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Optomechanical systems are rapidly be-
coming one of the most promising plat-
forms for observing quantum behaviour,
especially at the macroscopic level. More-
over, thanks to their state-of-the-art meth-
ods of fabrication, they may now enter
regimes of non-linear interactions between
their constituent mechanical and optical
degrees of freedom. In this work, we
show how this novel opportunity may serve
to construct a new generation of optome-
chanical sensors. We consider the canon-
ical optomechanical setup with the detec-
tion scheme being based on time-resolved
counting of photons leaking from the cav-
ity. By performing simulations and re-
sorting to Bayesian inference, we demon-
strate that the non-classical correlations
of the detected photons may crucially en-
hance the sensor performance in real time.
We believe that our work may stimulate a
new direction in the design of such devices,
while our methods apply also to other plat-
forms exploiting non-linear light-matter
interactions and photon detection.

1 Introduction

Since the quantisation of the interaction between
an optical and mechanical mode [1], quantum op-
tomechanics [2–4] has led to numerous experi-
mental breakthroughs [5], summarised spectacu-
larly by the recent achievement of cooling a 10-kg
object close to its motional ground state [6]. Its
underlying theoretical framework, despite origi-
nating from moving-end optical cavities [7–9], has
been successfully shown to apply to a variety of
systems, such as: levitated nanoparticles [10–12],
trapped ultracold atoms [13–15], photonic crys-

tals [16–18] or optical microresonators [19–21].
Furthermore, owing to the rapid advancement

of their detection schemes, optomechanical de-
vices were demonstrated to be controllable in real
time, not only for ground-state feedback cool-
ing [6, 20, 22], but also for continuous tracking of
their micromechanical motion [23–25], allowing
for applicability of real-time feedback to attain
the optimal measurement sensitivity [21, 26–28].

Still, the vast majority of these experiments
were conducted within the so-called linearised
regime of interactions [29–32], which facilitates
the description – with the framework of Gaussian
states/measurements [33] and feedback [34] be-
ing then applicable. In contrast, considering the
novel optomechanical setups that exhibit strong
single-photon coupling, e.g. ones involving ul-
tracold atoms [13, 14] or hybrid devices achiev-
ing non-linearity by employing an auxiliary sys-
tem [35–38], but also anticipating their advent
within other platforms [39], one must return to
the exact solutions of system dynamics [7, 8] that,
however, are analytically tractable only if par-
ticular limited forms of decoherence and optical
driving are accounted for [40] – unless one resorts
to numerical methods [41, 42].

Importantly, it is the non-linear effects that al-
low a single photon to be converted into mul-
tiple phonons and vice versa, so that phenom-
ena such as blockades [43, 44] or cascades [45]
of photons then become possible, with the light
leaving the cavity exhibiting a clear non-classical
character [46]. In particular, as the leaking of
these photons may then contain more informa-
tion about the parameters of the optomechani-
cal device due to their correlations, such a sys-
tem becomes very sensitive to external perturba-
tions [47] – constituting a model sensor. On the
other hand, the positive impact of non-linearity
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on the sensitivity of optomechanical devices have
been recently observed in the limit of asymptotic
statistics [48, 49], i.e. in tasks where the same
preparation-measurement procedure may be re-
peated arbitrary amount of times, so that the
tools of frequentist estimation theory such as
Fisher information [50], and its quantum gener-
alisations [51], become applicable.

In this work, we focus on sensing tasks in which
the optomechanical device is monitored in real
time – as motivated by the linear-regime experi-
ments [24, 25] – so that the data, which is then
continuously gathered in a single experimental
run, must be efficiently used to infer the pa-
rameter being sensed. Moreover, in order to be
able to benefit from the non-linear effects, we
consider the photon-counting detection scheme
– see e.g. [52–54] for recent implementations –
for which the information about the parameter is
then contained within the (non-classical) photon-
click patterns being recorded [46]. In particular,
we resort to continuous measurement theory [55],
in order to firstly demonstrate that thanks to
continuous monitoring the resulting conditional
(non-linear) dynamics of the optomechanical sen-
sor exhibits enhanced entanglement between op-
tical and mechanical degrees of freedom, despite
both photonic and phononic dissipation. We then
inspect explicitly the time-correlations of the de-
tected photons, i.e. the corresponding second-
order correlation functions, in order to identify
and focus on the three distinct regimes of pho-
ton blockade [44], cascade [45] and on-resonance
optical driving, which are controlled by adjusting
the (red) detuning of the driving field [46].

Working with low photon and phonon exci-
tation numbers, we are able to efficiently sim-
ulate the non-linear open-system dynamics and,
in particular, use Bayesian inference theory [56]
to construct real-time estimators for the param-
eter of interest. Although in our study we fo-
cus on estimating the optomechanical coupling
strength [57], our approach can be applied to any
parameter of the system affecting the photon-
click statistics. We also show this explicitly for
the regime of on-resonance driving in App. B,
where we infer the frequency of the mechanical
oscillator instead – a task motivated by applica-
tions in scanning force microscopy [58].

Nonetheless, in order to assess the metrological
capabilities of the sensor’s conditional evolution,

we firstly compute the ultimate bounds on achiev-
able sensitivity that account for the imperfect a
priori knowledge about the parameter, the Van
Trees bounds [59], along particular photon-click
trajectories; and compare them with the uncon-
ditional (ensemble average) case. Being based on
quantum Fisher Information [51], these consti-
tute then a benchmark for the idealistic single-
shot measurement that would have to be de-
structively performed at a given time, while cru-
cially ignoring the information contained within
the photon-clicks previously registered [60]. We
show that, although the precision of such a mea-
surement is enhanced along a conditional trajec-
tory, the decoherence inevitably drives the sensor
towards a stationary state and, hence, puts then
a fundamental limit on the attainable sensitivity.

As we demonstrate, this is in stark contrast
to the experimentally motivated setting in which
one has access “only” to the photon-click pattern.
Thanks to optical driving, the photons contin-
uously leak from the cavity despite dissipation,
while the subsequent detections reveal more and
more information about the unknown parame-
ter, which can then in principle be inferred up
to any desired precision, given a single but suf-
ficiently long run of the experiment. Strikingly,
we observe that although less photons are typi-
cally emitted in the photon-cascade regime [45],
the emitted photons may yield much higher sen-
sitivities due to their strong non-classical correla-
tions. As a consequence, we believe that our re-
sults pave the way for novel applications of non-
linear effects in optomechanical sensors, stimu-
lating future proposals to investigate the impact
of non-linearity on schemes involving, e.g., ac-
tive feedback [42]. Moreover, our analysis based
on Bayesian inference [61] could in future also
be conducted for other platforms involving light-
matter interfaces, whose non-linearity can be en-
gineered to tune the non-classical properties of
photons being emitted [62], for example with sin-
gle [63] or Rydberg [64, 65] atoms coupled to a
cavity, or a waveguide [66].

The manuscript is organised as follows. In
Sec. 2, we review the required theory of quan-
tum optomechanics and provide solutions to the
dynamics both in their closed and open form,
including the stochastic unravelling of the lat-
ter that allows us to model continuous photon-
detection. We then study in Sec. 3 how the con-
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ditional evolution along a given trajectory (de-
termined by a continuous-measurement record)
enhances the entanglement between the optical
and mechanical degrees of freedom. In Sec. 4,
we analyse the simulated statistics of photon-click
patterns and evaluate the corresponding second-
order correlation functions, in order to verify how
the system characteristics affect the non-classical
correlations of detected photons. We turn to the
theory of real-time quantum sensing in Sec. 5,
where we present the tools of Bayesian inference,
including the ultimate quantum bounds on the
average precision. Finally, in Sec. 6 we demon-
strate how the Bayesian formulation allows us to
estimate accurately the unknown parameter from
photon-click patterns, while benefiting from the
non-linear affects. We end with conclusions in
Sec. 7.

2 Optomechanical system

We shall consider the canonical optomechanical
system depicted in Fig. 1, in the form of a laser-
driven optical cavity with one mirror free to os-
cillate [2]. We assume monochromatic driving at
frequency ωL, and interactions with a single me-
chanical mode of natural frequency ωM, whose
oscillations are small compared to the cavity’s
unperturbed length. The Hamiltonian describing
such a system with the cavity frequency expanded
up to first order is reads [7–9]:

H = ~ω0a
†a+ ~ωMb

†b+ ~Gxa†a

+ ~
2
(
ΩeiωLta+ Ω∗e−iωLta†

)
, (1)

where a (a†) and b (b†) are the bosonic anni-
hilation (creation) operators of the cavity and
mechanical modes, respectively, while ω0 de-
notes the unperturbed cavity frequency, and G is
the optomechanical frequency shift per displace-
ment [9]. The strength of the laser driving is then
parametrised by the Rabi frequency Ω. Finally,
x is the position operator of the mechanics, given
by x = xZPF(b+ b†), where xZPF =

√
~/2mωM is

the mechanical zero point fluctuation for an os-
cillator of mass m. Defining the optomechanical
coupling as g = GxZPF, and moving into the ro-
tating frame with respect to the laser frequency,

we may rewrite the Hamiltonian (1) as

Hrf =− ~∆a†a+ ~ωMb
†b+ ~ga†a(b+ b†)

+ ~
2
(
Ωa+ Ω∗a†

)
, (2)

with ∆ = ωL − ω0 parametrising then the detun-
ing of the driving laser.

At this point, the Hamiltonian is often lin-
earised by assuming further the light to leak from
the cavity at a sufficiently large overall rate κ.
Here though, we are interested in the parameter
regime where the non-linear effects are important,
corresponding to the parameters satisfying [2]:

g

κ
> 1 , g2

ωMκ
> 1 . (3)

Hence, without making any approximations – in
particular, the linearisation – we transform the
Hamiltonian (2) (via the so-called polaron trans-
form) onto H̃rf = U †HrfU with the unitary oper-
ator U = exp

[
ga†a

(
b† − b

)
/ωM

]
, so that Eq. (2)

now reads [2]:

H̃rf =− ~∆a†a+ ~ωMb
†b− ~

g2

ωM

(
a†a

)2

+ ~
2 (ΩaD + H.c.) , (4)

where by D = exp
(
g
(
b† − b

)
/ωM

)
we denote a

mechanical displacement (polaron) operator. In
this picture, the cavity and mechanical modes be-
come decoupled at a price of introducing a ficti-
tious Kerr-like interaction between the photons.

Importantly, the Hamiltonian (4) allows one to
directly deduce the energy-level structure for the
non-linear optomechanical system as [2]:

E(ncav, nmech) =− ~∆ncav + ~ωM nmech

− ~
g2

ωM
n2

cav , (5)

where nmech (ncav) denotes the number of
phonons (photons) excited within the mechanical
oscillator (cavity). It then follows that, thanks
to the quadratic term ∝ n2

cav, by adjusting the
detuning ∆, multi- (rather than single-) photon
transitions may become energetically favourable.
In particular, by setting ∆ = −ng2/ωM with n ∈
Z+, so that the first and third terms in Eq. (5)
cancel at ncav = n, the transition |0〉cav → |n〉cav
becomes preferable with n photons being excited
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Figure 1: Optomechanical sensor. An optomechanical cavity is driven with laser Rabi frequency Ω. The optical
field created inside the cavity couples to the mechanical mode with strength g. The photons leak out of the cavity
and are detected with the rate κd, while further photons are lost at a rate κl. The phonons contained within the
mechanical oscillator are both excited and lost due to interactions with a thermal reservoir at rates γ(m̄ + 1) and
γm̄ respectively, with m̄ parametrising effectively the temperature of the bath. External force to be sensed affects
the mechanical oscillator varying its light-coupling strength g, natural frequency ωM, or both.

at once via driving. In what follows, we focus
on the three important cases of such a detuning
scheme with n = {0, 1, 2}, each of which corre-
sponds then to the regime of on-resonance driv-
ing, a photon blockade [43, 44] or a (2-photon)
cascade [45], respectively.

As shown in Fig. 1, in order to access the non-
classical photon statistics generated by the non-
linear interaction, we consider a time-resolved
photodection of photons leaking from the cavity
at an overall rate κ = κd + κl, with κd and κl ac-
counting for the fraction being actually detected
or lost, respectively. We assume the full spec-
trum of emitted light to be detected [46], in par-
ticular, without distinguishing photons scattered
into different frequency-resolved sidebands. Al-
though multimode resolution may be used to en-
hance non-classical effects [67, 68], opening doors
for multimodal engineering of also the driving
field [69], in our work we consider relatively weak
driving fields that result in an already small num-
ber of emitted photons, which we do not want to
further decrease by photon categorisation. Ulti-
mately, we are interested in performing sensing
with the system. As pictured in Fig. 1, we can
envisage the scenario of an external force perturb-
ing the system, which may affect its parameters
such as g or ωM, the effect of which should be
visible within the observed photon statistics.

2.1 Closed dynamics

In the case of no driving (Ω = 0) and absence of
any dissipation, the evolution of the optomechan-
ical system can be described by a unitary time-

evolution operator decomposed as follows [7, 8]:

U(t′) = e−ira†at′eik2(a†a)2(t′−sin(t′))

× eka†a(ηb†−η∗b)e−ib†bt′ , (6)

where η = (1−e−it′), k = g/ωM, r = −∆/ωM and
t′ = t ωM being the rescaled time in terms of the
mechanical frequency ωM. This time-evolution is
obtained by applying the polaron transform used
to obtain Eq. (4) and then transforming back
into the standard frame. Here, the non-linear na-
ture of the dynamics is clear to see again with
the Kerr-type term (a†a)2 appearing in Eq. (6).
Moreover, a periodic evolution is now apparent.
The third exponential is the only term responsi-
ble for dynamical evolution driven by η, which
periodically returns to zero in 2π (rescaled-)time
intervals, i.e. at the period of oscillation from the
mechanical natural frequency.

2.2 Open dynamics

As indicated in Fig. 1, apart from accounting for
laser driving, we model the decoherence by allow-
ing the photons also to leave the cavity without
being detected, and also couple the mechanical
oscillator to a thermal bath that may sponta-
neously excite or destroy phonons. As a result,
the reduced dynamics of the optomechanical sys-
tem is described by the evolution of the density
matrix incorporating mechanical and cavity de-
grees of freedom, ρ, through a master equation
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that reads [70]:

dρ
dt =− i

~
[Hrf, ρ] + κ

(
aρa† − 1

2
[
a†a, ρ

]
+

)
+ γ (m̄+ 1)

(
bρb† − 1

2
[
b†b, ρ

]
+

)
+ γm̄

(
b†ρb− 1

2
[
bb†, ρ

]
+

)
, (7)

where κ is the (total) decay rate of the cavity
mode, γ is the damping rate of the mechanical
mode and m̄ = [exp(~ωM/kBT )−1]−1 is the mean
number of quanta in the thermal reservoir dic-
tated by the mechanical frequency ωM and the
bath temperature T . For small m̄, this would re-
quire temperatures ranging from 10−8 – 10−1K
based on typical experimental numbers [2]. As
real-life experiments are typically conducted at
cryogenic temperatures, this is a reasonable as-
sumption to make in calculations. Let us also
remark that Eq. (7) assumes that interactions
with mechanics hardly affect the state of the bath,
while the relaxation process of phonons occurs at
timescales much larger than the actual mechani-
cal dynamics (ωM � γm̄), so that Born-Markov
and secular approximations safely apply [70].

Although approximate solutions to dynamics
(7) are possible in restricted regimes [7], these
should really be considered as ‘corrections’ of the
closed solution (6), and are thus insufficient for
our purposes. That is why, we resort to numeri-
cal methods in order to exactly solve Eq. (7) by
considering a truncated Fock space containing ρ,
which we evolve then piecewise in time. In fact,
such a solution describes then the ensemble av-
erage, i.e. the effective evolution of both the op-
tical and mechanical models upon ignoring the
records of a continuous photo-detection measure-
ment, which we must now also incorporate into
the model.

2.3 Unravelling the open dynamics

In order to facilitate numerical simulations, we
take the approach of unravelling the full dy-
namics (7), so that following the quantum-jump
methodology [71–75] and continuous measure-
ment models [55], we first re-express Eq. (7) as
a non-linear stochastic equation preserving the
purity, i.e.:

dρc =− i
~

[Hrf, ρc] dt− κ
(1

2
[
a†a, ρc

]
+
− Tr

{
a†aρc

}
ρc

)
dt+

(
aρca

†

Tr{a†aρc}
− ρc

)
dN (κ)

t

− γ (m̄+ 1)
(1

2
[
b†b, ρc

]
+
− Tr

{
b†bρc

}
ρc

)
dt+

(
bρcb

†

Tr{b†bρc}
− ρc

)
dN (γ−)

t

− γm̄
(1

2
[
bb†, ρc

]
+
− Tr

{
bb†ρc

}
ρc

)
dt+

(
b†ρcb

Tr{bb†ρc}
− ρc

)
dN (γ+)

t , (8)

where the dNt-terms have the physical interpre-
tation of random variables that represent counts
over the infinitesimal time dt of photon emission,
phonon emission and phonon absorption, respec-
tively, with expectation values [55]:

〈dNκ
t 〉 = κTr

{
a†aρc

}
dt〈

dNγ−
t

〉
= γ (m̄+ 1) Tr

{
b†bρc

}
dt〈

dNγ+
t

〉
= γm̄Tr

{
bb†ρc

}
dt . (9)

The size of these expectation values gives then
the respective weight of a jump of each form. In
the above and following, we use the subscript ‘c’

to denote the dynamics of a conditional state,
i.e. the evolution conditioned on a certain se-
quence of the jump statistics. Formally, we write
ρc(t) := ρ(t|Dt), where Dt = {t1, t2, . . . } with
ti ∈ [0, t] is the time at which the jump of a cer-
tain type occurs.

A quantum trajectory can then be generated
using Eqs. (8-9). This may be performed in an
efficient manner, as rather than evolving stochas-
tically Eq. (8) over each time-step dt, we may fol-
low the quantum-jump prescription [75, 76]. In
particular, we may instead sample at what time
the next jump happens, and propagate ρc until
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that moment according to Eq. (8) conditioned on
no jumps occurring. Only then, we determine the
nature of the jump that occured from a ternary
distribution with weights specified by the expec-
tation values (9) and apply the necessary jump
operator. Such a procedure may then be repeated
until the time t of interest, while updating accord-
ingly the expectation values (9) with the current
ρc before implementing each jump.

2.4 Photon-counting as a continuous measure-
ment
In reality, however, we have access only to data
Dt of quantum jumps caused by the detected pho-

tons. Hence, to obtain the observed conditional
dynamics we must average Eq. (8) over stochastic
jumps occurring due to emission of unobserved
photons and both excitations and emission of
phonons. Still, by averaging the full stochastic
dynamics (8) over the inaccessible degrees of free-
dom we arrive at the dissipative conditional evo-
lution of the optomechanical system:

dρc =− i
~

[Hrf, ρc] dt+
(
κlaρca

† − κ

2
[
a†a, ρc

]
+

+ κd Tr
{
a†aρc

}
ρc

)
dt

+ γ (m̄+ 1)
(
bρcb

† − 1
2
[
b†b, ρc

]
+

)
dt+ γm̄

(
b†ρcb−

1
2
[
bb†, ρc

]
+

)
dt

+
(

aρca
†

Tr{a†aρc}
− ρc

)
dNκd

t , (10)

where the true conditional state ρc describing
cavity and mechanical modes no longer main-
tains purity, and only the decay rate associ-
ated with detected photons, κd, parametrises now
the stochastic quantum jumps with 〈dNκd

t 〉 =
κdTr

{
a†aρc

}
dt at a given time t.

In what immediately follows however, we ini-
tially consider the simplified situation with all the
sources of decoherence being absent, i.e. κl = γ =
0 and only κd > 0 in Eq. (10), to observe the im-
pact of conditioning on photon-detection. In such
a simple case, the dynamics follows two types of
evolution: unitary dynamics under ‘no-photon’
detection (denoted ‘no-ph’ for short) and a quan-
tum jump whenever a detection occurs. The for-
mer, being formally a special case of the condi-
tional dynamics (10) with Dt = ∅, can be nat-
urally modelled by ignoring the normalisation of
ρc and applying to it the time-evolution operator
Uno-ph(t) = exp{−iHno-ph t/~} generated by the
non-Hermitian Hamiltonian:

Hno-ph = Hrf −
i~κd

2 a†a , (11)

which is obtained by gathering the (non-zero)

Hamiltonian-like terms in Eq. (10).
In such a picture, given that the optomechan-

ical system is initialised in a pure state ρc(0) =
|ψc(0)〉〈ψc(0)|, the probability of not observing
any emission until time t is just Pno-ph(t) =
|| |ψc(t)〉 ||2, where |ψc(t)〉 = Uno-ph(t) |ψc(0)〉 is
the unnormalised conditional state that must
then be updated according to |ψc(t)〉 → a |ψc(t)〉
whenever a jump occurs, renormalised, and
evolved again by Uno-ph(t) until the next jump.
Moreover, in the regime of no driving the time-
evolution operator can be explicitly written in a
form similar to Eq. (6) as

Uno-ph(t′) =e−ir̃a†at′eik2(a†a)2(t′−sin(t′))

× eka†a(ηb†−η∗b)e−ib†bt′ , (12)

where the only difference from Eq. (6) is that now
r → r̃ with r̃ = − (∆ + iκd/2) /ωM.

3 Enhancing entanglement by photon-
counting
As continuous monitoring clearly modifies the
evolution of an optomechanical system, as can
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be seen from comparing Eq. (7) with Eq. (10),
we first investigate how it affects the dynamics of
entanglement between the cavity and mechanical
modes, before moving towards sensing applica-
tions. We start by assuming that neither driving
nor decoherence is present in the system, in order
to then consider the complete dissipative dynam-
ics.

3.1 Closed conditional dynamics

In absence of driving and unobserved dissipation,
we may just use the (non-unitary) time-evolution
operator (12) to propagate the optomechanical
state in between the jumps. Furthermore, as de-
coherence is absent, the state preserves its purity
throughout the evolution. Hence, after choosing
a pure initial state we may quantify the entangle-
ment between the cavity and mechanical modes
at any time through the linear entropy (of the
reduced state) [77], i.e.:

S(t) := 1− P (t) , (13)

where by P := Tr
{
ρ2
cav
}
we denote the purity of

the cavity’s reduced state ρcav = Trmech{ρ}, with
ρ being the density matrix of the total system.
Moreover, we assume here both the cavity and
the mechanics to be prepared in coherent states,
i.e. |ψc(0)〉 = |α〉cav|β〉mech with complex ampli-
tudes α and β, respectively, in which case the
evolution of purity P (t) under the conditional
‘no-photon’ evolution (12) can be evaluated ex-
plicitly, see App. A.

In Fig. 2, we present how the linear en-
tropy evolves over time for the three different
cases of: closed dynamics (in absence of photon-
detection), conditional dynamics with photon-
detection but no photon-clicks observed, and con-
ditional dynamics with a single jump occurring
at some time. As the closed evolution is peri-
odic, see Eq. (6), we consistently observe that
the entanglement is continuously created and de-
stroyed, while the system returns back to its ini-
tial state at any t′ = 2π` with ` ∈ N. In case of
conditional ‘no-photon’ dynamics (12) similar be-
haviour is observed but the system returns rather
to |exp(−κdt

′/2ωM)α〉cav|β〉mech at any t′ = 2π`.
Hence, the evolution of linear entropy is no longer
exactly periodic with its oscillations growing due
smaller and smaller amplitude of the cavity mode
at the start of each period.

0
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0.75

1
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(b)
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0.75

1

0 5π 10π 15π 20π

(a)

(b)

(c)

Closed
Cond: no jump

Cond: Jump at 11π
Cond: Jump at 9.8π

S
(t
)

t′

Figure 2: Entanglement dynamics of a closed sys-
tem and the impact of a quantum jump, illustrated
through the linear entropy S of the cavity’s reduced
state. The system is initialised in coherent states of
optics and mechanics, |α〉cav|β〉mech with α = β = 1,
with the optomechanical coupling set to g = {0.1, 1, 5}
in plots (a), (b) and (c), respectively, for ωM = 1. For
the conditional dynamics, we set the cavity decay rate
at which the photons are detected to κd = 0.04. The
closed system (solid black line) periodically returns to
its initial, unentangled state at intervals of 2π. When
loss through photon-counting is added, the conditional
state in the absence of any jumps produces similar en-
tanglement characteristics, with a slight modulation of
the oscillations due to the exponential decay of the cav-
ity’s amplitude (solid light-green line). After a jump the
behaviour of the linear entropy deviates from the con-
ditional ‘no-photon’ evolution, depending on when the
jump happens, as seen in the dashed pink and blue lines
for the jumps occurring at 9.8π and 11π (crosses), re-
spectively.

Unless the jump occurs exactly at t′ = 2π`, at
which the modes are not entangled and the cav-
ity is in a coherent state, it affects the state and
the subsequent evolution changes – see dashed
lines in Fig. 2. This can be intuitively under-
stood in the Fock basis of the cavity, as can be
seen in App. A: the quantum jump shifts then
by one the corresponding components, such that
each Fock state of the cavity does not couple to
the same mechanical state as before the jump.
Consequently, the original pairs of cavity and me-
chanical states start to evolve out of phase with
one another, and the system no longer returns
periodically to a product state. One corollary of
this is that some level of entanglement is main-
tained at all times after a jump, as can be seen
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from Fig. 2.

3.2 Open conditional dynamics

We move onto the main focus of our work that
is the realistic scenario with open dynamics (10),
which includes extra unobserved loss of photons
(κl > 0) and damping of the mechanical oscillator
via the phonon-exchange with a thermal reser-
voir (γ, m̄ > 0). Moreover, as the investigation
of non-linear effects is our priority, we consider
the previously mentioned three scenarios of (red-
detuned) driving with ∆ = −ng2/ωM and n =
{0, 1, 2}, so that in each of these cases the multi-
photon transition |0〉cav → |n〉cav is favoured – see
Eq. (5). In particular, similarly to Ref. [46], we
set g/4 = ωM/4

√
2 = κ and the driving strength

to Ω = 0.3/ωM, and refer to three cases as on-
resonance (n = 0), blockade (n = 1) and cas-
cade (n = 2) regimes, even though to actually
observe “blocking” of photons (i.e. their explicit
antibunching at short time-scales) for n = 1,
we would need to decrease Ω [46]. We also set
the mean number of excitations in the mechan-
ical reservoir to m̄ = 1, and the decay-rates to
γ = 10−3ωM, κd = 0.9κ and κl = 0.1κ, i.e. ac-
counting also for imperfect detection with 10%
of photons being effectively lost. This parame-
ter choice satisfies the non-linearity condition of
Eq. (3), but also yields the so-called sideband-
resolved regime of the cavity [2], in which the
emitted photons could in principle be further clas-
sified by measuring their frequency. However, the
frequency resolution is unnecessary in such a set-
ting to observe non-classical statistics of photon
detections [46], as these emerge due to the non-
linearity that is the key resource utilised here for
sensing applications. We further show this within
App. B, where we consider dynamics outside the
sideband-resolved regime and are still able to per-
form sensing based on the emergent photon-click
trajectories. Throughout the rest of the paper,
the above parameter values shall be taken, unless
otherwise stated.

Being in contact with a thermal reservoir, the
initial state of the mechanical oscillator must be
in a thermal state of the form [33]:

ρth
mech =

(
1− m̄

m̄+ 1

) ∞∑
m=0

(
m̄

m̄+ 1

)m
|m〉 〈m| ,

(14)

while we assume the cavity to be initially empty.
Hence, the optomechanical system is always ini-
tialised in

ρ(0) = |0〉cav〈0| ⊗ ρ
th
mech , (15)

and the source of photons that enter the cavity
and then leak to be detected is consistently the
driving field.

Dealing with open-system dynamics, we con-
sider then the negativity as a valid quantity that
witnesses entanglement, being defined as [77, 78]:

N (t) :=

∥∥∥ρ(t)ΓM
∥∥∥

1
− 1

2 , (16)

where by ‖A‖1 := Tr
√
A†A we denote the trace-

norm of a matrix A, and ρΓM corresponds to
taking the partial transpose over the (truncated)
subspace associated with the mechanical mode.

In Fig. 3, we present the evolution of negativ-
ity for three exemplary photon-click trajectories
(blue lines), generated in the non-linear regimes
of interest, determined by adjusting the (red) de-
tuning with n = {0, 1, 2}. We observe that even
for ensemble dynamics (black lines) the entangle-
ment is witnessed with negativity saturating at a
similar non-zero value in all three regimes, while
the system reaches its stationary state that must
be entangled. This immediately shows the impact
of non-linear interactions being present, as within
the linearised regime the red-detuned dynamics
would lead to an effective beamsplitter interac-
tion between the optical and mechanical modes,
and hence a negligible amount of entanglement
being acquired between them [2]. Contrastingly,
the non-linear interaction here allows for the gen-
eration of non-classical stationary states.

However, in each case the detection of a photon
sharply increases N , which afterwards exponen-
tially drops towards some constant value, unless
another click occurs. This ‘steady’ value for the
conditional dynamics is higher than for the en-
semble due to an effective reduction in noise –
with κd no longer contributing to decoherence,
while other sources of dissipation remain. Finally,
even though only one trajectory is presented for
each of the non-linear regimes, by inspecting the
peaks in negativity it is evident that photon-
detection statistics are very different in the on-
resonance (n = 0), blockade (n = 1) and cascade
(n = 2) regimes, with the latter two exhibiting
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Figure 3: Entanglement dynamics of an open system for the three non-linear regimes of interest, illustrated
through negativity N (t) evaluated between the truncated cavity and mechanical modes. Red-detuning of the driving
field is set to ∆ = −n g2/ωM for (from right to left) the on-resonance (n = 0), blockade (n = 1) and cascade (n = 2)
non-linear regimes. The evolution of negativity is depicted for the ensemble (7) (black) and conditional (10) dynamics
along an exemplary photon-click trajectory (blue) generated for each case. Each photon-detection significantly boosts
the negativity, before it subsequently decays towards the stationary value of the ensemble. Although the general
behaviour of negativity is similar in all three cases, the exemplary photon-click patterns already indicate that each
regime exhibits different (non-classical) photon statistics [46]. We take parameters of g/4 = ωM/4

√
2 = κ, with

κd = 9κl, while Ω = 0.3/ωM, γ = 10−3ωM and m̄ = 1. The detunings taken correspond to the regimes discussed in
the main text.

apparent bunching of emitted photons [46]. We
now study these non-classical effects in detail for
each case.

4 Statistics of detected photons
In order to investigate the statistics of detected
photons for the three detuning regimes, we firstly
sample over many numerically generated quan-
tum trajectories to determine the relative likeli-
hood, ζ, of the next photon emission at a time t2
after a photon emission at time t1 ≤ t2 defined as

ζ :=Nt1,t2

Ntot
, (17)

with Nt1,t2 being the number of sampled photons
observed at t2 after an emission at t1, while Ntot
being the total number of sampled photons. We
observe that the cascade regime (n = 2) favours
an immediate photon emission after a first pho-
ton, especially when compared with the blockade
regime (n = 1), thus demonstrating stronger pho-
ton bunching.

In order to show this non-classical effect ex-
plicitly, we plot in Fig. 4 the difference of the
ζ values for n = 2 and n = 1 for an array
of time bins over t1 and t2. At any timescale
(value of t1), it is clear that for small time-delays,

∆t := t2−t1, photon emissions are observed more
frequently in the n = 2 regime (narrow red hor-
izontal patch for ∆t ≤ 2), whereas for slightly
larger delays observing emissions in the n = 1
regime becomes more likely (wide blue horizontal
patch for 2 ≤ ∆t ≤ 10). As expected, for large
differences between emission times, no strong cor-
relations between subsequent photons are visible
with both regimes (n = 2 and n = 1) yielding
similar numbers of detected photons (no domi-
nating colour for ∆t ≥ 10).

Furthermore, it is also apparent from Fig. 4
that the two-photon correlations strongly depend
on the time of observing the first emission (value
of t1), as we are dealing with dynamics of a
quantum system requiring some time to reach
a stationary state (around t1 ≈ 100 in Fig. 4,
from which the overall pattern stabilises). One
should bear in mind this fact when computing
the second-order correlation, g(2)(t1, t2) depend-
ing not only on ∆t, as we now demonstrate.

In particular, we define the second-order corre-
lation function for the photon-clicks as

g(2)(t1, t2) := p(t1, t2)
p(t1)p(t2) = p(t2|t1)

p(t2) , (18)

being determined by the probability of detecting
a photon at the respective time arguments, where

Accepted in Quantum 2022-09-12, click title to verify. Published under CC-BY 4.0. 9



n = 1 n = 2Dominance of regime

0 250 500 750 1000
t1 (units of κ−1)

0

20

40

60

t 2
−

t 1
(u
n
it
s
of

κ
−
1
)

Figure 4: Blockade or cascade regime dominating
the photon-counts for a given time separation. The
colour of each block, and its intensity, shows whether
the particular time delay between two photon-clicks is
favoured by either the blockade (blue, n = 1) or cascade
(red, n = 2) regime, with white entries indicating no sig-
nificant difference. The above data is obtained by sam-
pling over 1000 trajectories for each detuning regime,
while the grey triangle on the right edge appears due
to no data available for these late entries. For small
time differences ∆t := t2 − t1 ≤ 2, an emission in the
(n = 2)-regime is generally more likely, due to the pho-
ton cascade behaviour (narrow red horizontal patch). In
contrast, it is the blockade regime (n = 1) in which more
photons pairs are on average emitted with 2 ≤ ∆t ≤ 10
(wide blue horizontal patch). From the horizontal vari-
ation of the figure, one can infer that around t1 ≈ 100
the optomechanical system reaches its stationary-state
behaviour with the strength of two-photon correlations
depending then only on ∆t (similar vertical pattern).

we assume t2 ≥ t1. However, rather than resort-
ing to sampling over trajectories, we now utilise
the fact that the g(2)-function can be equivalently
computed by evolving the system according to
the ensemble-averaged dynamics (7) before and in
between the two emission-points of interest [79].
Writing the reset superoperator as A[·] := a[·]a†
and denoting the time-evolution superoperator
from t1 to t2 as Tt2,t1 [79], i.e. the solution to
the master equation (7), the g(2)-function reads

g(2)(t1, t2) = Tr (ATt2,t1ATt1,t0ρ(t0))
Tr (ATt1,t0ρ(t0)) Tr (ATt2,t0ρ(t0)) .

(19)

The above expectation values can be extracted
from numerical solutions to the master equa-
tion (7), the results of which are shown in Fig. 5.
Here, we consider two different intial times t1 to
reflect the differences in the photon statistics at
short and long times. This is because we initialise

the cavity state in the vacuum, whereas at long
times it is in its stationary state. In both cases,
we see an initially very large value for the n = 2
detuning, demonstrating its photon-cascade be-
haviour, whereas we see a lower value for the
n = 1 case, demonstrating some blockade effects.
We note that we do not see true blockade statis-
tics here with g(2) < 1 due to the overall strength
of the driving. In order to observe explicit anti-
bunching of photons a weaker driving would be
required to inhibit the population of higher Fock
states [46]. Nevertheless, the bunching is sup-
pressed compared with the n = 2 case.

Finally, as we are ultimately interested in us-
ing these photon statistics for sensing, we con-
sider how they are altered by changing another
system parameter that is to be inferred, while
keeping all other parameters the same. In this
study, we focus on estimating the optomechani-
cal coupling strength g. From Fig. 5 we see that
the photon statistics clearly change for a differ-
ent value of g. This is due to the detuning no
longer being tailored to the correct value of g,
inhibiting the blockade/cascade effects, as there
is no longer balance in Eq. (5) creating energeti-
cally favourable transitions. In particular, we see
that the enhanced bunching for the n = 2 case
is lost in the stationary period – compare black
lines in Fig. 5(b), especially at ∆t = 0; while for
n = 1 the enhancement in subsequent emission
is suppressed in the early-times regime – com-
pare the drop of blue lines in Fig. 5(a) at small
∆t. Crucially, such observations confirm that a
shift in the value of a parameter has a notice-
able effect on the photon statistics, demonstrat-
ing that the photon-click pattern contains infor-
mation suitable for parameter inference.

5 Methods for quantum sensing in real
time

Now that we have an understanding of the physi-
cal behaviour of the system and the photon statis-
tics that it generates, we may consider how it
can be used for sensing applications. Rather than
perform a single measurement on the system at a
certain time, we wish to continuously gain infor-
mation about the system by monitoring its pho-
ton statistics. In order to do so, we resort to
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Figure 5: Comparison of g(2)-functions within each detuning regime. We plot for the parameters described in
Sec. 3.2, both at (a) an early time in the evolution and (b) later within the stationary regime. At both times, we
see similar behaviour, where the n = 2 detuning shows the strongest bunching. Within the stationary regime, the
n = 1 detuning has a peak a short time after the emission of a photon, rather than immediately after in the n = 2
case, showing that this regime favours a gap in emissions more than the n = 2 case. For n = 0, although there is an
initial peak, this decay rapidly towards no correlations. Within the inset plots, we plot for g = 5 instead to see how
the statistics change with g, while keeping the value for the detuning the same, i.e. as for g = 4. Here, n = 2 no
longer has the largest initial peak, but all correlations rapidly decay. The remaining parameters are set as in Fig. 3.

Bayes’s rule, which states

P (θ|Dt) =P (Dt|θ)P (θ)
P (Dt)

= P (Dt|θ)P (θ)∫
dθP (Dt|θ)P (θ) ,

(20)

for a parameter θ to be inferred from some click-
pattern, Dt, up to time t. The data we use here is
the photon emission statistics of the optical cavity
observed in the detector channel (with rate κd),
while we consider the parameter of interest to be
g, although any system parameter affecting Dt

could be chosen and inferred in this way.

5.1 Evaluating probabilities of particular tra-
jectories

In this subsection, we shall describe how the prob-
ability P (Dt|θ) can be calculated numerically.
We use the conditional Hamiltonian (11) to de-
scribe the evolution under no detections, while
simultaneously accounting for decoherence due
to loss of undetected photons and dissipation of
phonons by resorting to the standard Lindbladian
description, as in Eq. (10). The result is a con-
ditional master equation describing the dynamics

of an unnormalised density matrix, σno-ph, i.e.

dσno-ph

dt =− i
~

(
Hno-phσno-ph − σno-phH

†
no-ph

)
+ κl

(
aσno-pha

† − 1
2
[
a†a, σno-ph

]
+

)
+ γ (m̄+ 1)

(
bσno-phb

† − 1
2
[
b†b, σno-ph

]
+

)
+ γm̄

(
b†σno-phb−

1
2
[
bb†, σno-ph

]
+

)
.

(21)

This equation can be solved numerically in order
to obtain the conditional density matrix under
no detected photons at a given time t1. Adapting
the notation of the previous section, we write

σno-ph(t1) = T no-ph
t1,t0 ρ(t0) , (22)

assuming a fully normalised density matrix at
time t0. This describes the conditional (no-
photon) evolution of the density matrix from t0 to
t1. Just as in the closed system case that we dis-
cussed, the trace of this density matrix is not pre-
served due to the effect of Hno-ph, with its value
corresponding to the ‘no-photon’ probability, i.e.:

Pno-ph(t1, t0) = Tr
{
T no-ph
t1,t0 ρ(t0)

}
, (23)

which is the probability of detecting no photons
between t0 and t1, i.e. the exclusive probabil-
ity [75]. As a consequence, one may define the
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probability density I1(t1, t0) for the emission of a
single photon just after the time t1 as [75]:

I1(t1, t0) :=− d
dt1

Pno-ph(t1, t0) . (24)

Using Eqs. (23-24), and a discretisation of time
steps of size ∆t, where ∆t � κd such that the
probability of multiple photon emissions within
the time-bin ∆t is negligible, we can obtain the
probability P (Dt|θ). Given there are N photon-
click events within total time t of Dt, i.e. |Dt| =
N , the desired conditional probability reads [75]:

P (Dt|θ) =Pno-ph(t, tN )
N∏
n=1

(
Pno-ph(tn −∆t, tn−1)

×
0∫

∆t

dt′I1(tn, tn − t′)
)
, (25)

where after each photon-click event at tn, the
density matrix is reset as follows, ρ(tn) →
aρ0(tn)a†/Tr

(
a†aρ0(tn)

)
, leading to the evolu-

tion of an initially normalised density matrix as
in Eq. (22). In this way, each probability element
Pno-ph and I1 in Eq. (25) is evaluated using the
relevant initial normalised state ρ(tn).

As the conditional probability P (Dt|θ) is de-
fined for a particular value of the parameter θ,
in order to obtain the relevant posterior dis-
tribution P (θ|Dt) in Eq. (20), we must eval-
uate P (Dt|θ) for many different values of θ.
The distribution P (Dt|θ) is obtained by numer-
ically determining the probability of observing
a given photon-click trajectory Dt for a suffi-
ciently dense grid of θ-values. This means we
have access to the full probability distribution,
rather than relying on sampling techniques such
as the Metropolis-Hastings algorithm [56]. How-
ever, we observe that the improved methods of
sampling, also e.g. ones employing so-called par-
ticle filters, may benefit significantly the compu-
tation speed of our Bayesian inference procedure,
only if we extended our analysis to problems of
sensing multiple (or multidimensional) parame-
ters [80], while the grid-based approach remains
efficient in single-parameter sensing. In fact, the
computation bottleneck is dictated by the process
of evaluating the likelihood (25) for any given tra-
jectory Dt.

5.2 Bayesian inference
One of the key features of Bayesian inference
is that it provides solution that depend on the
prior distribution [50], which must be selected
to most accurately represent our a priori knowl-
edge about the problem – here the parameter θ
to be inferred. In this work we choose the prior
to read [81]:

P (θ) = 1
θmax − θmin

exp
(
α sin2

(
π(θ−θmin)
θmax−θmin

))
− 1

exp
(
α
2
)
I0
(
α
2
)
− 1 ,

(26)

so that by choosing θmax/min we can put strict
constraints on the range of parameters to be con-
sidered. Moreover, I0 is a zeroth order modified
Bessel function of the first kind, while α is a real
number that controls the sharpness of the dis-
tribution, which gets flatter as α becomes more
negative. Let us also note that this distribu-
tion is both continuous and zero at its bound-
aries, and hence allows for application of Van
Trees bounds on the average estimation perfor-
mance [59], which we discuss below.

One of the key parts of any useful sensing
scheme is the efficient estimator, whose role is
to most accurately provide the value of the un-
known parameter based on the data available.
It is common to consider the mean of the pos-
terior distribution as the optimal estimator for
Bayesian inference, θ̃opt(Dt) :=

∫
dθ P (θ|Dt) θ, as

it minimises on average the mean-squared error
(MSE) for the true value of the parameter, θ, be-
ing drawn from the prior [50, 82],〈

∆2θ̃
〉
P (θ)

:=
∫

dθ P (θ) ∆2θ̃|θ, (27)

whose minimum corresponds then to the variance
of the posterior distribution, P (θ|Dt), averaged
over all data patterns, i.e.:〈

∆2θ̃opt

〉
P (θ)

=
∫

dDt P (Dt) Var[θ]P (θ|Dt) .

(28)
In Eq. (27), the MSE for a particular value of θ
is generally defined and may be decomposed as:

∆2θ̃|θ :=
∫

dDt P (Dt|θ)
(
θ̃(Dt)− θ

)2
(29)

= Var
[
θ̃
]
P (Dt|θ)

+
(〈
θ̃
〉
P (Dt|θ)

− θ
)2

,

where the first and second terms above repre-
sent the uncertainty and bias of any estimator,
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respectively. Note that when considering a finite
dataset (e.g. a single photon-click trajectory of fi-
nite time duration) the bias may not be ignored,
as any well-behaved estimator, e.g. θ̃opt, is guar-
anteed to become unbiased only in the asymp-
totic limit of many independent repetitions [83].
In what follows, we drop the dependences on the
prior and the parameter true-value in the expres-
sions for the MSE, Eqs. (27) and (29), respec-
tively. However, let us emphasise that these man-
ifest the fundamental difference between Bayesian
and frequentist approaches to inference [50].

5.3 Bounds on performance
Importantly, both the average MSE (27) and
the local MSE (29) can be fundamentally lower-
bounded within the Bayesian and frequentist set-
tings, respectively. In what follows, we de-
scribe the corresponding bounds for an abstract
θ-parametrised probability distribution pθ(x) of
a random variable X, which in the quantum set-
ting describes the outcome of a general measure-
ment {Mx} (a set with allMx ≥ 0 and

∑
x Mx =

1), i.e. labels the element of a positive-operator-
valued measure. Although any measurement per-
formed continuously in time provides also an ex-
ample of pθ(x) ≡ P (Dt|θ) with the X-variable
representing then the full data Dt, we avoid such
a notation, as we will use both the Bayesian
and frequentist bounds to benchmark the per-
formance of a strong single-shot measurement,
assessed as an alternative to the non-demolition
time-continuous detection of emitted photons.

5.3.1 Cramér-Rao bounds on local performance

For any (locally) unbiased estimator1, i.e. satis-
fying ∂θ

〈
θ̃
〉
pθ

= 1 at a specific true value of

the parameter θ, the local MSE (29) is generally
lower-limited by the Cramér-Rao bound [50]:

∆2θ̃ ≥
unb.

1
ν

1
F [pθ]

, (30)

where F [pθ] :=
∑
x pθ(x)[∂θ ln pθ(x)]2 is the

Fisher information (FI) of the probability density
function pθ. The local bound (30) is guaranteed

1Any unbiased estimator, for which the second term in
the second line of Eq. (29) vanishes, constitutes trivially
a locally unbiased estimator around θ, as

〈
θ̃
〉
pθ

= θ =⇒
∂θ
〈
θ̃
〉
pθ

= 1.

to be saturated in the asymptotic limit of inde-
pendent repetitions, ν → ∞, also (under certain
regularity conditions) by the optimal Bayesian es-
timator θ̃opt with the mean and variance of the
posterior distribution converging then to the true
θ and (νF [pθ])−1, respectively [83].

In the quantum regime, in order to obtain a
fundamental bound on the local MSE that is
determined solely by the quantum state ρθ in
pθ = Tr(ρθMx), one should minimise Eq. (30)
over all measurement strategies, i.e. maximise the
FI over all quantum measurements {Mx}. In this
way, one obtains the quantum Fisher information
(QFI), FQ[ρθ] := max{Mx} F [pθ] = Tr

{
ρθ L

2}
with the (symmetric-logarithmic derivative) op-
erator L constituting the solution to the equation
∂θρθ = 1

2(Lρθ + ρθL) [84]. This then leads to the
quantum Cramér-Rao bound :

∆2θ̃ ≥
unb.

1
ν

1
FQ[ρθ]

, (31)

which is again guaranteed to be attainable by an
(asymptotically) unbiased estimator in the limit
of many independent repetitions, ν → ∞. Still,
it applies to any (locally) unbiased estimator for
any ν (in particular, also in the single-shot sce-
nario with ν = 1), constituting the ultimate
bound dictated by the quantum mechanics.

5.3.2 Van Trees bounds on average performance

Within the Bayesian setting, it is the average
MSE (27) that is the correct figure of merit, be-
ing defined with respect to a particular prior dis-
tribution, e.g. the one of Eq. (26). As a result,
any appropriate bound on estimation precision
must include the information about the param-
eter present in the prior distribution, while not
prioritising any particular parameter value. Here,
we employ the van Trees bound that reads [59]:

〈
∆2θ̃

〉
≥ 1
F [P (θ)] +

∫
dθ P (θ)F [pθ]

, (32)

where the first term in the denominator is the
FI of the prior distribution, i.e. F [P (θ)] =∫

dθP (θ)[∂θ lnP (θ)]2, while the second term is
the FI of the outcome distribution for a given
value of θ that, in stark contrast to Eq. (30), must
also be averaged over the prior.

Similarly to the local case, in order to ob-
tain the quantum generalisation of Eq. (32), one
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should minimise it over all measurement strate-
gies, which results in replacing the FI by the QFI
defined as before, and the quantum van Trees
bound reads〈

∆2θ̃
〉
≥ 1
F [P (θ)] +

∫
dθ P (θ)FQ[ρθ]

. (33)

Importantly, both van Trees bounds (32-33) ap-
ply to more realistic scenarios of quantum sens-
ing, in which not only the unbiasedness of the es-
timator (or the asymptotic statistics, ν → ∞) is
not required, but also the estimation is no longer
performed around an a priori known value of the
parameter, as the prior distribution specifies now
the effective range of θ to be considered.

5.3.3 Computing the quantum Fisher Information

We will be interested in computing the QFI of the
density matrix representing the real-time state of
our system obtained by solving either the ensem-
ble (7) or conditional (10) master equation de-
scribing the dynamics. As before, this density
matrix is taken to be supported by a truncated
Fock space for both the cavity and mechanical
modes, large enough to incorporate the complete
evolution to high accuracy. However, no matter
the origin of the quantum state of interest, its
QFI can be conveniently evaluated with help of
the Bures distance, which is defined as [85]:

d2
B(ρ1, ρ2) := 2

(
1−

√
f(ρ1, ρ2)

)
, (34)

where f(ρ1, ρ2) is the quantum fidelity

f(ρ1, ρ2) := Tr
{√√

ρ1ρ2
√
ρ1

}2
. (35)

Then, the QFI with respect to a parameter θ is
related to the Bures distance by [86]

FQ[ρθ] = lim
δθ→0

d2
B

(
ρθ− δθ2

, ρθ+ δθ
2

)
δθ2 . (36)

In our case, we evaluate the right-hand side of
Eq. (36) by numerically integrating the master
equation (7) or (10) (given a particular photon-
click pattern in the latter case) for the parameter
value θ, as well as its small perturbation θ + δθ,
where δθ we choose small enough to ensure an
accurate determination of the QFI in Eq. (36),
but large enough to provide numerical stability.

5.4 Ultimate average performance of a single-
shot measurement

Similarly to the analysis of entanglement in
Sec. 3.2 and Fig. 3, we would like to investi-
gate the impact of conditioning – monitoring the
photon-click trajectory – on the sensing capabili-
ties of our optomechanical system. For that rea-
son, we resort to the quantum van Trees bound
(33) and compute it (see Fig. 6) for the system
evolving according to the ensemble (dashed) and
conditional (solid) dynamics, i.e. Eqs. (7) and
(10) respectively, of which the latter is presented
for a particular representative photon-click tra-
jectory.

In order to compute the QFI in each case, we
use the method described in the previous subsec-
tion, where as the estimated parameter we choose
the coupling strength, i.e. θ ≡ g. However, sim-
ilar analysis can be performed for other parame-
ters affecting the photon-click pattern, e.g. for the
mechanical frequency ωM, as shown in App. B.

Crucially, the van Trees bounds in Fig. 6 repre-
sent the ultimate limit on the average MSE (27)
for the most general single-shot measurement per-
formed at a given time t. In particular, in case of
the conditional evolution they ignore the informa-
tion about the parameter within the click-pattern
itself, but rather indicate the instantaneous sens-
ing capabilities of the system. However, the re-
quired strong measurement would have to be per-
formed in principle on both the cavity and me-
chanical modes. That is why, we also present the
bounds obtained after tracing out the mechanics,
as even in an idealised setting only the optical
mode should be considered accessible.

We observe that, as in the case of negativ-
ity in Fig. 3, the conditional dynamics exhibits
enhanced sensing capabilities at quantum jumps
compared to the ensemble evolution. Although
both corresponding bounds on the average MSE
reach its minimum early in the evolution, be-
fore increasing afterwards and finally reaching
the steady state of the system, the trajectory-
based bound typically drops significantly after
each photon-detection event. Still, it tends to-
wards a steady state in between the photon emis-
sions, but the exact value of the average MSE be-
ing approached is different to the one emerging for
ensemble dynamics. Moreover, the non-linearity
of the interaction enhances the sensing capabili-
ties when the system is continuously monitored.
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Figure 6: Best average sensing performance of a single-shot measurement. The minimal average estimation
error as indicated by the Van Trees bound is shown for both the ensemble and along a specific trajectory generated
for each of the detuning regimes. The photon clicks cause significant drops in the bound, although they quickly
increase back to a value following a similar trend to the ensemble. We also show the bound of a reduced state with
the mechanics traced out, for the same trajectory as the corresponding unreduced state. By doing so, the bound is
significantly increased, indicating a large part of the information is only accessible from the mechanics. In all cases,
the bound approaches a steady state, meaning no further information can be obtained by waiting longer.

Although for the cascade (n = 2) and blockade
(n = 1) regimes of detuning the gain may seem in-
significant for the ensemble dynamics when com-
paring these with the case of on-resonance driving
(n = 0), in case of conditional dynamics (also in
the reduced case of the cavity mode only) much
smaller values of the average MSE may be reach-
able when n = 1 or n = 2.

Importantly, any of the bounds depicted in
Fig. 6 precludes the average MSE to be vanish-
ing as t → ∞, as the existence of a station-
ary state limits the performance of the optimal
single-shot measurement at long times, irrespec-
tively whether ensemble or conditional dynamics
is considered. As a consequence, when dealing
with an optomechanical sensor operating in real
time – the main motivation of this work – after
the stationary state is reached, e.g. t & 100 in
Fig. 6, one should focus on extracting most effi-
ciently the value of the parameter solely from the
photon-click pattern. This is because the photon-
click trajectory keeps containing more and more
information as time progresses and more pho-
tons are being emitted, which must inevitably
outrun the information extractable from the sys-
tem that is fundamentally limited, as shown in
Fig. 6. Hence, although one may try to adapt
the van Trees bounds (32-33) to incorporate the
continuous quantum measurement (here, photon-
counting) – see e.g. [60] for the adaptation of the
local bounds (30-31) (for homodyne detection) –

from the perspective of the real-time sensing sce-
nario considered here is unnecessary. The opti-
mal sensing performance is always attained along
a single experimental run by engineering the sys-
tem, so that the collected data of photon emis-
sions,Dt, yields an average (27) or local (29) MSE
that drops most rapidly with time t. In what fol-
lows, we demonstrate that non-linear effects and,
in particular, the correct choice of detuning, play
a crucial role in this respect.

6 Sensing from photon-clicks
As motivated by the previous section, our goal
is to most accurately infer the parameter being
sensed, here the coupling constant g (see also
App. B for inference of the mechanical frequency
ωM), from the photon-click pattern being ob-
served. We would like to investigate how the non-
classical statistics of photon emissions affect the
sensing performance, in particular, compare the
previously defined three distinct cases of detun-
ing: on resonance driving (n = 0) in which the
emitted photons do not exhibit any correlations,
blockade regime (n = 1) in which photons bunch
at moderate times (the blue region in Fig. 4), and
the cascade regime (n = 2) in which the photons
prefer to be emitted in pairs and, hence, bunch at
very short timescales (the red region in Fig. 4).

However, as each of these scenarios requires the
detuning parameter to be set to ∆ = −ng2/ωM
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for an adequate n, see Eq. (5), these can be un-
ambiguously compared only for a particular value
of g. That is why, rather than considering the
complete Bayesian setting and drawing the true
value of g from a prior distribution, what would
require different sets of values for ∆ to be chosen
depending on each true value of g, we consider
local estimation of g around a given fixed value.

Nonetheless, we importantly disallow the true
parameter value to be a priori available when
constructing the real-time estimator, in partic-
ular, we use the optimal Bayesian estimator de-
scribed in Sec. 5.2 that still assumes the prior
distribution (26) to be valid. As an example, we
choose in our simulations the true value of g = 4
(in units of κ), while the estimator expects it to
be distributed in the range g ∈ [2, 10] according
to Eq. (26) with α = −1000.

6.1 Single-shot measurement as a benchmark

Hence, as we are considering here the sensing
performance for a specific value of g, we should
judge our results by rather using the Cramér-Rao
bounds (30-31) on the local MSE (29). Impor-
tantly, these apply also to the single-shot scenario
(ν = 1) and can still be compared with the per-
formance of the optimal Bayesian estimator, θ̃opt,
as long as the latter can be considered unbiased.
That is why, in Fig. 7 (dashed lines in the bot-
tom plots) we include the quantum Cramér-Rao
bounds (31) evaluated for the ensemble-averaged
state of the system. Similarly to the bounds pre-
sented in Fig. 6, these should be treated as a
benchmark quantifying the instantaneous sensing
capability of the system, if one allowed for the op-
timal strong measurement to be performed at a
given time instance and ignored the information
contained within the photon-click pattern, when
inferring the (now, fixed) value of g. As before,
we present these benchmarks also after tracing
out the mechanical mode of the conditional state,
as in reality it should be considered inaccessible.

6.2 Sensing the true value of g

Finally, we demonstrate the superiority of sens-
ing capabilities for the optomechanical system
when inferring the parameter from photon-clicks.
Moreover, being interested in exploiting the non-
linear effects, we consider again the three distinct
regimes of cascade (n = 2), blockade (n = 1) and

on-resonance (n = 0) detuning, which are com-
pared against one another horizontally in Fig. 7.
In particular, within the top plots of Fig. 7 we
present explicitly the evolution with time of the
posterior distribution P (g|Dt) along a represen-
tative photon-click trajectory, together with its
corresponding mean, i.e. the optimal Bayesian
estimator g̃opt(Dt). Within the bottom plots
of Fig. 7, we then plot the corresponding MSE
(29) achieved by g̃opt(Dt) in time for each of
the three non-linear regimes, while comparing
it against the single-shot measurement bench-
marks described above. All the properties of the
optomechanical system are set the same as in
Sec. 3.2, which crucially yield the true value of
g = 4 (in units of κ).

Although for the cascade regime (n = 2) a typ-
ical photon-click trajectory does not contain that
many photons (here, 61), once a sufficient num-
ber of photons are emitted the MSE rapidly drops
thanks to their strong non-classical correlations.
As a result, this turns out to be the best scenario
within the three regimes considered here, given
the particular trajectories generated for each of
the three cases: it yields then the smallest er-
ror at the final time, t = 1000 (in units of 1/κ),
of the simulation. However, as is clear from the
plot of the posterior distribution in Fig. 7, its cor-
responding estimator does not converge directly
to the true parameter value – in contrast to the
n = 1 case – but rather requires significant time,
given a relatively wide prior, for sufficient statis-
tics of bunched photons to be detected, so that
then (here, at t ≈ 600) the correct g-value is re-
solved and the MSE rapidly drops. Unless the
prior is chosen to be narrower (e.g. g ∈ [2, 5] to
avoid the incorrect values emergent in Fig. 7),
such a waiting time may be large and is not pre-
dictable. As we show explicitly in App. C, where
we present the MSEs of Fig. 7 for n = 1, 2 after
being averaged further over typical photon-click
trajectories arising in each regime, such averaging
results in ∆2g̃ to diminish quicker in the block-
ade regime with n = 1, while the "sudden-drop"
feature is nevertheless exhibited along the trajec-
tories observed in the cascade regime with n = 2.

On the other hand, the blockade regime (n = 1)
yields good overall performance, as despite the
emitted photons being less correlated, their abun-
dance is higher (here, 108 emissions for a typi-
cal photon-click trajectory). Still, let us empha-
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Figure 7: Sensing performance from a photon-click pattern. In the top row, we plot the posterior distribution
over the optomechanical coupling, P (g|Dt) along with its mean marked in green, for typical photon-click trajectories
Dt generated over a large period of time, beginning with a flat prior of the form (26) (with α = −1000) that assumes
g ∈ [2, 10]. Underneath, we show the corresponding MSE of the optimal Bayesian estimator g̃opt(Dt), i.e. the mean
of the posterior, along with the local bounds of single-shot measurement for both the total and reduced state of
the system. The trajectories are generated with a true value of g = 4 (in units of κ). For detuning with n = 2
(cascade regime), the estimator initially struggles to infer the parameter, but once a sufficient number of photons are
detected its MSE decreases extremely rapidly. For the n = 1 case (blockade regime), we observe a steady decrease
in the estimator’s uncertainty that begins earlier, due to the higher number of photons being then emitted. For
on-resonance driving (n = 0), sensing turns out to be impossible as, not only does a typical photon-click trajectory
contain a modest number of photon emissions, but also these contain then hardly any information about g. All the
system characteristics are set as in Fig. 3, while g is varied only in the construction of the estimator.

sise that in both cases the sensitivity constantly
grows with time, with more and more photons
being detected, clearly surpassing the single-shot
measurement benchmarks that are limited by the
steady-state behaviour. Note that these may be
unambiguously compared at long times at which
g̃opt(Dt) becomes unbiased, as may be directly
verified by inspecting the posterior distributions
for n = 1, 2, which from t & 600 narrowly peak
around the true value of g [83].

It may have been expected that on-resonance
driving (n = 0) turns out to be useless for the
sensing task considered, as in this regime not only
are the photons rarely emitted (here, 31 emis-

sions in an exemplary photon-click pattern), but
also they hardly interact with the mechanical os-
cillator [2], carrying little information about g.
However, one should bear in mind that this is
a consequence of the particular characteristics of
the sensor being chosen to focus on its non-linear
properties. In particular, in App. B, we also
demonstrate that for stronger driving but weaker
coupling (closer to the linear regime) also the on-
resonance regime yields unconstrained sensing ca-
pabilities with time, when considering either ωM
or g as the parameter to be inferred.

Let us also comment that one may interpret
the superiority of the cascade (n = 2) over the
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blockade (n = 1) regimes by the fact that the
former yields photon-click patterns that reveal
more information about the parameter per pho-
ton [47]. As such, at long times once a sufficient
number of photons is emitted on average also for
the n = 2 case, they are always capable of beating
the sensitivity achieved by the n = 1 trajectory,
despite higher abundance of photon-clicks within
the latter. In a similar way, if one was to con-
sider “higher-order” cascade regimes with n > 2
in Eq. (5) (photons preferring to be emitted in
triplets, quadruplet etc.), one should expect fur-
ther enhancement thanks to even stronger inter-
photon correlations. However, the time it would
take for such an enhancement to matter could
be large, as the rate at which such multi-photon
groups are emitted would dramatically fall.

Finally, let us emphasise that in order to inves-
tigate the impact of non-classical photon corre-
lations, we have assumed here idealistically that
the sensor is a priori calibrated (e.g. by a third
party) with its detuning ∆ being set to satisfy
perfectly either the blockade or the two-photon
cascade conditions. In practice, however, such
calibration would require the value of the sensed
parameter (here, g) to also be known in advance,
what suggests that it would need to be performed
in an adaptive manner along the sensing proce-
dure. Nonetheless, this does not constitute a fun-
damental problem, as the sensor exhibits robust-
ness to deviations of ∆ from a desired value, i.e. it
still then yields errors that eventually diminish
with time, as shown explicitly in App. C.

7 Conclusions

We have shown that recent experimental break-
throughs demonstrating the ability to measure
and control optomechanical sensors in real time,
as well as reaching regimes of non-linear inter-
actions between optical and mechanical modes,
open doors for a new generation of optomechani-
cal sensors that operate continuously in time.

In particular, by considering the canonical op-
tomechanical setup we have demonstrated with
help of numerical methods, which importantly
allowed us to incorporate relevant decoherence
mechanism into the non-linear sensor dynamics,
that by continuously driving the system into the
stationary state in balance with the dissipation
processes and detecting the photons being emit-

ted, one can gain precise information about ex-
ternal parameters perturbing the sensor.

Moreover, by correctly adjusting the (red) de-
tuning of the driving field the non-linear ef-
fects can be enhanced, so that thanks to non-
classical correlations (bunching) between the
photon-clicks the sensor performance is improved.
Although such an approach requires fine-tuning
of optical driving parameters that may vary with
the parameter being sensed, we believe that
our work paves the way for future proposals of
schemes that involve active feedback [21, 26–28],
so that optimal non-linear characteristics can be
maintained during the sensing process, while al-
tering the driving field ‘on-the-fly’.

Although we have presented results for sens-
ing the optomechanical coupling in Sec. 6, our
methods are easily extendible to other parame-
ters. Moreover, at the price of exploiting less the
non-classical characteristics of detected photons,
one may also consider regimes of stronger driv-
ing that lead to higher rates of photon-counts
and, hence, more data. Both of these factors
are considered in App. B, where we infer the
mechanical frequency of the oscillator by our
methods, with the Bayesian inference protocol
coping efficiently with higher rates of detection.
As such, we believe that our sensing scheme
can be implemented with a broad spectrum of
optomechanical-like devices despite their differ-
ent characteristics, as well as other cavity-[63–
65] or waveguide-based [66] systems with tunable
non-linearity of light-matter interactions [62].

A limitation of our results is the speed at
which data can be analysed. As discussed, the
bottleneck in generating the posterior distribu-
tion comes from acquiring the likelihood function.
Approaches previously considered, such as using
the Metropolis-Hastings algorithm [56], are not
expected to be particularly useful in our sensing
scenario, as they are generally tailored instead to
problems with in large, high-dimensional param-
eter spaces. Nonetheless, exploring other path-
ways to improve the speed of Bayesian-inference
methods we propose is therefore expected to be
an interesting development of our work.

From the theoretical perspective, let us note
that the ultimate bounds on average precision for
a single-shot destructive measurement, which we
have used within our work as a benchmark, could
be in principle generalised to include the contin-
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uous inflow of information gained from photon-
counting [60, 87], or even further limited based
solely on the properties of the decoherence [88].
Such an analysis would allow us to verify the op-
timality of photon-detection as a quantum mea-
surement, which we leave open for the future.
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A Closed and fully conditional state
evolution

Here we show how a quantum state evolves ac-
cording to Eq. (12) and as such find the purity of
the resulting reduced state used in Fig. 2, follow-
ing similar methods as in Ref. [48].

A.1 Dynamics

We assume we begin in an initial coherent state
for both cavity and mechanics of

|ψ(0)〉 =|α〉cav|β〉mech . (37)

Applying Eq. (12) to Eq. (37) we find

|ψ(t)〉 =e−
|α̃|2

2

∞∑
n=0

α̃n√
n!

eik2n2(t′−sin(t′))

× ekn(βη−β∗η∗)/2|n〉cav|φn〉mech , (38)

where |φn〉 = |βe−it′ + knη〉 is a coherent state
and α̃ = αe−ir̃t′ . The corresponding density ma-

trix ρ(t) = |ψ(t)〉 〈ψ(t)| is hence

ρ =e−|α̃|2
∞∑

m,n=0

α̃n(α̃∗)m√
m!
√
n!

eik2(n2−m2)(t′−sin(t′))

× ek(n−m)(βη−β∗η∗)/2 |n〉 |φn〉 〈φm| 〈m| ,
(39)

where we have dropped the subscript labels on
the states as it is clear which belongs to which
space. We now wish to consider the reduced sys-
tem with the mechanics traced out. The density
matrix of the reduced state ρcav = Trmech(ρ) is
then

ρcav(t) =e−|α̃|2
∞∑

m,n=0

α̃n(α̃∗)m√
m!
√
n!

× eik2(n2−m2)(t′−sin(t′))

× ek(n−m)(βη−β∗η∗)/2

× e−
|φn|2

2 − |φm|
2

2 +φnφ∗m |n〉 〈m| . (40)

We can now use this density matrix to find the
properties of the reduced state.

A.2 Purity

The purity of a density matrix is defined to be
P = Tr(ρ2). Using the density matrix in Eq. (40),
we find

ρ2
cav(t) =e−2|α̃|2

∞∑
m,n,n′=0

α̃n(α̃∗)m|α̃|2n′√
n!m!n′!

× eik2(n2−m2)(t′−sin(t′))

× ek(n−m)(βη−β∗η∗)/2

× e−
|φn|2

2 − |φm|
2

2 −|φn′ |2+φnφ∗n′+φn′φ
∗
m

× |n〉 〈m| . (41)

The purity of the system is hence

P =e−2|α̃|2
∞∑

n,n′=0

|α̃|2(n+n′)

n!n′!

× e−|φn|
2−|φn′ |

2+2Re(φnφ∗n′) . (42)

The size of |α|2 will determine how high n, n′ need
to be summed to in order to obtain good results,
but this value can be obtained for large n, n′ eas-
ily numerically.

Accepted in Quantum 2022-09-12, click title to verify. Published under CC-BY 4.0. 19



Figure 8: Bayesian inference of g and ωM closer to linear regime. We take a prior distribution of the form of
Eq. (26) with θmin = 0 and θmax = 10 and with α = −1000. In both cases, we see that the posterior distribution
focuses on the true value increasingly sharp as a function of time. To see this, we also plot the MSE ∆2g and ∆2ωM.
In both cases we generate a trajectory from a system with parameters ∆ = 0, Ω = g = ωM = γ = κ, κd = 0.9κ,
κl = 0.1κ and m̄ = 1. Here, there are ∼ 300 photons emitted, which is much higher than the results within Sec. 6,
yet the MSE at large times is still comparable.

B On-resonance sensing from photon-
clicks closer to the linear regime
We now consider a full Bayesian analysis of the
photon statistics of a quantum trajectory to infer
the value of g or ωM, using the methods described
in Sec. 5, for a system prepared closer to the lin-
ear regime of optomechanics. In particular, we
now set ∆ = 0, Ω = g = ωM = γ = κ, with
again κd = 0.9κ, κl = 0.1κ and m̄ = 1. While we
still do not perform linearisation of the optome-
chanical Hamiltonian and its Langevin equations,
these parameters are out of the sideband-resolved
regime, and much closer to the linear regime—
they do not satisfy the inequalities in Eq. (3) –
due to the stronger driving and weaker optome-
chanical coupling. Nevertheless, there exist quan-
tum signatures of the dynamics that can still be
observed within such a regime [89].

We show results for inference with these param-
eters in Fig. 8. We see that the Bayesian inference
is capable of predicting the correct value of g or
ωM to a high level of accuracy, thus demonstrat-
ing that our results are not dependent on being
in a special regime of optomechanics. Indeed we
find the photon statistics can provide informa-
tion about unknown parameters if either there is
enough of them or they are correlated.

For comparison, we also compare to the lo-
cal bound set by Cramér-Rao bound, as we did
in Sec. 6. As for our main results, this bound

initially decreases rapidly, before settling at a
stationary value. We see that for measuring g,
within this regime there is much less difference
between the bound for the total and reduced
state. However, when considering ωM, this dif-
ference is much more substantial. Indeed, almost
all the information about ωM is contained within
the mechanics. Nevertheless, it is then surprising
to see that the inference from the photon-clicks is
capable of measuring ωM nearly as well as for g.
In both cases, we again see that with a sufficient
waiting time, the Bayesian inference from con-
tinuous photon-counting can beat a single-shot
measurement.

We note that the parameters chosen here, in-
dicated in Fig. 8, are not completely in-line with
what is currently considered experimentally [2].
The parameters used here are chosen to minimise
numerical complexity within a simple regime to
obtain good results that demonstrate the capa-
bility of photon-counting for quantum sensing in
optomechanics.

C Robustness of sensing performance

In this appendix, we analyse in more detail thep-
erformance of our sensing scheme, in order to
draw attention to the robustness, as well as limi-
tations, of our main results.
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Figure 9: MSE averaged over photon-click trajectories for the n = 2 and n = 1 regimes. (a) We obtain an
average MSE by sampling 20 trajectories obtained within cascade (n = 2) and blockade (n = 1) regimes, considering
in each case both the imperfect photon detection as in the main body (dashed lines), as well as the perfect photon
detection (solid lines). In both cases, the trend is the same, thus demonstrating a robustness to small photon losses,
while on average the behaviour is better for the n = 1 regime. The average MSEs for n = 2 and n = 1 are again
plotted in (b) and (c), respectively, together with the MSEs obtained with each of the corresponding individual
trajectories. The MSEs for n = 2 clearly show larger fluctuations than those of n = 1, while for each trajectory
obtained for n = 2, the MSE exhibits a steep drop (owing to two-photon correlations) at a sufficiently long time, as
in Fig. 7 of the main text.

C.1 Averaging over different trajectories

Firstly, let us note that MSEs depicted in both
Figs. 7 and 8 show the results for single trajec-
tories. Hence, as each trajectory behaves differ-
ently, they may not necessarily be representative
of the typical behaviour of the system. In order
to demonstrate that such behaviours are indeed
representative of the dynamics, we present here
in Fig. 9(a) the two relevant (n = 2 and n = 1)
MSEs of Fig. 7, however, after averaging them
further over many, here 20, photon-click trajec-
tories (the MSEs for each single trajectory used
are also plotted in Fig. 9(b) and (c), respectively).

Consistently, we observe that in both regimes
of two-photon cascades, n = 2, and photon block-
ade, n = 1, the MSE decreases in time, but on av-
erage it is rather the n = 1 regime that performs
better – given the same wide prior g ∈ [2, 10] as-
sumed as in Fig. 7. This is a result of a more con-
sistent performance of trajectories in this regime,
whereas the trajectories for n = 2 lead to much
larger variation of the MSE, as can be seen by
comparing plots (b) and (c) in Fig. 9. Part of the
reason for the larger performance spread in the
n = 2 case is the need for the data to possess suf-
ficient bunching of the photon statistics, in order
to certify that the parameter is within a range of
values for which this strongly occurs. As such,
the ‘quality’ of the trajectory becomes critical.

This is manifested by the single-trajectory MSEs
in Fig. 9 (b) sharply dropping to zero thanks to
the two-photon correlations after a sufficient time
has passed, whose amount, however, is not well
predictable – yielding a worse MSE overall, once
the averaging over trajectories is performed.

We also compare in Fig. 9(a) the trajectory-
averaged MSEs obtained for perfect photon de-
tection (κd = κ, κl = 0) with the case considered
in the main body, in which a 10% of photons is
further lost (κd = 0.9κ, κl = 0.9κ). This allows
us to verify that, as there is little difference of per-
formance between these two cases: not only the
scheme is robust to photon losses, but also the
above conclusions remain valid also when κl > 0.

C.2 The impact of imperfect detuning
Within the main text, in order to focus on the
impact of non-classical correlations between the
emitted photons on the sensor performance, we
have assumed the detuning ∆ to take the exact
values that lead to particular regimes of photon
statistics (n = 0, 1, 2). However, knowing the cor-
rect value of ∆ to choose a priori is not feasible in
practice, as it in principle requires also the knowl-
edge of the parameter being sensed. Here, we
consider detunings chosen close to, but different
from, the optimum values and find that, despite
photon bunching/antibunching not being exactly
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Figure 10: MSE for trajectories with perfect and
imperfect detuning. Exemplary trajectories for both
the n = 2 and n = 1 regimes, compared to trajectories
where the detuning is perturbed away from its ideal case.
In both cases, we find that the sensing is robust to such
perturbations and still manages to sense the unknown
parameter nearly as effectively. All parameters are set as
in Fig. 7, with only detunings being modified.

satisfied, the evolution of the estimation error is
only mildly affected.

In Fig. 10, we compare the MSEs presented for
n = 1 and n = 2 in Fig. 7, where the detuning
is set to ∆∗ = ng2/ωM, to the ones obtained for
imperfect detunings ∆ = 0.9∆∗ and ∆ = 1.1∆∗.
In that latter two cases, new photon-click trajec-
tories must be generated for them to also account
also for the shift of ∆, but nonetheless the MSE
behaves similarly to that of the ideal detuning.
Hence, this demonstrates that the perfect cali-
bration of detuning is not essential for the sensing
performance. The reason for this is that the pho-
ton statistics predicted by the detuning regimes
are still present, only in a slightly weaker form.
This can be seen by considering the energy land-
scape in Eq. (5). While the energy separation in
the |0〉 → |n〉 transition is no longer zero for im-
perfect detuning, it is still reduced and thus still
favoured over other transitions, albeit in a slightly
weaker sense. Hence, even with the limitation
of choosing the detuning incorrectly, our sensing
scheme is capable of inferring the unknown pa-
rameter, while still benefiting from the – now,
imperfect – non-classical correlations of the emit-
ted photons.
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