
Enhanced Photonic Maxwell’s Demon with Correlated Baths
Guilherme L. Zanin1,2,†, Michael Antesberger1, Maxime J. Jacquet1,3, Paulo H. Souto Ribeiro2,
Lee A. Rozema1, and Philip Walther1,4

1University of Vienna, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria
2Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
3Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris 75005, France.
4Christian Doppler Laboratory for Photonic Quantum Computer, Faculty of Physics, University of Vienna, 1090 Vienna,
Austria
†Correspondence to: guilherme.zanin@univie.ac.at.

Maxwell’s Demon is at the heart of the inter-
relation between quantum information process-
ing and thermodynamics. In this thought experi-
ment, a demon generates a temperature gradient
between two thermal baths initially at equilib-
rium by gaining information at the single-particle
level and applying classical feed-forward opera-
tions, allowing for the extraction of work. Here
we implement a photonic version of Maxwell’s
Demon with active feed-forward in a fibre-based
system using ultrafast optical switches. We ex-
perimentally show that, if correlations exist be-
tween the two thermal baths, the Demon can
generate a temperature difference over an order
of magnitude larger than without correlations,
and so extract more work. Our work demon-
strates the great potential of photonic experi-
ments – which provide a unique degree of con-
trol on the system – to access new regimes in
quantum thermodynamics.

1 Introduction

Thermodynamics was conceived as a phenomeno-
logical theory for the equilibrium properties of
macroscopic systems ranging from gas (ensem-
bles of ‘many’ small systems) to black holes. For
these systems, theories like that of Maxwell’s for
heat [1] provide a complete description of quanti-
ties such as temperature or work, and the manip-
ulation of thermal states – as well as their emer-
gence from fluctuations at the smallest scale –
can be described in terms of (quantum) infor-
mation processing [2–4]. Reciprocally, thermo-
dynamic considerations ought to limit quantum
information processing itself [5–7]. This inter-
relation is perhaps best manifested in the pro-

tocol known as ‘Maxwell’s demon’ (MD) [1, 8–
15]. As illustrated in Fig. 1 (a), the MD mon-
itors the motion of gas particles inside a parti-
tioned box. Based on its previous knowledge of
the particle’s velocity [16, 17], the MD can sort
fast particles from slow particles by opening an
aperture in the partition such that all fast parti-
cles eventually end up on one side of the parti-
tion and all slow particles on the other. So the
MD brings the system out of equilibrium, and
one can then exploit the engineered temperature
differential to extract work. In modern exper-
iments [18–29], we say that the MD generates
work by measuring individual particles to gain in-
formation [16, 17], and depending on these mea-
surement results, it applies different operations
to the bath (i.e. opening the door, or leaving
it closed). These measurement-dependent oper-
ations are called feed-forward operations. Here,
work and energy are bound to the available in-
formation, and are ultimately physically limited
by it [17, 30].

The ‘power’ of the MD, the temperature im-
balance it can generate per measurement, can be
greatly enhanced by operating with correlated
particles: Consider a situation where, for every
particle moving in a certain direction in the left
bath, there is a twin particle moving in the same
direction in the right bath (see Fig. 1 (c)). If the
MD observes a particle in the left bath it also
learns something about an (unobserved) particle
in the right bath. Because of this additional in-
formation, the MD can generate a larger temper-
ature difference per measurement [31] by simply
modifying its feed-forward protocol to make use
of the new information.

While correlations are difficult to engineer in
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most systems, doing so is very easy in photonics.
Here, we present the first experimental realisa-
tion of a photonic MD operating with correla-
tions and active feed-forward. The photonic MD
was first proposed and a proof-of-principle exper-
iment was demonstrated in [32], and the idea to
enhance the MD’s power was proposed in [31].

The working principle of an uncorrelated pho-
tonic MD is depicted in Fig. 1 (e). In a photonic
MD, the baths are realised with optical modes,
each containing a thermal state of photons whose
average photon number directly sets the tem-
perature of the bath. These two optical modes
are then sent to individual detectors, DA and
DB. When the two optical modes have an equal
photon number (the baths have an equal tem-
perature), the detectors register the same counts
and no work can be extracted. When a photon
is subtracted from this state at a beamsplitter
and detected in the reflection port with detec-
tor DemA or DemB, bunching will occur, mean-
ing that the photon number in the transmitted
beam will be temporarily doubled (as depicted
in red in Fig. 1 (e)). This photon extraction pro-
vides information about the average photon num-
ber in the beam, based on which a classical feed-
forward operation may then be applied to create
an imbalance in the photon number between the
two beams. This energy imbalance can in turn
be used to extract work. The gain of informa-
tion and the generation of a temperature differ-
ence through classical feed-forward is precisely
the functioning of an MD — a photonic MD is
thus a device that can generate a photon number
imbalance between two thermal states that ini-
tially have the same photon number. The power
of a photonic MD is simply quantified by the pho-
ton number difference that can be generated to
extract work.

The working principle of the photonic MD
was demonstrated only recently in a proof-of-
principle experiment [32]. There, the feed-
forward at the core of the extraction of work
was not applied, instead the operation of the MD
was shown by post-processing the data. Detec-
tors DA and DB were replaced by photodiodes
connected to a capacitor. In the case where the
photon number at DA and DB was balanced,
the photo-currents generated by the photodiodes
cancelled out, creating a zero net charge on the
capacitor. If, however, there were more pho-

tons in one beam, the capacitor’s polarity could
have been flipped (classical feed-forward oper-
ation) such that the photo-currents would no
longer cancel out and the capacitor would always
be charged positively, allowing the extraction of
work. In [32], instead of flipping the capacitor’s
polarity, the operation of the photonic MD was
quantified by recording the charge across the ca-
pacitor in real time. It was found that a positive
(negative) charge of the capacitor would corre-
spond to a click at DemA (DemB). Hence, no
work was extracted.

In our photonic MD, we implement active
feed-forward to physically swap the paths of the
beams dependent on detection events at DemA

and DemB using an ultra-fast optical switch
(methods adapted from [33]). While our ac-
tive feed-forward would allow for the extraction
of work, we do not extract work here. We in-
stead monitor the photon number imbalance di-
rectly using single-photon detectors, as this char-
acterises the maximum work that could be ex-
tracted. This detection scheme is also more com-
patible with the quantum states of light that we
use to generate correlations to increase the power
of the MD.

Correlations in quantum thermodynamics have
been used in numerous experiments in quantum
thermodynamics [34–44], but not in terms of in-
formation processing by the MD. Here, we com-
pare the statistics obtained with uncorrelated
thermal states (produced classically) and split
thermal states to those obtained with correlated
and anticorrelated thermal states produced by
spontaneous parametric down-conversion and a
path-entangled (so-called N00N [45]) state, re-
spectively. We show that the choice of corre-
lations is essential in enabling the MD to ex-
tract work. Our experiments evidence that par-
ticular correlations allow for an order of magni-
tude increase of the power of the MD, while oth-
ers prevent the MD from extracting any work
at all. Furthermore, we derive a figure of
merit for the power of the MD in the regime
of low photon-numbers and demonstrate that in-
formation processing with correlations and anti-
correlations vastly outperforms operation with
the other states.

Although we generate some of these correla-
tions using quantum states of light, the enhance-
ment of the power of the MD does not rely on
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the quantum nature of the correlations. It re-
mains an open question if quantum correlations
could further enhance the power of the MD. Nev-
ertheless, correlations are ubiquitous in quantum
information processing, and so our photonic im-
plementation settles Maxwell’s demon therein.

2 The power of Maxwell’s Demon

In our experiment, the MD consists of a logic that
monitors photon arrival events at two detectors
and conditionally controls the path light takes.
Specifically, the experiment (Fig. 2 (d)) is based
on two separate spatial modes for light propa-
gation, corresponding to two paths (labelled InA
and InB in Fig. 1 (e)) in the setup, in which we
send states with various statistics. The MD con-
sists of two single-photon detectors (DemA and
DemB), two variable-reflectivity beamsplitters
(implemented with tunable directional couplers,
labelled TDC), the ultra-fast optical switches
(UFOS), and the logic (labelled TTM) used to
control the UFOS. The detectors monitor photon
arrival events in the reflected port of the TDCs,
and send signals to the coincidence logic which
then sets the state of the UFOS to route the light.

The feed-forward protocol functions as follows:
The thermal states (generated by either of the
sources Fig. 2 (a), (b) or (b)+(c)) enter the setup
(Fig. 2 (d)) in modes InA and InB. First, the
temperature of the thermal baths are set equal
by fixing the UFOS in the ‘bar state’ (to trans-
mit mode A to DA and B to DB), and equal-
ising the photon rates NA and NB measured by
single-photon detectors in modes DA and DB.
Second, we make the MD’s feedforward active.
Microscopic knowledge about incoming photons
in modes InA and InB is acquired via the detec-
tor clicks in the reflected arms DemA and DemB.
Based on this information, the MD operates the
UFOS (or not) in order to route the beam with
a higher photon number in mode A or B to DA,
thus creating a photon-number imbalance at the
output. The exact details of this routing depend
on the states considered and we discuss them be-
low.

To characterise the temperature gradient gen-
erated by the MD, we directly measure the pho-
ton rates NA and NB in the two beams exiting
the experiment with single-photon detectors in
modes DA and DB when the feed-forward is ac-

tive. We then measure ∆N = NA − NB, the
photon number difference between these detec-
tors. Although we do not extract any work here,
work could in principle be extracted from this
photon-number difference for example by charg-
ing a capacitor as proposed in [32], or by moving
a particle via the differential in radiation pressure
thus engineered. We consider ∆N/N — the change
in photon number per incident photon — as our
figure of merit for the ‘power’ of the MD. Here,
N is the number of photons incident in mode InA
which we will always set equal to the number of
photons in mode InB. We estimate N by making
the feed-forward inactive, measuring the photon
number with the detectors in modes DA and DB,
and then dividing by the beamsplitter reflectiv-
ity. We begin by presenting our derivations of
this figure of merit for the different input states
in the regime of low photon-numbers, which we
define as one- and two-photon detection events.

Uncorrelated thermal states. — We first
consider two uncorrelated thermal states with
the same photon number, as in Fig. 1 (e).
The density matrix of a single-mode ther-
mal state of temperature T (β = 1/(kbT ))
is ρTh =

∑∞
n=0 Pn |n〉 〈n| , where P (n) =

nn
(
(1 + n)n+1)−1

and n = (eβ~ω − 1)−1 is the
average photon number in this state (~ and kB
are the Planck and Boltzmann constant, respec-
tively and ω is the angular frequency of the
photon). This state is sent into mode InA to-
wards the beamsplitter, with vacuum incident
into the other unlabelled mode. At the beam-
splitter, some of the light is reflected towards de-
tector DemA while the rest is transmitted into
mode A. The probability to detect n photons
at detector DemA and m photons in mode A is
P (m,n) = (n+m)!

n!m!
nn+m

(1+n)n+m+1R
2n(1−R2)m, where

R is the reflection amplitude of the beamsplitter
[46]. The subtraction of one photon from a ther-
mal state leads to a two-fold increase in the aver-
age photon number left in mode A, n′ = 2n [47]
(hence the two red photons in Fig. 1 (e)). More-
over, if the initial thermal state is a single-mode
thermal state, the remaining state is a multi-
mode thermal state [48]. The same is true for
the lower B modes. Importantly, neglecting this
detection event results in a thermal state with a
lower average photon number n′ = (1− |R|2)n in
mode A or B [46]; hence, the MD’s measurement
does not inject any energy into either mode. As
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Figure 1: Principle of operation of the photonic Maxwell’s Demon (MD): the MD controls the path of
particles/photons in the system. The colours red and blue represent correlated photons; i.e. when the demon
measures a red particle, it learns the location of the blue particle. Top row, particle picture of the photonic MD;
bottom row, actual implementation of the photonic MD. (a) and (e), uncorrelated thermal states; (b) and (f),
split thermal states; (c) and (g) correlated states; (d) and (h), anti-correlated states. (e) The mode labels shown
here also apply to panels (f)-(g). InA/B and EA/B label the input modes of the MD’s beamsplitter. The various
thermal states are input into InA/B , while vacuum is always incident in modes EA/B . We use A/B and DemA/B

to label the output modes of the beamsplitters. Modes DemA/B are sent to the MD’s detectors, while A/B are
sent to UFOS so the MD can swap them if it wishes. Finally, DA/B label the output modes of the UFOS, which
are directly sent to the detectors to measure the photon number imbalance. In the photonic implementation without
correlations ((a) and (e)), a detection at the demon’s detector DemA heralds more photons in mode A (indicated
by the two blue particles), corresponding to an increased temperature. With classical correlations arising from split
thermal baths ((b) and (f)), detection at DemA increases the photon number in both mode A and mode B by the
same amount, rendering the demon powerless. The MD with correlated ((c) and (g)) and anti-correlated ((d) and
(h)) baths learns about particles in both baths. Detecting the red photon at DemA tells the MD that there is now
one more photon in mode B for correlated baths. While detecting the red photon at DemA for for anti-correlated
baths tells the demon that there are no photons in mode B.

a result, if the MD detects a photon at detec-
tor DemA the remaining photon number in mode
A is higher. Since the MD will attempt to in-
crease the photon number in mode DA, it will
set the UFOS in the ‘bar state’ so that light in-
cident in mode A (B) is transmitted to mode
DA (DB). However, detection of a photon at
detector DemB means that there are more pho-
tons in mode B, so the MD will swap modes A
and B by setting the UFOS to the ‘cross state’.
When no photons are detected, or a photon is de-
tected in each mode, the MD sets the UFOS to
the ‘bar state’. Thus a photon number imbalance
can be generated based on the MD’s information
(click/no-click), which depends on the beamsplit-
ter’s reflection amplitude R. In Appendix C, we

derive the power of the MD when using uncor-
related thermal states for low photon-numbers,
obtaining

∆N
N

= 2n
(1− n)2R

2(1−R2). (1)

Note that here n is the expectation value of the
photon number per mode (i.e., the number of
photons per coherence time, which is τc = 5.42µs
for our uncorrelated thermal photons and τc ≈ 2
ps for the photons generated by spontaneous
parametric down-conversion). In contrast, N is
the total number of photons sent into mode InA
(and equally into mode InB) during the exper-
iment. Hence, n = τC

T N , where T is the total
measurement time. From Eq. 1, we see that the
power of the MD increases with n (in the limit
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Figure 2: Active photonic Maxwell’s Demon. The two photon sources: (a), uncorrelated thermal states and
(b), correlated thermal states (Sagnac loop for SPDC). Splitting one mode of one of the sources shown in (a) on
a beamsplitter (not shown) yields the split thermal state. Passing photons from (b) through the Hong-Ou-Mandel
interferometer (c) yields the two-photon N00N state. The Maxwell’s Demon in (d) monitors the statistics of the
incoming photons with the detectors in modes DemA and DemB and conditionally controls the path the photons
take through the ultra-fast optical switch (UFOS) to the detectors in modes DA and DB .

of n � 1), indicating that this effect is driven
by the thermal nature of the beams. Since Eq. 1
also depends on the reflection amplitude R, we
will tune this parameter to optimise the power of
the MD.

Split thermal states. — Now, if in-
stead of two statistically uncorrelated thermal
states we send two classically correlated ther-
mal states (created by splitting a single ther-
mal state at a balanced beamsplitter) into
the setup, the state in modes InA and InB
is ρSplit =

∑∞
n,m=0 P (n,m) |n,m〉 〈n,m|InA,InB

,
with P (n,m) as defined above (for R = 1/

√
2).

Since the thermal states in each mode origi-
nated from the same source, a detection at DemA

(or equivalently DemB) affects the state in both
modes A and B: this amounts to effectively in-
creasing the photon number in both arms simul-
taneously (Fig. 1 (f)), as in [49].

Therefore, when operating with split thermal
states, the MD cannot possibly know in which
arm the bunching effect will be stronger — its
power in this case is zero: ∆N/N = 0, for all values
of the reflectivity of the MD’s beamsplitter (see
Appendix C). This result holds in general, not
just in the regime of low photon-numbers [31].
In terms of the partitioned box example, we can
imagine a hole in the partition through which
particles can freely escape to either side such
that, when the MD measures one particle, the

temperature is increased on both sides of the par-
tition (Fig. 1 (b)). This is not a perfect anal-
ogy, as in our photonic implementation, particles
are not exchanged after the MD’s measurement.
Rather, the thermal state is distributed among
two optical modes and photon subtraction in ei-
ther of these modes increases the average photon
number equally in both modes, as in [49] for ex-
ample.

Correlated thermal states. — Unlike the above
correlations, which effectively make the MD pow-
erless, the correlations generated by type-II spon-
taneous parametric down conversion (SPDC) in-
crease its power [31]. Ideally, for this state when-
ever there is a photon in mode InA, a twin
photon is found in mode InB (correlated parti-
cles are denoted as the red and blue particles
in Fig. 1 (c) and (g)). In particular, the ideal
state is |ψ〉 = 1

cosh s
∑∞
n=0(tanh s)n |n, n〉InA,InB

,
where s specifies the brightness of the source. Al-
though photons are always emitted in pairs, trac-
ing over photons in mode InA (InB) leaves pho-
tons in mode InB (InA) in a thermal state [46],
which means that the power of the MD could
be enhanced as with uncorrelated thermal states.
However, we will now see that the correlations
generated by SPDC have a much larger effect,
and in fact counteract the thermal bunching.

The key resource for this state are the correla-
tions which provide the MD with more informa-
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tion than it can obtain from the thermal bunch-
ing. For example, if exactly one photon is de-
tected at DemA, the MD has removed one pho-
ton from mode A, and it now knows that there
will be one more photon in mode B (and vice-
versa). This is illustrated Fig. 1 (g), where the
photons come in pairs. For every red photon in
mode DemA there is a correlated blue photon in
mode B. Hence, when the MD detects a photon
in DemA there are now zero photons in mode A,
and exactly one photon in mode B. Therefore,
the MD will move the remaining photon from B
to mode DA by putting the UFOS in the cross
state. Similarly, it will set the UFOS to the bar
state when it detects a photon in mode B. As
before, the UFOS remain in bar for all other de-
tection events

In the partitioned box analogy, Fig. 1 (c) shows
the MD gaining information about particles on
both sides of the partition, by measuring a par-
ticle on only one side. Here the colour denotes
correlated pairs of particles. For every red (blue)
particle on the left there is a corresponding blue
(red) particle on the right moving in a mirrored
direction. Thus, if the MD finds a particle im-
pinging on the aperture from one side, it mea-
sures (and destroys) that particle leaving its twin
to arrive alone from the other side.

Notice that now the MD’s logic is reversed
compared to the uncorrelated thermal states.
Previously, finding a particle on one side implied
that there were more particles on that side. Now
the opposite is true. This also introduces a new
experimental issue: the power of the MD crit-
ically depends on the ratio between correlated
photons (which experimentally correspond to co-
incidence events) and uncorrelated photons (by
which we mean photons that have lost their part-
ner due to experimental loss). In practice that
means that the coupling efficiency ε2, defined as
the ratio between the singles rate the coincidence
rate, is essential to create a powerful demon.

In Appendix C, we derive the power of the MD
using correlated thermal states in the regime of
low photon numbers in the presence of experi-
mental loss. We obtain

∆N
N

= 2ε2R2(1−R2). (2)

This equation resembles Eq. (1). Here, however,
the power of the MD does not depend on n, since
the correlations are the driving force of the power

of the demon in this regime. In fact the corre-
lations counteract the thermal bunching effect.
Moreover, notice that the power of the MD is
scaled by the coupling efficiency ε2. For a perfect
source ε2 = 1. Interestingly, we can experimen-
tally probe this, by simply computing the power
of the MD per photon pair (by normalising ∆N
by the total number of coincidences C). As we
show in Appendix C, this results in:

∆N
C

= 2R2(1−R2). (3)

Anti-correlated thermal states. Finally, we
consider the operation of the MD with anti-
correlated N00N states (here we set N = 2) [50].
We refer to this state as anti-correlated because
whenever there is a photon in mode InA, there
are none in mode InB (see Fig. 1h). In Ref. [31],
a specific two-mode state was proposed with two
important properties. First, for every N-photon
event, the two modes are in a N00N state —
where there are N photons mode A and zero in
mode B, and vice-versa. Second, tracing out ei-
ther mode, leaves the remaining mode in a ther-
mal state. Experimentally, we do not create this
state, but we note that some experimentally-
realised N00N state sources may come close to
these conditions [51, 52]. Instead, here we per-
form Hong-Ou-Mandel (HOM) interference be-
tween the two photons from the SPDC source
to create a 2-photon N00N state. The higher-
order modes will not be in a N00N state; rather,
they will be in so-called Holland-Burnett states
[53]. Nevertheless, as we show in Appendix C for
low-photon numbers, the demon effect is driven
by the two-photon component and in this regime
our source behaves almost exactly as the state
proposed in [31]. Ideally, our state has only the
vacuum component and the two-photon terms
(|2, 0〉InA,InB

+ |0, 2〉InA,InB
)/
√

2). Starting from
this state, in Appendix C we derive the power
of the MD in the presence of loss (coupling ef-
ficiency ε2) and for imperfect Hong-Ou-Mandel
visibility (v2), finding

∆N
N

= 2ε2(2v2 − 1)R2(1−R2). (4)

This differs from operation with correlated states
(Eq. (2)) by a factor depending on the visibility
2v2 − 1. Here, the key resource are the anti-
correlations: In Fig. 1 (g) photons come from
the source in pairs, denoted by red and blue.
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Figure 3: Source characterisation. Representative measured g(2)(τ) of the thermal beam (a) and one mode of
the split thermal beam (b). Both display g(2)(τ = 0) very close to 2. Panel (c) shows the Hong-Ou-Mandel dip
(visibility v2 = 0.87 ± 0.02) between the signal and idler down-converted photons with act as our resource for the
anti-correlated states.

If the MD detects, say, exactly one photon at
DemA, then it knows that a second photon is left
in mode A, and there are no photons in mode
B. In analogy, Fig. 1 (d) shows the MD gaining
information about both particles by measuring
only one of them: if the MD detects, say, the red
particle then it knows that another one is also
arriving from the same side. Here, as with the
quantum correlated states above, the power of
MD depends on the coupling efficiency, but also
on the visibility (i.e. the quality of the N00N
state source). Again, if we instead normalise our
results by the average coincidence rate C, we get
closer to the ideal performance

∆N
C

= 2(2v2 − 1)R2(1−R2), (5)

but this does not remove the visibility depen-
dence.

Finally, we remark that in the regime of low
photon numbers and for optimal visibility v2 =
1, operation with correlated and anti-correlated
states would provide the same power of the MD.
However, for anti-correlated states, the demon
switches particles in the same manner as for the
thermal bunching. This is why at higher tem-
peratures (photon numbers) Ref. [31] found that
the anti-correlated states greatly out perform the
correlated states.

3 Experiment
Our photonic MD experiment, shown in Fig. 2,
is built around a 2x2 UFOS (BATi 2x2 Nanona
fibre switch). This optical switch can route light
from two input modes into two output modes
with a variable splitting ratio. The response time

of the UFOS is below 60 ns, with a maximal
duty-cycle of 1 MHz, and a cross-channel iso-
lation greater than 20 dB for any polarisation,
see Ref. [33] for more details. The reflectivity
R of the variable beamspliter, implemented by
a TDC, sets the amount of information gained
by the MD about the input state. After the BS,
photons go through a 152 m fibre delay line 1 be-
fore entering the UFOS, where the path they take
(towards either detector DA or DB) is condition-
ally controlled by the MD. All detectors are su-
perconducting nanowire single-photon detectors
(SNSPD) from PhotonSpot Inc. (deadtime 50
ns, average system detection efficiency 90%, and
timing jitter of ≈ 150 ps). Detection events are
recorded and processed by a commercial time
tagging module (UQDevices Logic16 TTM). A
photon detection event triggers a wave-function
generator (Keysight 33500B Series) to generate a
2.5 µs TTL pulse that will make the UFOS switch
states.

Before presenting our experimental results, we
will explain our measurement procedure which
is used for the four different initial states. Our
target metric is ∆N , which we then normalise
by either the total singles count N or the coinci-
dence count C. However, this is highly sensitive
to variations in the imbalance between photon
numbers at the input, and thus also to losses in
the setup, which can (and do) differ slightly be-
tween the upper A modes and B lower modes.
In order to account for these unbalanced losses,
we first balance the count rates of the two arms

1The extra fibre relaxes the constraints on the adjust-
ment of electronic delays, pulse size, and other parameters
that are more easily controlled than the physical length of
optical fibres and BNC cable.

Accepted in Quantum 2022-09-08, click title to verify. Published under CC-BY 4.0. 7



when the UFOS is fixed in the bar state and then
measure the counts at the output. This ensures
that ∆Nbar = NA − NB = 0, where NA (NB)
refers to the total number of photons detected in
mode DA (DB). Second, we measure the intrinsic
imbalance of the setup by fixing the UFOS to the
cross state, and preventing the MD from control-
ling the path by feed-forward. In this configura-
tion we measure ∆Ncross = NA−NB, which rep-
resents the maximum imbalance the MD could
‘accidentally’ achieve without properly using in-
formation from either thermal bunching or the
correlations between the states. We then mea-
sure the photon number difference with the MD
being active, i.e. we turn on the feed-forward
logic (which differs depending on the input state),
yielding ∆NFF = NA−NB. Given these measure-
ments, we construct the unnormalised power of
the MD as

∆N := ∆NFF −∆Ncross. (6)

Finally, we need to normalise this by either the
number of input single photons N or the number
of incident photon pairs C. To estimate the N, we
simply measure the total number of counts at the
end of the experiment at the detectors in modes
DA and DB for each reflectivity of the TDC. We
then divide these rates by the reflectivity to ob-
tain the singles rates arriving at the beamsplitter,
and average over the counts in modes A and B.
To estimate the incoming coincidence counts, we
perform a similar protocol. However, due to lim-
itations in the counting logic, we only measured
the coincidence rates between detectors DA and
DemA (CDA,DemA

) and detectors DA and DemB

(CDA,DemB
) for a reflectivity of 50%. From these

measurements we compute the input coincidence
rates for both the correlated and anti-correlated
input states (note that this calculation differs
slightly for the N00N state and SPDC state).

Uncorrelated thermal state. — To generate
uncorrelated thermal baths we make two inde-
pendent thermal states of light, using a rotating
ground glass wheel (see Appendix A). We ver-
ify the thermal nature of the source by measur-
ing g(2)(τ = 0), which is typically ≈ 1.95. A
representative measurement is presented in Fig.
3 (a). Since g(2)(τ = 0) > 1 is only a neces-
sary condition for a thermal state, we further
verify that without the rotating ground glass
g(2)(τ = 0) ≈ 1. With these measurements, and

knowledge of our experiment, we can be confi-
dent that we have generated a thermal state. By
fitting to the g(2)(τ), assuming a Gaussian ther-
mal beam of the form g(2)(τ) = 1+e−π(τ/τc)2

[46],
we obtain a coherence time of τc = 5.42 µs.

We then proceed as described above, setting
∆Nbar = 0 and measuring ∆Ncross and ∆NFF as
we tune the MD’s reflectivity from 0% to 50%.
For every reflectivity we reconstruct the power of
the MD, defined above. The result is plotted in
Fig. 4 as red stars. For these measurements, we
set the average incident photon number in modes
InA and InB to 27, 800 ± 500 cps. We fit the
experimental data with a single parameter, the
average photon number per mode n. Given the
5.42µs coherence time of the pseudo thermal light
and the photon rate, we expect n = 0.151±0.002
(the error bars are the standard deviation of the
measured singles rates for different reflectivities).
However, we find a much better fit with a value
of n = 0.05.

The discrepancy in n is likely due to experi-
mental limitations in our switching logic. We set
the switching time to 2.5µs, which is less than
the photon coherence time. However, setting it
higher limits our maximum count rate, since the
wave-function generator cannot respond between
time it is triggered and the output pulse is be-
ing generated. Because of our reduced switching
time, some bunched events may be missed, thus
limiting the power of the MD. We use this value
in our theoretical calculation shown in Fig. 4 (a)
(solid red curve). Note, we also plot this data in
Fig. 4 (b). Although it is experimentally possi-
ble for us to increase the average photon number,
the long coherence time of our thermal distribu-
tion would then take us out of the regime of low
photon numbers, which is the basis of the fair
comparison of the power of the MD with other
input states.

Split thermal state. — We produce this in-
put state by simply splitting one of the ther-
mal states at a balanced beamsplitter after the
ground glass wheel. We first verify that this still
results in a thermal state in each mode by mea-
suring the g(2)(τ) after the beamsplitter, a repre-
sentative g(2)(τ) is plotted in Fig. 3 (b), display-
ing a g(2)(τ = 0) close to 2.

After this, we balance the count rates and mea-
sure the power of the MD as before. The result is
plotted in Fig. 4 (a) as the violet diamonds. For
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Figure 4: Power of Maxwell’s Demon. (a), The photon number difference, ∆N that the Demon can achieve per
incident photon: Eq. (6) for various correlations. Solid curves are the theory for: uncorrelated state (1) with n = 0.05
(red); split thermal state ∆N/N = 0 (violet); correlated state (2) with ε2 = 0.14 (turquoise); anti-correlated state (4)
with ε2 = 0.14 and v2 = 0.87 (green). (b), The same ∆N data, but here the correlated and anti-correlated data
are normalised by the correlation rate to compute the demon’s power per incident pair. Note, the uncorrelated data
plotted in red in this panel is normalised by the singles counts, and is included here for comparison. The solid curves
are the theory for: uncorrelated state (1) with n = 0.05 normalised with coincidence rate (red); correlated state (3)
(turquoise); anti-correlated state (5) with v2 = 0.87 (green). The experimental errors are the standard deviation of
the measurement set.

these data, n ≈ 0.7 in each spatial mode at the
input. Although for this n, our low-photon ap-
proximation no longer applies, Ref. [31] showed
that our result is independent of n. Experimen-
tally, this corresponds to incident singles rates in
modes InA and InB of 293, 000 ± 3000 cps. The
resulting experimentally measured ∆N/N is very
close to zero, as expected. The small deviation
from zero is likely caused by slightly imbalanced
losses in the setup, such that although ∆NOFF

is close to 0 the real photon number before the
UFOS is not exactly balanced.

Correlated thermal states. — We produce cor-
related thermal states by SPDC. In this source
(described in Appendix A) the coherence time is
≈ 2 ps (which we verify by a Hong-Ou-Mandel
experiment in Fig. 3 (c)). This is much smaller
than both the minimum resolution of our time
tagger (which is 156 ps), and the timing jitter
of our detectors (≈ 200 ps). Hence, we cannot
measure the g(2)(τ = 0) as the width of the ex-
pected peak is below the minimum resolution of
our detection system. However, it is now well es-
tablished that in such sources the signal (idler)
beam is indeed thermal when the idler (signal)
beam is traced out [54, 55].

For this state, we operate with a balanced av-
erage photon rate of 168, 000±1000 cps in modes

InA and InB. Although this is a higher count rate
than for the uncorrelated states, the shorter 2 ps
coherence time means the average photon num-
ber per mode is much smaller n ≈ 10−7. We
measure the power of the MD per incident pho-
ton by varying R (green circles in Fig. 4 (a)).
In this case, the theoretical curve (Eq. (2)) de-
pends only on the coupling efficiency ε2. This is
calculated by measuring the coincidence rate be-
tween the detectors and correcting for the reflec-
tivity of each BS loss and dividing by the singles
rate, yielding ε2 = 0.14. The resulting solid green
curve fits the data very well.

In Fig. 4 (b), we also plot the power of the
MD per incident photon pair, by normalising ∆N
by the coincidence rate (green circles). This re-
moves the effect of almost all experimental imper-
fections, and our experimentally measured power
of the MD almost reaches the theoretical maxi-
mum value of 0.5 (see Eq. (3)). Moreover, the
experimentally measured data is in good agree-
ment with the full theoretical curve (solid green
line).

Anti-correlated thermal states. — We gener-
ate the input 2-photon N00N state by HOM in-
terference between the two photons of our SPDC
source. The details are described in Appendix A.
We estimate the quality of the N00N state by
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Figure 5: MD’s Information. The mutual information between the MD’s measurement outcomes and the photon
number a) for our experimental parameters, and b) for the ideal situation. The parameters used to evaluate these
curves are the same as those used in the fits to the data presented in Fig. 4. In all cases, as the MD’s beamsplitters
reflectively increases, it gains more information about the photon number. Moreover, for all of the parameter regimes
investigated in this work the correlated and anti-correlated states out perform the uncorrelated thermal states.

scanning the relative delay and measuring the
visibility of the HOM dip — we measure v2 =
0.87±0.02. To ensure that our state is classically
anti-correlated in the Fock basis, we observe the
absence of correlations (coincidences) at a time
delay of zero (Fig. 3 (c)), which implies that the
two photons incident on the fiber beamsplitter in
Fig. 2 (c) bunch and exit in the same mode. As
mentioned above, this does not result in thermal
states in modes A and B, but we show in Ap-
pendix C that the behaviour is almost identical
in the low-photon number regime.

For this state, we operate with balanced singles
rates of 141, 000±3000 cps, and, again, n ≈ 10−7.
Proceeding as before, we obtain the power of the
MD and plot the result normalised by singles as
turquoise pentagons in Fig. 4 (a). For the cor-
responding theory curve (Eq. (4)), we use our
measured HOM visibility of v2 = 0.87 and take
ε2 = 0.14 (as above). In Fig. 4 (b), we normalise
∆N by the measured coincidence rate. The the-
ory curve, Eq. (5), only requires the visibility
which we take as above, and plot as the solid
turquoise line. Although ideally the correlated
and anti-correlated states behave identically for
low photon numbers, the anti-correlated states
suffer an additional imperfection arising from the
HOM interference.

4 Discussion

Firstly, we note that the agreement between the
experimental data and the theory is very good for
all states, with a slight deviation at high reflec-
tivity. This deviation comes from our simplified
theory, which does not include the MD’s detec-
tion efficiency. Indeed, in the theory of [31] it
can be observed that changes in the relative de-
tection efficiency between detectors DemA and
DemB can shift the dependence of ∆N on reflec-
tivity. Moreover, we stress that only one data
set, that of the uncorrelated thermal states nor-
malised by singles, required a fitting parameter.
All other curves presented in Fig. 4 agree with
experimental data using only independently mea-
sured experimental parameters, such as the cou-
pling efficiency and HOM visibility. This demon-
strates the great potential of relatively simple op-
tical experiments to investigate information pro-
cessing scenarios characteristic of thermodynam-
ics using pseudo-thermal beams, which moreover
give access to a wealth of exotic correlations read-
ily obtained with photons.

We have experimentally demonstrated that
the power of the MD with correlated and anti-
correlated baths (which we produce with entan-
gled quantum states) vastly outperforms opera-
tion with classical states (uncorrelated and split
thermal states), as predicted in [31]. For ex-
ample, when considering the power of the MD
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per photon (i.e. the data normalised to the inci-
dent single-photon rate, plotted in Fig. 4 (a)), the
power of the MD is a factor of ≈ 5 higher with
correlated baths than with uncorrelated baths
(green curve compared to the red curve in panel
(a). Moreover, the enhancement is even more
striking when considering the power of the MD
per photon pair, plotted in Fig. 4 (b). This anal-
ysis serves to essentially filter out the single pho-
tons that have lost their partner, and allows us
to reach the theoretical limits for the correlated
baths. In particular, although operating with
uncorrelated thermal states does yield a finite
power, this is outperformed by a factor 16 when
operating with anti-correlations (blue curve com-
pared to the red curve in panel (b)), and by a
factor 28 when operating with correlated states
(green curve compared to the red curve in panel
(b)). Here we are comparing to the power of the
MD with uncorrelated thermal baths normalised
by the singles rate (plotted in red in both panels
(a) and (b)), since the thermal state is robust to
loss.

The MD’s ability to extract work is limited by
the amount of information it can extract. While
this was originally formalized by Landauer’s era-
sure principle [2, 17], applying this concept in a
quantitative manner to our system would require
a generalized Jarzynski equality such as that de-
rived in [56]. Nonetheless, the mutual informa-
tion I between the MD’s measurement outcomes
in modes DemA and DemB and the photon num-
ber in mode A and mode B can be used to qual-
itatively explain the enhancement of the power
of the MD in the presence of the correlated input
states. In Appendix D, we derive I for each input
state, and we plot the results in Fig. 5. Note that
MD has 4 measurement outcomes so the maxi-
mum possible entropy is 2. In panel (a) we have
used the coupling efficiency and N00N state visi-
bility used to fit to our experimental data normal-
ized by the singles, while in panel (b) we used the
parameters used to fit to the data normalized by
the coincidence rate. In both panels n = 0.05 for
the uncorrelated and split thermal cases. These
plots demonstrate that, for the both the corre-
lated and anti-correlated states, the MD has ac-
cess to more information, which is consistent with
our observation that it can generate a larger ∆N
for these data. Interestingly, for the split thermal
state the MD only has marginally less informa-

tion than it does for the uncorrelated states. It is
hence possible that, for an operation that is more
complex than simply the swapping the modes,
the MD could still operate with this state.

In our analysis we have not considered the ab-
solute efficiency of the MD, but rather focused
on the enhancement provided by correlations in
the baths. In the original thought experiment,
the cost of both the demon’s measurement of the
particle’s velocity and its cost to open the aper-
ture was assumed to be negligible. This was later
formalized by Landauer, who showed that if a
reversible process is used for the measurement
and sorting, then the cost (i.e. entropy increase)
from this step is zero. He then famously showed
that at some point the MD must erase its mea-
surement results, which will increase the entropy
[2, 17]. In our experiment, we used irreversible
measurements, and hence we are not in the ide-
alized regime. In principle, however, a photonic
platform could reach this regime. For example,
the photon that the demon subtracts could be
used to trigger a unitary (and hence reversible)
controlled-path gate [57] that operates on multi-
particle input states. Nevertheless, the measure-
ment and switching in our experiment do not in-
ject any external energy into the baths. Note that
the MD’s beamsplitters do extract energy from
the baths, but since this extraction is balanced
in Mode A and Mode B this is not the source of
the power of the MD. Thus the enhancement we
observed here would also be present in the ideal
scenario.

Our work is valid for low photon numbers
(i.e. low temperature of the thermal beams).
For higher photon numbers, we expect the anti-
correlated baths to perform the best, since the
anti-correlations act in the same ‘direction’ as the
thermal correlations. Thus a natural extension
of our work would be to create a superposition
of N00N states for various N [31]. To fully take
advantage of this effect, one would need to create
such states with a higher n, which would likely
require the use of a pulsed laser when generating
the photon pairs by SPDC.

To conclude, we have implemented the
first photonic Maxwell’s Demon without post-
processing, and verified that operating with cor-
relations enhances the power of the MD to pro-
cess the information it gains and generate a tem-
perature difference (which enables the extrac-
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tion of work) through classical feed-forward by
over an order of magnitude. Our work lays the
foundations for future investigations of the in-
terrelation between quantum information pro-
cessing and thermodynamics at the microscopic
scale. For example our work calls for a theo-
retical derivation of the fluctuation relations [56]
that could describe the ‘experimental informa-
tion’ obtained by the MD in each round of our
feed-forward experiment. Finally, although we
used entangled states to generate correlations,
our MD protocol only required classical corre-
lations. It would be interesting to develop MD
protocols that exploit the quantum entanglement
that is readily available in our system.

Data Availability
All of the data that are necessary to replicate,
verify, falsify and/or reuse this research is avail-
able online at [58].
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mento de Pessoal de Nı́vel Superior (CAPES) and
National Institute of Science and Technology for
Quantum Information, INCT-IQ.

References
[1] J. Clerk. Maxwell. Theory of heat. Longman,

1871.

[2] R. Landauer. Irreversibility and heat genera-
tion in the computing process. IBM Journal
of Research and Development, 5(3):183–191,
1961. DOI: 10.1147/rd.53.0183.

[3] Lidia del Rio, Lea Kraemer, and Renato
Renner. Resource theories of knowledge.
arXiv:1511.08818 [cond-mat, physics:math-
ph, physics:quant-ph], November 2015. DOI:
10.48550/arXiv.1511.08818.

[4] John Goold, Marcus Huber, Arnau Riera,
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N. Rubiano da Silva, R. Medeiros de Araújo,
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Hannes Hübel. Photon bunching in para-
metric down-conversion with continuous-
wave excitation. Phys. Rev. A, 79:
063846, Jun 2009. DOI: 10.1103/Phys-
RevA.79.063846.

[56] Takahiro Sagawa and Masahito Ueda. Gen-
eralized Jarzynski Equality under Nonequi-
librium Feedback Control. Physical Review
Letters, 104(9):090602, March 2010. DOI:
10.1103/PhysRevLett.104.090602.

[57] Xiao-Qi Zhou, Timothy C. Ralph, Pruet
Kalasuwan, Mian Zhang, Alberto Pe-
ruzzo, Benjamin P. Lanyon, and Jeremy L.
O’Brien. Adding control to arbitrary un-
known quantum operations. Nature Com-
munications, 2(1):413, Aug 2011. DOI:
10.1038/ncomms1392.

[58] Guilherme L. Zanin, Michael Antesberger,
Maxime J. Jacquet, Paulo H. Souto Ribeiro,
Lee A. Rozema, and Philip Walther. Raw
data for the manuscript ‘Enhanced Photonic
Maxwell’s Demon with Correlated Baths’,
July 2021. URL https://doi.org/10.
5281/zenodo.5113016.

[59] W. Martienssen and E. Spiller. Coherence
and fluctuations in light beams. American
Journal of Physics, 32(12):919–926, 1964.
DOI: 10.1119/1.1970023.

[60] F. T. Arecchi. Measurement of the sta-
tistical distribution of gaussian and laser
sources. Phys. Rev. Lett., 15:912–916, Dec
1965. DOI: 10.1103/PhysRevLett.15.912.

[61] F.T. Arecchi, E. Gatti, and A. Sona.
Time distribution of photons from coher-
ent and gaussian sources. Physics Let-
ters, 20(1):27–29, 1966. DOI: 10.1016/0031-
9163(66)91034-1.

[62] R. Hanbury Brown and R. Q. Twiss. Cor-
relation between photons in two coherent
beams of light. Nature, 177(4497):27–29,
Jan 1956. DOI: 10.1038/177027a0.

[63] R. Q. Tiss, A. G. Little, and R. Han-
bury Brown. Correlation between pho-
tons, in coherent beams of light, detected
by a coincidence counting technique. Na-

Accepted in Quantum 2022-09-08, click title to verify. Published under CC-BY 4.0. 15

https://doi.org/10.1103/PhysRevA.101.052113
https://doi.org/10.1103/PhysRevA.101.052113
https://doi.org/10.1103/PhysRevA.65.052104
https://doi.org/10.1103/PhysRevA.41.3891
https://doi.org/10.1103/PhysRevA.41.3891
https://doi.org/10.1103/PhysRevA.96.063803
https://doi.org/10.1103/PhysRevA.96.063803
https://doi.org/10.1364/OPTICA.5.000723
https://doi.org/10.1103/PhysRevA.65.052104
https://doi.org/10.1126/science.1188172
https://doi.org/10.1103/PhysRevLett.112.223602
https://doi.org/10.1103/PhysRevLett.112.223602
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevA.36.3464
https://doi.org/10.1103/PhysRevA.36.3464
https://doi.org/10.1103/PhysRevA.79.063846
https://doi.org/10.1103/PhysRevA.79.063846
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1038/ncomms1392
https://doi.org/10.1038/ncomms1392
https://doi.org/10.5281/zenodo.5113016
https://doi.org/10.5281/zenodo.5113016
https://doi.org/10.1119/1.1970023
https://doi.org/10.1103/PhysRevLett.15.912
https://doi.org/10.1016/0031-9163(66)91034-1
https://doi.org/10.1016/0031-9163(66)91034-1
https://doi.org/10.1038/177027a0


ture, 180(4581):324–326, Aug 1957. DOI:
10.1038/180324a0.

[64] Rui-Bo Jin, Ryosuke Shimizu, Kentaro
Wakui, Mikio Fujiwara, Taro Yamashita,
Shigehito Miki, Hirotaka Terai, Zhen Wang,
and Masahide Sasaki. Pulsed sagnac
polarization-entangled photon source with a
ppktp crystal at telecom wavelength. Opt.
Express, 22(10):11498–11507, May 2014.
DOI: 10.1364/OE.22.011498.

Accepted in Quantum 2022-09-08, click title to verify. Published under CC-BY 4.0. 16

https://doi.org/10.1038/180324a0
https://doi.org/10.1038/180324a0
https://doi.org/10.1364/OE.22.011498


A Experimental setup
In this section, we detail the arrangement of the experimental setup and provide all technical infor-
mation needed to reproduce it.

A.1 Source of uncorrelated thermal light

We produce two single-mode pseudo-thermal states with the Arecchi’s wheel [59–61] setup shown in
Fig. 2 (a). A laser beam of λ =1550 nm is divided into two spatial modes by a fibre beamsplitter
(FBS). These modes are focused (lens L1, f=75mm) on two separate spots on the spinning ground
glass (grit size 220). The rotation frequency of the step-motor (SM) is 20Hz. A bare fibre after the
ground glass collects thermal light in each mode. We measure the second-order correlation g(2)(τ) by
the Brown and Twiss method [62, 63], and obtain g(2)(τ) ≈ 1.95 (to be compared with g(2)(τ) = 2 for
thermal light) and a coherence time τ ≈ 5.42 µs.

A.2 Source of correlated thermal states

A 775 nm, CW beam is focused (lens L2, f=400mm) on a 30mm long ppKTP crystal in a Sagnac-loop
configuration [64], yielding the singlet state |Ψ〉−. In Fig. 2 (b), a dichroic mirror (DM) reflects 775
nm light and transmits 1550 nm. We use standard mirrors (M), quarter- and half-waveplates (QWP,
HWP) and polarising beamsplitters (PBS). The output light is sent to fibre couplers (FC).

A.3 Generation of anti-correlated thermal states

The Hong-Ou-Mandel (HOM) interferometer presented in Fig. 2 (c) takes photons from the SPDC
source (Fig. 2 (b)) and produces anti-correlated photons by spatially and temporally overlapping the
modes with a delay line (DL) and a FBS, respectively.

A.4 Operation of the photonic MD

Figure 6: Individual Terms to compute the power of the MD. Here we plot the measured photon differences normalized
by the input photon number when the UFOS is set to bar ∆Nbar (orange), cross ∆Ncross (red), and when the feed
forward is active ∆NFF (blue). Data are shown for the uncorrelated thermal state with n = 0.05 (Panel a) and
n = 0.5 (Panel b), split thermal state (Panel c), correlated state (Panel d), and the anti-correlated state (Panel e).

The active MD is shown in Fig. 2 (d). The input statistics are fed in the setup simply by connecting
the fibres from either of the sources (Fig. 2 (a), (a)+BS, (b), (b)+(c)). At the TDC’s, the reflected
arm goes to the Demon detectors (DemA,B), the transmitted arm goes to a fibre delay (FD) and then
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goes to the UFOS, whose configuration (‘cross’ or ‘bar’ state) is decided conditionally on the MD’s
information. We can adapt the switching logic according to the statistics of the MD’s states. After
the UFOS, photons are sent to detectors DA,B and the output statistics are recorded with the time
tagging module (TTM) The photons’ polarisation state is maintained with fibre paddles (PD) before
and after the UFOS.

B Switching logic for the feed-forward

Here we detail the switching logic used in the feed-forward control of the UFOS state. When this
logic is applied, the difference (power of the MD) ∆N = NA − NB is improved by using the MD’s
information(Dem(A,B)).

Dem(A,B) UFOS state
Dem(0,0) bar
Dem(1,1) bar
Dem(1,0) bar
Dem(0,1) cross

Table 1: Logic for uncorrelated thermal states, split thermal states and anti-correlated states. Dem(A,B)
the MD’s detectors – 0 (1) represents no click (click). Bar state – input 1 (2) goes to output 1 (2); cross state –
input 1 (2) goes to output 2 (1).

Dem(A,B) UFOS state
Dem(0,0) bar
Dem(1,1) bar
Dem(1,0) cross
Dem(0,1) bar

Table 2: Logic for correlated thermal states. Details as in Tab. 1.

C Derivation of the power of the MD

Here we will present our simple calculations for our photonic Maxwell’s Demon in the low-photon
number regime. In all cases, we define this low-photon regime to be events with two or less photons.
Note that although some intermediate equations in the following derivations contain contributions
from higher-order terms, all of our final results depend only on one- and two-photon detection events.

C.1 Uncorrelated Thermal States

A thermal state of light is described by:

ρTh =
∞∑
n=0

Pn |n〉 〈n| , (7)

where

P (n) = nn

(1 + n)n+1 . (8)

here n is the average photon number per mode. Sending this state to a beamsplitter (with vacuum
incident in the second input port) that reflects the light into mode DemA, and transmits it into mode
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A (as sketched in Fig. 1e, where mode A refers to the mode before and after the beamsplitter), results
in the following probabilities to detect n photons in mode DemA and m photons in mode A [46]:

P (m,n) = (n+m)!
n!m!

nn+m

(1 + n)n+m+1R
2n(1−R2)m, (9)

where R is the reflection amplitude of the beamsplitter. Then after the beamsplitter, we will approx-
imate the state to be:

σDemA,A = P (0, 0) |0, 0〉 〈0, 0|DemA,A
+ P (1, 0) |0, 1〉 〈0, 1|DemA,A

+ (10)
P (0, 1) |1, 0〉 〈1, 0|DemA,A

+ P (1, 1) |1, 1〉 〈1, 1|DemA,A
+ . . .

In this expression we have ignored all off-diagonal terms, and terms with more than two photons.
Furthermore, we have left out the terms P (2, 0) |0, 2〉 〈0, 2|DemA,A

and P (0, 2) |2, 0〉 〈2, 0|DemA,A
since

P (2, 0) << P (1, 0) for low photon numbers. This condition is valid when the probability of populating
terms with photon numbers of three or higher is negligible compared to the one and two-photon
contributions. In practice this holds for n . 0.2. Then for our experiment we have one such state in
modes A and DemA, and one in modes B and DemB. Thus the total input state is σDemA,A⊗σDemB ,B,
with σi,j defined above. The overall expression is straight-forward but rather lengthy, so we do not
include it here.

The next step is to include the action of the demon. For uncorrelated thermal states, when the
demon detects a photon in mode DemA (DemB), the photon number in mode A, (B) is increased.
Since the demon’s goal is to increase the temperature (photon number) of mode A, this means that
when it detects a photon in DemA it does nothing. On the other hand, when it detects a photon in
mode DemB there are more photons in mode B, so it should swap modes A and B. If the demon
detects a photon in both mode DemA and mode DemB it gains no information; hence, it does nothing.
To represent this mathematically we simply make the following substitutions:

|n,m, 0, 1〉A,B,DemA,DemB
→ |m,n, 0, 1〉DA,DB ,DemA,DemB

(11)

Since we do not use number resolving detectors, we do not swap modes A and B in situations such as
|n,m, 1, 2〉, as this will register as a detection event at both DemA and DemB. With this operation,
the low-photon number state after the demon is approximated as

ρout = P 2(0, 0) |0000〉 〈0000|+ P (0, 0)P (0, 1) |0001〉 〈0001|+ P (0, 0)P (1, 0) |0100〉 〈0100|+
P (0, 0)P (1, 1) |1001〉 〈1001|+ P (0, 1)P (0, 0) |0010〉 〈0010|+ P 2(0, 1) |0011〉 〈0011|+

P (0, 1)P (1, 0) |0110〉 〈0110|+ P (0, 1)P (1, 1) |0111〉 〈0111|+
P (1, 0)P (0, 0) |1000〉 〈1000|+ P (1, 0)P (0, 1) |0101〉 〈0101|+ P 2(1, 0) |1100〉 〈1100|+

P (1, 0)P (1, 1) |1101〉 〈1101|+ P (1, 1)P (0, 0) |1010〉 〈1010|+ P (1, 1)P (0, 1) |1011〉 〈1011|+
P (1, 1)P (1, 0) |1110〉 〈1110|+ P 2(1, 1) |1111〉 〈1111|+ . . .

(12)

In Eq. 12, the mode labels are left off, but they run DA, DB, DemA, DemB; i.e. |ijkl〉 is labelled
as |ijkl〉DA,DB ,DemA,DemB

. In our experiments, we always measure the singles rates in modes DA and
DB to observe the power of the demon. From Eq. 12, we can extract the probability for a detector in
mode DA or mode DB to click.

PA = 2P (0, 0)P (1, 1) + 2P (1, 0)P (1, 1) + P (0, 0)P (1, 0) + P (0, 1)P (1, 1) + P 2(1, 0) + P 2(1, 1)
(13)

PB = P (0, 0)P (1, 0) + 2P (1, 0)P (0, 1) + 2P (1, 0)P (1, 1) + P (0, 1)P (1, 1) + P 2(1, 0) + P 2(1, 1).
(14)
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Now experimentally, we run this setup many times, observing average singles rates at both detectors.
In general, these rates will be given by ΓPA and ΓPB, where Γ is the total number of repetitions of
the experiment. Thus the measured photon number difference is given by ∆N = Γ(PA−PB). Finally,
using our expressions for PA, PB we arrive at:

∆N = (2P (0, 0)P (1, 1)− 2P (0, 1)P (1, 0))Γ

= 2n2

(1− n)4R
2(1−R2)Γ, (15)

where we have substituted P (n,m) from Eq. 9 to arrive at the last line. As a last step, we construct
our figure of merit for the power of the MD ∆N/N. Here N is the number of input photons in mode
InA, which we constrain to be equal to the number of input photons in mode InB. This figure or
merit can be interpreted as the demon power per photon. In the low-photon limit, the probability for
one photon to be in mode InA is given by P (1) = n/(1+n). Then the number of single-photon events
detected per second is N = ΓP (1), and thus

∆N
N

= 2n
(1− n)2R

2(1−R2). (16)

Thus we see that, even in the low photon number limit, the demon effect depends on the effective
temperature of the thermal state via n. As we will see in the next sections, this is not the case for
correlated and anti-correlated states in this regime.

C.2 Split Thermal States
In this case, the input to the experiment is a single thermal state, which has been split at a beamsplitter.
Thus, a thermal state is still input into both mode A and B; however, correlations will now exist
between the two modes. Roughly speaking, now when the demon detects a photon at (say) detector
DemA, it can no longer know if the bunching effect will be stronger in mode A or B.

In more detail, the state in modes InA and InB is now:

ρsplit =
∞∑

n,m=0
P (n,m) |n,m〉 〈n,m|InA,InB

, (17)

where P (n,m) is defined above, with R = 1/
√

2. As above, we will keep only up to the two-photon
terms and consider only the diagonal elements:

ρsplit ≈P (0, 0) |0, 0〉 〈0, 0|InA,InB
+ P (0, 1) |0, 1〉 〈0, 1|InA,InB

+ P (1, 0) |1, 0〉 〈1, 0|InA,InB
+

P (2, 0) |2, 0〉 〈2, 0|InA,InB
+ P (0, 2) |0, 2〉 〈0, 2|InA,InB

+ P (1, 1) |1, 1〉 〈1, 1|InA,InB
+ . . . (18)

Next, we will add in the two beamsplitters. The beamsplitters enact the following transformations:

|0, 1〉 〈0, 1|InA,InB
→ (1−R2) |0100〉 〈0100|A,B,DemA,DemB

+R2 |0001〉 〈0001|A,B,DemA,DemB

|1, 0〉 〈1, 0|InA,InB
→ (1−R2) |1000〉 〈1000|A,B,DemA,DemB

+R2 |0010〉 〈0010|A,B,DemA,DemB

|1, 1〉 〈1, 1|InA,InB
→ (1−R2)2 |1100〉 〈1100|A,B,DemA,DemB

+R2(1−R2) |1001〉 〈1001|A,B,DemA,DemB

+ R2(1−R2) |0110〉 〈0110|A,B,DemA,DemB
+R4 |0011〉 〈0011|A,B,DemA,DemB

|0, 2〉 〈0, 2|InA,InB
→ (1−R2)2 |0200〉 〈0200|A,B,DemA,DemB

+ 2R2(1−R2) |0101〉 〈0101|A,B,DemA,DemB

+ R4 |0002〉 〈0002|A,B,DemA,DemB

|2, 0〉 〈2, 0|InA,InB
→ (1−R2)2 |2000〉 〈2000|A,B,DemA,DemB

+ 2R2(1−R2) |1010〉 〈1010|A,B,DemA,DemB

+ R4 |0020〉 〈0020|A,B,DemA,DemB
. (19)

Again, here we have not included the off-diagonal terms. This will not affect our final result since we
never recombine two modes, i.e. we never interfere modes after splitting them. The demon will now

Accepted in Quantum 2022-09-08, click title to verify. Published under CC-BY 4.0. 20



attempt to increase the photon number at the detector in mode DA by swapping modes A and B on
detecting a photon at detector DemB, as in Eq. 11. However, it was pointed out in Ref. [31] that the
result is the same if the demon instead swaps the modes upon detection of a photon at detector DemA.
Substituting in these transformations, and using the fact that P (n,m) = P (m,n) when R = 1/

√
2 we

arrive at the following expression for the output state:

ρout = P (0, 0) |0000〉 〈0000|+ P (0, 1)
[
(1−R2)(|0100〉 〈0100|+ |1000〉 〈1000|) +

R2(|0001〉 〈0001|+ |0010〉 〈0010|)
]

+ P (1, 1)
[
(1−R2)2 |1100〉 〈1100| +

R2(1−R2)(|0101〉 〈0101|+ |0110〉 〈0110|) +R4 |0011〉 〈0011|
]

+
P (0, 2)

[
(1−R2)2(|2000〉 〈2000|+ |0200〉 〈0200|) +R4(|0020〉 〈0020|+ |0002〉 〈0002|)

+2R2(1−R2)(|1010〉 〈1010|+ |1001〉 〈1001|)
]
, (20)

where the mode labels are DA, DB, DemA, DemB.

From here, we compute the probability for detector DA and DB to click:

PA = P (0, 1)(1−R2) + P (1, 1)(1−R2)2 + P (0, 2)(1−R2)2 + 4P (0, 2)R2(1−R2) (21)
PB = P (0, 1)(1−R2) + P (1, 1)(1−R2)2 + P (0, 2)(1−R2)2 + 2P (1, 1)R2(1−R2). (22)

Then, we calculate the photon number difference ∆N = Γ(PA − PB).

PA − PB = 2R2(1−R2)(2P (0, 2)− P (1, 1)) = 0, (23)

where 0 is obtained after substituting in the explicit expressions for P (0, 2) and P (1, 1) with R = 1/
√

2.
Hence,

∆N
N

= 0, (24)

for all values of the reflectivity of the demon’s beamsplitter. Moreover, in Ref. [31] it was shown that
this result holds in general, not just in the low-photon number regime.

C.3 Correlated Thermal States

To generate our correlated thermal states, we use a type-II SPDC source. In such a source, photons
are always emitted in pairs. However, when the idler (signal) beam is traced out, the idler (signal)
beam is left in a thermal state [46]. The general input state is given by

|ψ〉 = 1
cosh s

∞∑
n=0

(tanh s)n |n, n〉InA,InB
, (25)

but for our purposes we will only consider up to the two photon term

|ψ〉 ≈ 1
1− s2

2
|0, 0〉InA,InB

+ s

1− s2

2
|1, 1〉InA,InB

+ . . . . (26)

Here, s is the so-called squeezing parameter related to the brightness of the SPDC source,and thus to
the temperature of the thermal states in each mode: sinh2(s) = n. Since the SPDC source is pumped
with a continuous-wave laser, the terms of order higher than 2 (|2, 2〉+ |3, 3〉. . . ) in Eqs. (25) and (26)
have low probability and can be neglected. I.e. we are in the ‘low photon-number’ regime.

For the uncorrelated thermal states, we did not need to consider loss, since a thermal state remains
a thermal state upon losing a photon. However, here, the correlations are essential so loss will play
a large roll in the power of the demon (the information need to extract work). We model loss as a
beamsplitter, which takes |1〉A → ε |1, 0〉InA,lA

+
√

1− ε2 |0, 1〉InA,lA
. In words, the photon remains in

the mode with probability ε2.
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Assuming the same loss in each mode, we have

|ψ〉 ≈ 1
1− s2

2
|0, 0, 0, 0〉InA,InB,lA,lB

+ sε2

1− s2

2
|1, 1, 0, 0〉InA,InB,lA,lB

+s(1− ε2)
1− 1

s2
|0011〉InA,InB,lA,lB

sε
√

1− ε2

1− s2

2

(
|1, 0, 0, 1〉InA,InB,lA,lB

+ |0, 1, 1, 0〉InA,InB,lA,lB

)
. (27)

Next, we will add in the action of the demon’s beamsplitters, which will implement the following
operation on a photon in mode A: |1, 0〉InA,EA

→
√

1−R2 |1, 0〉A,DemA
+R |0, 1〉A,DemA

, and the same
on mode B, where Ei labels the empty input mode the beamsplitters.

|ψ〉 ≈
(

1
1− s2

2
|0, 0, 0, 0, 0, 0〉 + s(1− ε2)

1− 1
s2
|0, 0, 0, 0, 1, 1〉 sε

√
1− ε2

1− s2

2
R (|0, 0, 1, 0, 0, 1〉+ |0, 0, 0, 1, 1, 0〉)

+sε
√

1− ε2

1− s2

2

√
1−R2 (|1, 0, 0, 0, 0, 1〉+ |0, 1, 0, 0, 1, 0〉) +

sε2

1− s2

2
R
√

1−R2 (|0, 1, 1, 0, 0, 0〉+ |1, 0, 0, 1, 0, 0〉) +

sε2

1− s2

2

(
(1−R2) |1, 1, 0, 0, 0, 0〉+R2 |0, 0, 1, 1, 0, 0〉

))
, (28)

where we have dropped the mode labels but they are |i, j, k, l,m, n〉A,B,DemA,DemA,lA,lB . Finally, the
demon uses its optical switch when it measures a photon at detector DemA, taking |i, j, 1, 0, 0, 0〉 →
|j, i, 1, 0, 0, 0〉. In the above equation, this only changes one term, |0, 1, 1, 0, 0, 0〉 → |1, 0, 1, 0, 0, 0〉.
This results in the following state:

|ψ〉 ≈
(

1
1− s2

2
|0, 0, 0, 0, 0, 0〉+ s(1− ε2)

1− 1
s2
|0, 0, 0, 0, 1, 1〉 + sε

√
1− ε2

1− s2

2
R (|0, 0, 1, 0, 0, 1〉+ |0, 0, 0, 1, 1, 0〉)

+sε
√

1− ε2

1− s2

2

√
1−R2 (|1, 0, 0, 0, 0, 1〉+ |0, 1, 0, 0, 1, 0〉) +

sε2

1− s2

2
R
√

1−R2 (|1, 0, 1, 0, 0, 0〉+ |1, 0, 0, 1, 0, 0〉) +

sε2

1− s2

2

(
(1−R2) |1, 1, 0, 0, 0, 0〉+R2 |0, 0, 1, 1, 0, 0〉

))
, (29)

where the mode labels are now |i, j, k, l,m, n〉DA,DB,DemA,DemA,lA,lB . Finally, from this we can compute
the probability for detectors DA and DB to click:

PA = s2(
1− s2

2

)2

(
ε2(1− ε2)(1−R2) + ε4(1−R2)2 + 2ε4R2(1−R2)

)
(30)

PB = s2(
1− s2

2

)2

(
ε2(1− ε2)(1−R2) + ε4(1−R2)2

)
. (31)

Then, as before, our experimentally measured ∆N is given by Γ(PA − PB), and thus

∆N = s2(
1− s2

2

)2 2ε4R2(1−R2)Γ. (32)

Again, our figure of merit is the demon effect per photon. However, we now have two ways of
computing this from our experimental data. First of all, we can proceed as we did with the uncorrelated
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thermal light and normalise by the input singles rate. In this case, the probability for a photon to
be incident in mode InA (or in mode InB) is s2/(1−s2/2)2ε2, coming directly from Eq. 27. Thus, the
incoming photon rate is N = Γs2/(1−s2/2)2ε2, and our figure of merit when normalising by singles is

∆N
N

= 2ε2R2(1−R2). (33)

After a closer look at Eq. 27, one can see that ε2 can be understood as the coupling efficiency. In
other words, it is the ratio of the measured coincidence rate to the singles rate before the demon acts.
We thus see that in this case the demon effect is scaled down by the coupling efficiency, which makes
sense since a lower coupling efficiency degrades the correlations, making the demon less effective. The
other point to note is that, in this regime, the demon is no longer driven by the thermal statistics of
the light, but the correlations from the SPDC dominate. This is even more apparent when we instead
compute the demon effect per photon pair.

Examining Eq. 27 again, we see that the probability for a correlated pair to be incident in mode
InA and InB is given by PAB = s2/(1−s2/2)2ε4, and thus the coincidence rate is C = ΓPAB, so

∆N
C

= 2R2(1−R2). (34)

Now the coupling efficiency drops of altogether, and we are left with the ideal demon effect for cor-
related thermal states. We also see that when the demon uses a 50:50 beamsplitter (R = 1/

√
2), then

∆N/C = 0.5. This means that on average, the demon is able to create a photon number imbalance of
0.5 per photon pair.

C.4 Anti-Correlated states
In Ref. [31], a specific two-mode state was proposed with two important properties. First, for every
N-photon event, the two modes are in a N00N state. Second, tracing out either mode, leaves the
remaining mode in a thermal state. Here we do not create this state exactly, but we do note that some
experimentally-realised N00N state sources may come close to these conditions [51, 52], as they do
result in a superposition of N00N states for various photon numbers. Instead, here we perform Hong-
Ou-Mandel interference between the two photons from our our SPDC source to create a 2-photon
N00N state. The higher-order modes will not be in a N00N state; rather, they will be in so-called
Holland-Burnett states [53]. The main qualitative difference between these Holland-Burnett states and
the anti-correlated state of Ref. [31] is that the Holland-Burnett states contain only terms with even
photon numbers, while those of Ref. [31] contain all photon numbers. Since experimentally we are in
the low-photon number regime (where the probability to detect two photons is much larger than the
probability to detect four photons) the main difference between our experimentally-generated state
and that of Ref. [31] is the absence of the one-photon component. It is straight-forward to see that
this term has no effect on the MD’s power. The one-photon term is: 1√

2 |1, 0〉InA,InB+
1√
2 |0, 1〉InA,InB

.

After application of the demon’s beamsplitters, the state is:

1√
2

[√
1−R2 |1, 0, 0, 0〉A,B,DemA,DemB

+R |0, 0, 1, 0〉A,B,DemA,DemB

+
√

1−R2 |0, 1, 0, 0〉A,B,DemA,DemB
R |0, 0, 0, 1〉A,B,DemA,DemB

]
. (35)

Clearly, this state does not change regardless of the demon’s action with the UFOS upon detection at
DemA or DemB. Thus, the probability to detect a photon at DA or DB is equal; i.e. PA = PB = 1−R2/2.
Since ∆N is proportional to PA−PB, ∆N = 0 for this state. Therefore, the absence of the one-photon
component will not affect our measurement of ∆N .

To model our experimentally produced state, we begin with

|ψ〉 = 1
1− s2

2
|0, 0〉InA,InB

+ s

1− s2

2

(
v√
2

(|2, 0〉InA,InB
+ |0, 2〉InA,InB

) +
√

1− v2 |1, 1〉InA,InB

)
. (36)
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Here, again, s is the squeezing parameter. We have also modeled the imperfect HOM visibility by the
parameter v, whereby the photons bunch into a N00N state with probability v2.

We then proceed as before, modeling loss as |1〉InA
→ ε |1, 0〉InA,lA +

√
1− ε2 |0, 1〉InA,lA , which

acts as |2〉InA
→ ε2 |2, 0〉InA,lA + (1 − ε2) |0, 2〉InA,lA +

√
2ε
√

1− ε2 |1, 1〉InA,lA on the two-photon
terms. With the same definitions for mode B. Similarly, the demon’s beamsplitters enact the
following transformations: |1, 0〉InA,EA

→
√

1−R2 |1, 0〉A,DemA
+ R |0, 1〉A,DemA

, and |2, 0〉InA,EA
→

(1−R2) |2, 0〉A,DemA
+R2 |0, 2〉A,DemA

+
√

2R
√

1−R2 |1, 1〉A,DemA
. In this case, the demon’s strategy

will be the same as for uncorrelated thermal states. This is because when the demon detects a photon
in mode DemB, it is now more likely that there are more photons in mode B (unless both photons
of the N00N state are reflected). Thus the demon will swap the modes. On the other hand, the
demon will not do anything when a photon is detected in mode DemA. Working through all of these
transformations, one arrives at the following state:

|ψ〉 = 1
1− s2

2
|0, 0, 0, 0, 0, 0〉+ s

1− s2

2

√
1− v2

[
ε2(1−R2) |1, 1, 0, 0, 0, 0〉+ ε2R2 |0, 0, 1, 1, 0, 0〉

+ε2R
√

1−R2(|0, 1, 1, 0, 0, 0〉+ |0, 1, 0, 1, 0, 0〉)
+ε
√

1− ε2
√

1−R2(|1, 0, 0, 0, 0, 1〉+ |0, 1, 0, 0, 1, 0〉)

+ε
√

1− ε2R(|0, 0, 1, 0, 0, 1〉+ |0, 0, 0, 1, 1, 0〉) + (1− ε2) |0, 0, 0, 0, 1, 1〉
]

+ s

1− s2

2

v√
2

[
ε2(1−R2)(|2, 0, 0, 0, 0, 0〉+ |0, 2, 0, 0, 0, 0〉) + ε2R2(|0, 0, 2, 0, 0, 0〉+ |0, 0, 0, 2, 0, 0〉)

+
√

2ε2R
√

1−R2(|1, 0, 1, 0, 0, 0〉+ |1, 0, 0, 1, 0, 0〉)
+
√

2ε
√

1− ε2
√

1−R2(|1, 0, 0, 0, 1, 0〉+ |0, 1, 0, 0, 0, 1〉)

+
√

2ε
√

1− ε2R(|0, 0, 1, 0, 1, 0〉+ |0, 0, 0, 1, 0, 1〉) + (1− ε2)(|0, 0, 0, 0, 2, 0〉+ |0, 0, 0, 0, 0, 2〉)
]
.

(37)

The mode labels are |i, j, k, l,m, n〉DA,DB,DemA,DemB,lA,lB . It is then straightforward to compute the
probability for the detectors in mode A and B to click then. For that we can obtain the photon
number difference as before

∆N = s2(
1− s2

2

)2 2(2v2 − 1)ε4R2(1−R2)Γ. (38)

This expression is very similar to that of the SPDC light, simply with an additional factor of (2v2−1).
So we see in the low photon-number regime, for an ideal source both the correlated and anti-correlated
states behave identically. But in practice, the correlated state should perform better, since they do
not require the additional experimental step of Hong-Ou-Mandel

As a last step, we again compute our two figures of merit, by normalising ∆N by both the singles
and the coincidence counts, yielding

∆N
N

= 2ε2(2v2 − 1)R2(1−R2) (39)

and
∆N
C

= 2(2v2 − 1)R2(1−R2). (40)

Similar to the correlated states, we see that normalising by coincidences removes the effect of the
imperfect coupling efficiency. However, the visibility factor remains.
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D The Maxwell’s Demon’s Information
In order to quantify the information accessible to the MD we compute the mutual information between
the MD’s measurement outcomes (detector clicks at detectors DemA and DemB) and the photon
numbers distribution in mode A and B after MD’s two beamsplitters. As discussed in the main text,
this quantity imposes an upper limit on the amount of work that the MD can extract. The mutual
information between the detector outcomes and the photon number quantifies the common information
between these systems, and, hence, how much the MD can learn about the photon number from its
measurements.

Following Ref. [32], the mutual information between the demons measurement clicks (Ma and Mb)
and the photon number in mode A and B after the beamsplitter (Na and Nb) in our setup can be
written as

I(Ma,Mb : Na, Nb) =
∑
mA

∑
mB

∑
nA

∑
nB

p(mA,mB, nA, nB) [log(p(mA,mB|nA, nB))− log(p(mA,mB))] .

(41)
In Eq. (D), p(mA,mB, nA, nB) is the probability to detect mA photons at detector DemA, mB photons
at detector DemB, while having nA photons remaining in mode A and nB photons remaining in mode
B. Similarly, p(mA,mB) is the probability for the demon to detect mA and mB photons at detectors
DemA and DemB, respectively. We obtain p(mA,mB) by marginalizing p(mA,mB, nA, nB) over nA
and nB. The joint probability p(mA,mB, nA, nB) will depend on the input state, and can be taken
almost directly from the output states computed in Appendix C. In particular, they are obtained from
the coefficients of the various terms in Eq. (12) for the uncorrelated case, Eq. (20) for the split thermal
state, Eq. (29) for the correlated state, and Eq. (37) for the anti-correlated state. However, the MD’s
operation given in Eq. (11) must first be undone. Furthermore, for the correlated and anti-correlated
states, we ignore the vacuum component from the state preparation (i.e. we set |ψ〉 = |1, 1〉A,B in
Eq. (26), and similarly in Eq. (36)) to reflect our normalization by the singles rate.

The remaining quantity in Eq. (D) is the conditional probability p(mA,mB|nA, nB) which is the
probability that the MD will detect mA and mB photons at detectors DemA and DemB, respec-
tively, given that nA and nB photon are incident in modes InA and InB, respectively. Since the
modes do not interact before the MD’s beamsplitter this probability factorizes p(mA,mB|nA, nB) =
p(mA|nA)p(mB|nB). These individual probabilities for mode A and B can be readily computed by
assuming a Fock state |n〉 is input to a beamsplitter of reflection amplitude R

p(m|n) =
n∑
k=0

n! ε2k(1− ε2)n−kR2m(1−R2)k−m

m!(n− k)!(k −m)! , (42)

where the coupling efficiency is ε2 (as defined above).
Notice that the conditional probabilities are the same for every input state, as they are related just to

the MD’s apparatus. The effect of the input states on the mutual information arises through the joint
probabilities coming from the calculations presented in Appendix C, and these introduce dependence
the average photon number (for the uncorrelated and split thermal states) and the visibility (for the
anti-correlated state).
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