by 2 at different noise rates. Estimated using the slope of the line
fits from Figure 7. The color highlighting indicates how far each point can be moved by using line fits whose
least-squares error terms are at most 1.0 higher than the error term for the optimal least-squares fit when fitting
against the natural log of the logical error rates.

Accepted in Quantum 2022-09-12, click title to verify 9

Figure 9: Teraquop footprint plots. This projects the number of physical qubits required to store a logical qubit
capable of performing approximately a trillion logical operations - assuming each takes approximately distance-d
rounds to execute. The code distance required is projected using the line fits from Figure 7. The projected code
distance is rounded up to an achievable set of code parameters, and then converted to a qubit count. The color
highlighting indicates how far each point can be moved by using line fits whose least-squares error terms are at
most 1.0 higher than the error term for the optimal least-squares fit when fitting against the natural log of the
logical error rates.

4 Conclusion
The honeycomb code is a promising candidate for a sparsely connected quantum memory. While
it is not as robust as the surface code in the more standard SD6 and SI1000 error models, it boasts
a teraquop footprint within an order of magnitude of the surface code at physically plausible error
rates. In the EM3 error model, it significantly outperforms previous studies of the surface code [5].

Unlike the planar variant of the surface code, where the circuit is nearly identical to the toric
code, the planar variant of the honeycomb requires an appreciable departure from its periodic
cousin in terms of the ordering of operations. In spite of these changes, we observe that the planar
honeycomb code performs essentially as well as the periodic variant studied in [9].

That being said, we caution the reader that our results are not a direct comparison of the
planar and periodic honeycomb codes. We made multiple changes that affect performance, and are
comparing the planar honeycomb code after these changes to the periodic honeycomb code before
these changes. The most significant change is that we switched from using the patch width as the
code distance to using the graphlike code distance as the code distance. For example, because the
target code distance of EM3 circuits was effectively cut in half by this change, and because the
code distance determines how many rounds of idling we count as “one logical operation", it’s as if
we were previously requiring the periodic EM3 honeycomb code to achieve a logical error rate of
one per two trillion operations when computing its teraquop footprint.

Ultimately, our results cement the planar honeycomb code as a promising candidate for building
a scalable fault-tolerant quantum computer. We hope that the smallest conceivable distance-3
instantiation of the code, using a 4 × 6 patch of data qubits, can be tested experimentally in the
future.

5 Contributions
All authors worked together extensively to understand the planar honeycomb code and to present
it in a clear way. Craig Gidney wrote the circuit generation, simulation, and plotting code. Michael
Newman did the majority of the paper writing. Matt McEwen contributed refactored variants of
the EM3 error model inspired by hardware, and revised the paper for publication.

Accepted in Quantum 2022-09-12, click title to verify 10

6 Acknowledgements
We thank Austin Fowler for writing the internal software tool we used for syndrome decoding. We
thank Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew
B. Hastings, and Marcus P. da Silva for coordinating to make their independent results available
to the public simultaneously with ours. We thank Hartmut Neven for creating an environment
where this research was possible.

References
[1] Google Quantum AI. Exponential suppression of bit or phase errors with cyclic error correc-

tion. Nature, 595(7867):383, 2021. DOI: 10.1038/s41586-021-03588-y.
[2] Dave Bacon. Operator quantum error-correcting subsystems for self-correcting quantum mem-

ories. Physical Review A, 73(1):012340, 2006. DOI: 10.1103/PhysRevA.73.012340.
[3] Héctor Bombín and Miguel A Martin-Delgado. Optimal resources for topological two-

dimensional stabilizer codes: Comparative study. Physical Review A, 76(1):012305, 2007.
DOI: 10.1103/PhysRevA.76.012305.

[4] Christopher Chamberland, Guanyu Zhu, Theodore J Yoder, Jared B Hertzberg, and An-
drew W Cross. Topological and subsystem codes on low-degree graphs with flag qubits.
Physical Review X, 10(1):011022, 2020. DOI: 10.1103/PhysRevX.10.011022.

[5] Rui Chao, Michael E Beverland, Nicolas Delfosse, and Jeongwan Haah. Optimization of the
surface code design for majorana-based qubits. Quantum, 4:352, 2020. DOI: 10.22331/q-2020-
10-28-352.

[6] Austin G Fowler. Optimal complexity correction of correlated errors in the surface code. arXiv
preprint arXiv:1310.0863, 2013. DOI: 10.48550/arXiv.1310.0863.

[7] Craig Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497, July 2021. ISSN
2521-327X. DOI: 10.22331/q-2021-07-06-497.

[8] Craig Gidney. The stim circuit file format (.stim). https://github.com/quantumlib/Stim/
blob/main/doc/file_format_stim_circuit.md, 2021. Accessed: 2021-08-16.

[9] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton. A fault-tolerant
honeycomb memory. Quantum, 5:605, 2021. DOI: 10.22331/q-2021-12-20-605.

[10] Craig Gidney, Michael Newman, and Matt Mcewen. Data for "Benchmarking the Planar
Honeycomb Code". Zenodo, September 2022. DOI: 10.5281/zenodo.7072889.

[11] Jeongwan Haah and Matthew B Hastings. Boundaries for the honeycomb code. Quantum, 6:
693, 2022. DOI: 10.22331/q-2022-04-21-693.

[12] Matthew B Hastings and Jeongwan Haah. Dynamically generated logical qubits. Quantum,
5:564, 2021. DOI: 10.22331/q-2021-10-19-564.

[13] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics, 321(1):
2–111, 2006. DOI: 10.1016/j.aop.2005.10.005.

[14] Yi-Chan Lee, Courtney G Brell, and Steven T Flammia. Topological quantum error correction
in the kitaev honeycomb model. Journal of Statistical Mechanics: Theory and Experiment,
2017(8):083106, 2017. DOI: 10.1088/1742-5468/aa7ee2.

[15] Muyuan Li, Daniel Miller, Michael Newman, Yukai Wu, and Kenneth R. Brown. 2d compass
codes. Physical Review X, 9(2), may 2019. DOI: 10.1103/physrevx.9.021041.

[16] Martin Suchara, Sergey Bravyi, and Barbara Terhal. Constructions and noise threshold of
topological subsystem codes. Journal of Physics A: Mathematical and Theoretical, 44(15):
155301, 2011. DOI: 10.1088/1751-8113/44/15/155301.

[17] James R Wootton. Hexagonal matching codes with two-body measurements. Journal of
Physics A: Mathematical and Theoretical, 55(29):295302, jul 2022. DOI: 10.1088/1751-
8121/ac7a75.

A Error Models and Syndrome Cycles
We used essentially the same noise models that we used in [9]. See Table 2 and Table 3. There are
two notable differences.

Accepted in Quantum 2022-09-12, click title to verify 11

https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.22331/q-2020-10-28-352
https://doi.org/10.22331/q-2020-10-28-352
https://doi.org/10.48550/arXiv.1310.0863
https://doi.org/10.22331/q-2021-07-06-497
https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md
https://github.com/quantumlib/Stim/blob/main/doc/file_format_stim_circuit.md
https://doi.org/10.22331/q-2021-12-20-605
https://doi.org/10.5281/zenodo.7072889
https://doi.org/10.22331/q-2022-04-21-693
https://doi.org/10.22331/q-2021-10-19-564
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1088/1742-5468/aa7ee2
https://doi.org/10.1103/physrevx.9.021041
https://doi.org/10.1088/1751-8113/44/15/155301
https://doi.org/10.1088/1751-8121/ac7a75
https://doi.org/10.1088/1751-8121/ac7a75

First, the definition of single qubit measurement error in [9] implicitly assumed the measurement
was a demolition measurement. The EM3 error model in this paper uses non-demolition single
qubit measurements at the boundaries. We introduced a “truncated parity measurement" MP I(p)
to account for this.

Second, in [9] we accidentally said that we were applying errors after MP P measurements.
Actually, the code applies errors before the measurement.

Noisy Gate Definition
AnyClifford2(p) Any two-qubit Clifford gate, followed by a two-qubit depolarizing channel of strength p.
AnyClifford1(p) Any one-qubit Clifford gate, followed by a one-qubit depolarizing channel of strength p.

InitZ(p) Initialize the qubit as |0〉, followed by a bitflip channel of strength p.
MZ(p) Precede with a bitflip channel of strength p, and measure the qubit in the Z-basis.

Measure a Pauli product PP on a pair of qubits and, with probability p, choose an error
MP P (p) uniformly from the set {I, X, Y, Z}⊗2 × {flip, no flip}.

The flip error component causes the wrong result to be reported.
The Pauli error components are applied to the target qubits before the measurement.
If one of the Pauli operators is I, so that it is a single-qubit measurement (on the boundary),
choose an error uniformly from the set {I, X, Y, Z} × {flip, no flip}.

Idle(p) If the qubit is not used in this time step, apply a one-qubit depolarizing channel of strength p.
ResonatorIdle(p) If the qubit is not measured or reset in a time step during which other qubits are

being measured or reset, apply a one-qubit depolarizing channel of strength p.

Table 2: Modified from [9]. Noise channels and the rules used to apply them. Noisy rules stack with each other
- for example, Idle(p) and ResonatorIdle(p) can both apply depolarizing channels in the same time step. Note
that our direct measurement error model is still using circuit noise (it is not a phenomenological noise model) -
correlated errors are applied according to the support of each two-qubit measurement, coinciding with the error
model in [5]. For further discussion of this error model, see Appendix C.

Abbreviation SD6 SI1000 EM3

Name Standard
Depolarizing

Superconducting
Inspired

Entangling
Measurements

Noisy Gateset

CX(p)
AnyClifford1(p)
InitZ(p)
MZ(p)
Idle(p)

CZ(p)
AnyClifford1(p/10)
InitZ(2p)
MZ(5p)
Idle(p/10)
ResonatorIdle(2p)

MP P (p)
MP I(p)
InitZ(p/2)
MZ(p/2)
Idle(p)

Measurement
Ancillae Yes Yes No

Honeycomb
Cycle Length 6 time steps 9 time steps (≈ 1000ns) 3 time steps

Table 3: Modified from [9]. The three noisy gate sets investigated in this paper. See Table 2 for the exact
definitions of the noisy gates. The superconducting-inspired acronym refers to an expected cycle time of about
1000 nanoseconds [1].

Accepted in Quantum 2022-09-12, click title to verify 12

B Supplementary Figures

Data MZZ MYY MXX MYY MZZ MXX

EM3 Circuit (Based on MPP)

Data

SD6 Circuit (Based on CNOT)

Measure

C

R M

C C-1 C-1

R M

C-1 C

Data

SI1000 Circuit (Based on CZ and Long Measure and Reset)

Measure

C

R M

C C-1 C-1 C-1

H

C

H R MH H

Wait for demolition measurements

Figure 10: Circuit cycles used for each of the three noisy gate sets considered in this paper. The entangling
measurement noisy gate set (EM3) has the desired parity measurements as native operations. The standard
depolarizing noisy gate set (SD6) decomposes parity measurements into a reset, basis change rotations on the
data qubits, two CNOTs, and a measurement. The operations can be pipelined such that rotating and interacting
with the data qubits is the limiting factor. The superconducting inspired noisy gate set (SI1000) decomposes
parity measurements into a reset, basis change rotations on the data and measurement qubits, two CZs, and a
measurement. The reset and measurement are assumed to take much longer than the other operations, so the
three edge measurement layers within a round are arranged to have their resets and measurements execute in
parallel.

Figure 11: A planar honeycomb code using a sheared patch shape. This was the initial patch shape we tried
using, because shearing increases the minimum length of logical operators [3] in the periodic honeycomb code
and because shearing makes the four boundaries symmetrical in the hexagonal lattice. But we found it has a
suboptimal graphlike code distance due to the reduced diagonal distance between the two green boundaries.

Accepted in Quantum 2022-09-12, click title to verify 13

Figure 12: Detection fractions of our previous implementation of the periodic honeycomb code and our new
implementation of the planar honeycomb code. We expected the planar honeycomb code to have a higher overall
detection fraction at large code distances, because of its alternating edge layer ordering, but the opposite appears
to be the case. Raw grouped detection fraction data is in ancillary file “detection_fractions.csv".

Figure 13: Detection fractions grouped by edge measurement layer. The data is repeated (left to right) to help
see the repeating cycle of the edge measurement layers. We expected these oscillations, because the alternating
XYZ and XZY edge layer measurement orderings cause different parity checks to span different amounts of
time and to aggregate different numbers of physical measurements. Raw grouped detection fraction data is in
ancillary file “detection_fractions_per_layer.csv".

Accepted in Quantum 2022-09-12, click title to verify 14

Figure 14: Threshold plots for each decoder type, observable, and gate set. Raw logical error rate data is in
ancillary file “stats_planar_honeycomb.csv".

Accepted in Quantum 2022-09-12, click title to verify 15

C Hardware applicability of EM3 error models
Given the performance of the honeycomb code in the direct measurement model, the correspon-
dence of the error model to hardware becomes an important question. Conveniently, the perfor-
mance of the code in a direct measurement model is not especially sensitive to details of the error
model, as we show here.

The EM3 error model in the main text was chosen for easy comparison to other literature,
specifically [5]. It doesn’t correspond to the errors expected from a hardware implementation of
two-qubit direct parity measurements.

Here, we present two additional error models intended to mimic those provided for the standard
circuit model. SDEM3 represents a simpler error model, with two-qubit depolarizing error applied
after each two-qubit measurement gate, uncorrelated with a possible measurement flip.

SIEM3000 represents a more complex error model inspired by realizations of two-qubit parity
measurements (MPP) in superconducting hardware. This error model applies two distinct error
mechanisms with each MPP: first, a two-qubit error parallel to the measurement axis (e.g. a ZZ
error for MZZ), representing accidental measurement the individual qubit states rather than only
their parity; and second, independent one-qubit errors perpendicular to the measurement (e.g. X
for MZZ) representing the independent likelihood of each qubit undergoing independent errors,
such as T1 decay. Note that this error model does not fully capture errors expected for a given
hardware implementation of parity measurements and other more complex models might better
reflect a spesific experimental realization. For example, one could imagine associating a T1 decay
error on one qubit during measurement with a bitflip on that qubit and an additional dephasing
error on the other qubit. Rather than fully capturing possible hardware errors, these models are
intended to serve as some evidence of the sensitivity of code performance in direct measurement
models to the details of the error model used. Table 4 summarizes the re-definitions of MPP errors
for these three models, with all other error rates being the same as for the EM3 model described
in Table 3 and with individual errors given in Table 2.

Noise Model MPP Error Implementation
EM3 Measure a Pauli product PP on a pair of qubits and, with probability p, choose an error

uniformly from the set {I, X, Y, Z}⊗2 × {flip, no flip}.
The flip error component causes the wrong result to be reported.
The Pauli error components are applied to the target qubits before the measurement.

SDEM3 Measure a Pauli product PP on a pair of qubits,
and apply a two-qubit depolarizing channel with probability p:
Apply the trivial Pauli operator (II) with probability 1− p
or any non-trivial Pauli operator with equal probability p/15

and independently report the wrong measurement result with probability p
SIEM3000 Measure a Pauli product PP on a pair of qubits,

and apply a two-qubit dephasing channel with probability p:
Apply the Pauli operator used for the measurement PP with probability p
(e.g. for MZZ, apply ZZ with probability p)

and, independently for each qubit, apply a bitflip error with probability p:
Apply a Pauli operator P ′ 6= P with probability p
(e.g. for MZZ, apply X with probability p)

and independently report the wrong measurement result with probability p

Table 4: The MPP error mechanism for EM3, SDEM3 and SIEM3000. All other elements of the error model
are identical to EM3 described in Table 3, with elemental errors given in Table 2.

Figure 15 illustrates the lambda factors and teraquop footprints for the three given error models.
Specifically, the differences between the SDEM3 and SIEM3000 are of similar scale to the estimated
uncertainty throughout the studied range. This demonstrated a relative insensitivity to the details
of the error model.

All three error models coincide just above Λ = 10, at an error parameter just below p = 10−3.
Notably however, while SDEM3 and SIEM3000 have a similar thresholds below 1%, the correlated
EM3 model has noticeably higher threshold, and quite a distinct slope between threshold and the
coincident point around Λ = 10. This difference in scaling behaviour provides some reason to be
cautious when quoting threshold alone as a summary of code performance under a given error

Accepted in Quantum 2022-09-12, click title to verify 16

Figure 15: Lambda factor and teraquop footprint plots for the three EM3-like error models described in Table 4.
EM3 is the error model used in the main text. SDEM3 is a more simplistic error model, without correlations
between the 2-qubit depolarizing errors and the classical bit flip errors. SIEM3000 is a more complex model,
representative of some errors expected in a hardware implementation. The latter two models have qualitatively
similar performance, illustrating the some robustness to the precise details of the MPP error model.

model. Overall however, the qualitative agreement between these different error models for the
MPP operation provides some evidence that the performance of the code is robust to changes
in the error model, and is likely to remain similar for a true hardware error model for direct
parity measurements. Details regarding the relative importance of different error mechanisms have
been neglected here, and represent a good opportunity for future work, as does density matrix
simulations of the errors associated with hardware parity measurements.

Accepted in Quantum 2022-09-12, click title to verify 17

D Example Planar Honeycomb Circuit
The following is a Stim circuit file [8] describing a 4×6 planar honeycomb memory experiment
protecting the vertical observable for 100 rounds from ancillary file “example_planar_honeycomb_
circuit.stim". Noise annotations have been removed so the circuit fits on the page. In the EM3
error model the circuit would have a graphlike code distance of 2.

QUBIT_COORDS (0, 0) 0
QUBIT_COORDS (0, 4) 1
QUBIT_COORDS (0, 5) 2
QUBIT_COORDS (1, 0) 3
QUBIT_COORDS (1, 1) 4
QUBIT_COORDS (1, 2) 5
QUBIT_COORDS (1, 3) 6
QUBIT_COORDS (1, 4) 7
QUBIT_COORDS (1, 5) 8
QUBIT_COORDS (2, 0) 9
QUBIT_COORDS (2, 1) 10
QUBIT_COORDS (2, 2) 11
QUBIT_COORDS (2, 3) 12
QUBIT_COORDS (2, 4) 13
QUBIT_COORDS (2, 5) 14
QUBIT_COORDS (3, 0) 15
QUBIT_COORDS (3, 1) 16
QUBIT_COORDS (3, 2) 17
QUBIT_COORDS (3, 3) 18
QUBIT_COORDS (3, 4) 19
QUBIT_COORDS (3, 5) 20
QUBIT_COORDS (4, 1) 21
QUBIT_COORDS (4, 2) 22
QUBIT_COORDS (4, 3) 23
Transversal initialization .
R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
TICK
H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
TICK
Round 1, layer Xa. Initial state had these edges as stabilizers .
MPP X1*X2 X4*X5 X8*X7 X11*X10 X13*X14 X16*X17 X20*X19 X22*X21 X0*X3 X6*X12 X9*X15 X18*X23
DETECTOR (0, 4.5 , 0) rec [-12]
DETECTOR (1, 1.5 , 0) rec [-11]
DETECTOR (1, 4.5 , 0) rec [-10]
DETECTOR (2, 1.5 , 0) rec [-9]
DETECTOR (2, 4.5 , 0) rec [-8]
DETECTOR (3, 1.5 , 0) rec [-7]
DETECTOR (3, 4.5 , 0) rec [-6]
DETECTOR (4, 1.5 , 0) rec [-5]
DETECTOR (0.5 , 0, 0) rec [-4]
DETECTOR (1.5 , 3, 0) rec [-3]
DETECTOR (2.5 , 0, 0) rec [-2]
DETECTOR (3.5 , 3, 0) rec [-1]
SHIFT_COORDS (0, 0, 1)
TICK
Round 1, layer Ya. Get X*Y=Z faces for the first time.
MPP Y0 Y1 Y4*Y3 Y6*Y7 Y9*Y10 Y13*Y12 Y16*Y15 Y18*Y19 Y21 Y23 Y2 Y5 Y8*Y14 Y11*Y17 Y20 Y22
OBSERVABLE_INCLUDE (0) rec [-12] rec [-11]
SHIFT_COORDS (0, 0, 1)
TICK
Round 1, layer Za. Get Y*Z=X faces . Initial state had them as stabilizers .
MPP Z0 Z2 Z3 Z6*Z5 Z8 Z9 Z11*Z12 Z14 Z15 Z18*Z17 Z20 Z22*Z23 Z1*Z7 Z4*Z10 Z13*Z19 Z16*Z21
OBSERVABLE_INCLUDE (0) rec [-11] rec [-10] rec [-9]
DETECTOR (2.5 , 3, 0) rec [-27] rec [-25] rec [-19] rec [-10] rec [-7] rec [-2]
DETECTOR (1.5 , 0, 0) rec [-30] rec [-28] rec [-14] rec [-11] rec [-3]
DETECTOR (1.5 , 6, 0) rec [-20] rec [-12] rec [-9]
SHIFT_COORDS (0, 0, 1)
TICK
Round 2, layer Xb. Get Z*X=Y faces for the first time.
MPP X1*X2 X4*X5 X8*X7 X11*X10 X13*X14 X16*X17 X20*X19 X22*X21 X0*X3 X6*X12 X9*X15 X18*X23
SHIFT_COORDS (0, 0, 1)
TICK
Round 2, layer Zb. Get X*Z=Y faces again .
MPP Z0 Z2 Z3 Z6*Z5 Z8 Z9 Z11*Z12 Z14 Z15 Z18*Z17 Z20 Z22*Z23 Z1*Z7 Z4*Z10 Z13*Z19 Z16*Z21
OBSERVABLE_INCLUDE (0) rec [-11] rec [-10] rec [-9]
DETECTOR (1.5 , 2, 0) rec [-41] rec [-38] rec [-31] rec [-13] rec [-10] rec [-3]
DETECTOR (3.5 , 2, 0) rec [-35] rec [-33] rec [-29] rec [-7] rec [-5] rec [-1]
DETECTOR (0.5 , 5, 0) rec [-43] rec [-40] rec [-32] rec [-15] rec [-12] rec [-4]
DETECTOR (2.5 , 5, 0) rec [-37] rec [-34] rec [-30] rec [-9] rec [-6] rec [-2]
DETECTOR (2.5 , -1, 0) rec [-39] rec [-36] rec [-11] rec [-8]
DETECTOR (0.5 , -1, 0) rec [-44] rec [-42] rec [-16] rec [-14]
SHIFT_COORDS (0, 0, 1)
TICK
Round 2, layer Yb. Get Z*Y=X faces again .
MPP Y0 Y1 Y4*Y3 Y6*Y7 Y9*Y10 Y13*Y12 Y16*Y15 Y18*Y19 Y21 Y23 Y2 Y5 Y8*Y14 Y11*Y17 Y20 Y22
OBSERVABLE_INCLUDE (0) rec [-12] rec [-11]
DETECTOR (2.5 , 3, 0) rec [-71] rec [-69] rec [-63] rec [-54] rec [-51] rec [-46] rec [-26] rec [-23] rec [-18] rec [-11] rec [-9] rec [-3]
DETECTOR (4.5 , 3, 0) rec [-67] rec [-61] rec [-49] rec [-21] rec [-7] rec [-1]
DETECTOR (0.5 , 3, 0) rec [-75] rec [-73] rec [-65] rec [-57] rec [-48] rec [-29] rec [-20] rec [-15] rec [-13] rec [-5]
SHIFT_COORDS (0, 0, 1)
TICK

Stable state reached . Can now consistently compare to stabilizers from previous rounds .
REPEAT 48 {

Layer Xa.
MPP X1*X2 X4*X5 X8*X7 X11*X10 X13*X14 X16*X17 X20*X19 X22*X21 X0*X3 X6*X12 X9*X15 X18*X23
DETECTOR (1.5 , 4, 0) rec [-98] rec [-96] rec [-91] rec [-85] rec [-83] rec [-76] rec [-25] rec [-23] rec [-16] rec [-10] rec [-8] rec [-3]
DETECTOR (2.5 , 1, 0) rec [-97] rec [-95] rec [-90] rec [-84] rec [-82] rec [-75] rec [-24] rec [-22] rec [-15] rec [-9] rec [-7] rec [-2]
SHIFT_COORDS (0, 0, 1)
TICK
Layer Ya.
MPP Y0 Y1 Y4*Y3 Y6*Y7 Y9*Y10 Y13*Y12 Y16*Y15 Y18*Y19 Y21 Y23 Y2 Y5 Y8*Y14 Y11*Y17 Y20 Y22
OBSERVABLE_INCLUDE (0) rec [-12] rec [-11]
DETECTOR (1.5 , 4, 0) rec [-41] rec [-39] rec [-32] rec [-13] rec [-11] rec [-4]
DETECTOR (2.5 , 1, 0) rec [-40] rec [-38] rec [-31] rec [-12] rec [-10] rec [-3]
DETECTOR (4.5 , 1, 0) rec [-36] rec [-29] rec [-8] rec [-1]
DETECTOR (-0.5 , 4, 0) rec [-43] rec [-34] rec [-15] rec [-6]
DETECTOR (0.5 , 1, 0) rec [-44] rec [-42] rec [-33] rec [-16] rec [-14] rec [-5]
DETECTOR (3.5 , 4, 0) rec [-37] rec [-35] rec [-30] rec [-9] rec [-7] rec [-2]
SHIFT_COORDS (0, 0, 1)
TICK
Layer Za.
MPP Z0 Z2 Z3 Z6*Z5 Z8 Z9 Z11*Z12 Z14 Z15 Z18*Z17 Z20 Z22*Z23 Z1*Z7 Z4*Z10 Z13*Z19 Z16*Z21
OBSERVABLE_INCLUDE (0) rec [-11] rec [-10] rec [-9]
DETECTOR (2.5 , 3, 0) rec [-70] rec [-67] rec [-62] rec [-55] rec [-53] rec [-47] rec [-27] rec [-25] rec [-19] rec [-10] rec [-7] rec [-2]
DETECTOR (1.5 , 0, 0) rec [-74] rec [-71] rec [-63] rec [-58] rec [-56] rec [-30] rec [-28] rec [-14] rec [-11] rec [-3]
DETECTOR (1.5 , 6, 0) rec [-72] rec [-69] rec [-48] rec [-20] rec [-12] rec [-9]
SHIFT_COORDS (0, 0, 1)
TICK
Layer Xb.
MPP X1*X2 X4*X5 X8*X7 X11*X10 X13*X14 X16*X17 X20*X19 X22*X21 X0*X3 X6*X12 X9*X15 X18*X23
DETECTOR (1.5 , 2, 0) rec [-99] rec [-97] rec [-91] rec [-85] rec [-82] rec [-75] rec [-25] rec [-22] rec [-15] rec [-11] rec [-9] rec [-3]
DETECTOR (3.5 , 2, 0) rec [-95] rec [-93] rec [-89] rec [-79] rec [-77] rec [-73] rec [-19] rec [-17] rec [-13] rec [-7] rec [-5] rec [-1]
SHIFT_COORDS (0, 0, 1)
TICK
Layer Zb.
MPP Z0 Z2 Z3 Z6*Z5 Z8 Z9 Z11*Z12 Z14 Z15 Z18*Z17 Z20 Z22*Z23 Z1*Z7 Z4*Z10 Z13*Z19 Z16*Z21
OBSERVABLE_INCLUDE (0) rec [-11] rec [-10] rec [-9]
DETECTOR (1.5 , 2, 0) rec [-41] rec [-38] rec [-31] rec [-13] rec [-10] rec [-3]
DETECTOR (3.5 , 2, 0) rec [-35] rec [-33] rec [-29] rec [-7] rec [-5] rec [-1]
DETECTOR (0.5 , 5, 0) rec [-43] rec [-40] rec [-32] rec [-15] rec [-12] rec [-4]
DETECTOR (2.5 , 5, 0) rec [-37] rec [-34] rec [-30] rec [-9] rec [-6] rec [-2]
DETECTOR (2.5 , -1, 0) rec [-39] rec [-36] rec [-11] rec [-8]
DETECTOR (0.5 , -1, 0) rec [-44] rec [-42] rec [-16] rec [-14]
SHIFT_COORDS (0, 0, 1)
TICK
Layer Yb.
MPP Y0 Y1 Y4*Y3 Y6*Y7 Y9*Y10 Y13*Y12 Y16*Y15 Y18*Y19 Y21 Y23 Y2 Y5 Y8*Y14 Y11*Y17 Y20 Y22
OBSERVABLE_INCLUDE (0) rec [-12] rec [-11]
DETECTOR (2.5 , 3, 0) rec [-71] rec [-69] rec [-63] rec [-54] rec [-51] rec [-46] rec [-26] rec [-23] rec [-18] rec [-11] rec [-9] rec [-3]
DETECTOR (4.5 , 3, 0) rec [-67] rec [-61] rec [-49] rec [-21] rec [-7] rec [-1]
DETECTOR (0.5 , 3, 0) rec [-75] rec [-73] rec [-65] rec [-57] rec [-48] rec [-29] rec [-20] rec [-15] rec [-13] rec [-5]
SHIFT_COORDS (0, 0, 1)
TICK

}

Transversal measurement .
MPP X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
Got X faces again .
DETECTOR (2.5 , 3, 1) rec [-50] rec [-47] rec [-42] rec [-35] rec [-33] rec [-27] rec [-13] rec [-12] rec [-11] rec [-7] rec [-6] rec [-5]
DETECTOR (1.5 , 0, 1) rec [-54] rec [-51] rec [-43] rec [-38] rec [-36] rec [-21] rec [-20] rec [-15] rec [-14]
DETECTOR (1.5 , 6, 1) rec [-52] rec [-49] rec [-28] rec [-16] rec [-10]
Got Y*X = Z faces again .
DETECTOR (1.5 , 4, 0) rec [-110] rec [-108] rec [-103] rec [-97] rec [-95] rec [-88] rec [-37] rec [-35] rec [-28] rec [-18] rec [-17] rec [-16] rec [-12] rec [-11] rec [-10]
DETECTOR (2.5 , 1, 0) rec [-109] rec [-107] rec [-102] rec [-96] rec [-94] rec [-87] rec [-36] rec [-34] rec [-27] rec [-15] rec [-14] rec [-13] rec [-9] rec [-8] rec [-7]
OBSERVABLE_INCLUDE (0) rec [-15] rec [-14] rec [-12] rec [-11]

Accepted in Quantum 2022-09-12, click title to verify 18

	1 Introduction
	2 The Honeycomb Code with Boundaries
	2.1 Defining the bulk
	2.2 Introducing boundaries
	2.3 Choosing the patch

	3 Simulations
	4 Conclusion
	5 Contributions
	6 Acknowledgements
	A Error Models and Syndrome Cycles
	B Supplementary Figures
	C Hardware applicability of EM3 error models
	D Example Planar Honeycomb Circuit

