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The capacity of distant parties to send
signals to one another is a fundamental re-
quirement in many information-processing
tasks. Such ability is determined
by the causal structure connecting the
parties, and more generally, by the
intermediate processes carrying signals
from one laboratory to another. Here
we build a fully fledged resource theory
of causal connection for all multi-party
communication scenarios, encompassing
those where the parties operate in a
definite causal order and also where the
order is indefinite. We define and
characterize the set of free processes and
three different sets of free transformations
thereof, resulting in three distinct resource
theories of causal connection. In the
causally ordered setting, we identify the
most resourceful processes in the bipartite
and tripartite scenarios. In the general
setting, instead, our results suggest that
there is no global most valuable resource.
We establish the signalling robustness as
a resource monotone of causal connection
and provide tight bounds on it for many
pertinent sets of processes. Finally, we
introduce a resource theory of causal
non-separability, and show that it is
– in contrast to the case of causal
connection – unique. Together our
results offer a flexible and comprehensive
framework to quantify and transform
general quantum processes, as well as
insights into their multi-layered causal
connection structures.
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1 Introduction
The ability of separated parties to signal to
one another is one of the most fundamental
resources in information processing. Examples
are abundant even in everyday life; for instance,
any group call where the participants want to
communicate with each other requires a network
of communication links of sufficiently high
quality. Somewhat less mundanely, quantum
protocols such as teleportation and superdense
coding require reliable transmission of classical
and quantum bits [1].

The possibility of signalling between a set of
parties is determined by the causal structure
in which they operate. For example, if Alice’s
operations causally precede Bob’s, then Bob
cannot send any signal to Alice. More generally,
the amount of signalling between Alice and Bob
will depend on the background processes that
connect their laboratories. When the parties
operate in a definite causal order, their causal
structure can be described by the framework
of quantum combs [2–4], that is, matrices that
describe intermediate processes connecting the
parties in a given order. More generally, the
parties could operate in an indefinite causal
structure, which can be described with the
framework of process matrices [5, 6], representing
intermediate processes connecting the parties in
an indefinite order. The goal of this paper is to
provide a rigorous framework in which combs and
process matrices can be regarded as resources for
the communication between multiples parties.

The canonical framework for characterizing
resources is that of resource theories [7,
8]. Any resource theory consists of a
set of free (i.e., non-resourceful) objects and
a set of free transformations thereof (i.e.,
transformations that are assumed not to create
resources), together with resource monotones
(i.e., functions that are non-increasing under
free transformations, and as such quantify the
amount of resource in a given object).

In quantum mechanics, resource theories
have been highly successful in characterizing
resources such as entanglement [9–12], purity [13,
14], athermality [15–17], asymmetry [18–23],
coherence [24–33], imaginarity [34–36] and
nonclassicality [37] to name but a few pertinent
examples (see, e.g., Ref. [38] for an overview).

In most of the existing resource theories, the
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resources are quantum states. Recently, there
has been increasing interest in a new type
of resource theories, where the resources are
quantum channels (that is, valid transformations
of quantum states into quantum states). For
example, in Refs. [39–41], the entanglement
of bipartite channels has been investigated,
leading to a resource theory where the free
objects are channels and the free transformations
are quantum supermaps [2, 4, 42] (that is,
valid transformations of quantum channels into
quantum channels). In an analogous fashion,
the distillation of quantum channel resources
has recently been considered in Ref. [43].
More closely related to our present work, in
Refs. [44, 45], resource theories of communication
have been introduced, focusing on the possible
transformations of communication channels.

Here we establish a general framework to
quantify the resourcefulness of the causal
structure connecting an arbitrary number of
parties. Our main goal is to characterize to
what extent a given causal structure enables
signalling between the parties. The resulting
framework will be called a resource theory
of causal connection. However, a slight
modification of the framework also allows us to
formalize an explicit resource theory of causal
non-separability, where causal indefiniteness –
instead of causal connection – is the resource of
interest. A salient aspect of the resource theories
of causal connection and causal non-separability
is that, unlike in most other resource theories,
the basic resources are neither quantum states
nor quantum channels but rather quantum
causal structures, described by quantum combs
and process matrices. Accordingly, the free
transformations are transformations of combs
and process matrices, similar to the types of
transformations considered in Refs. [46, 47]. The
resource-theoretic study of these higher-order
processes is a relatively recent development.
Transformations of combs and the resulting
resource theories of (quantum) non-Markovianity
have been discussed in Ref. [48]. A resource
theory of superpositions of causal orders has
been provided in Ref. [49], leading to similar
mathematical structures as those encountered
in this work. Finally, the connection between
channel capacities and causal order has been
investigated in Ref. [50]. In a similar vein, albeit

not within a resource theoretical framework,
the resources required for the implementation
of different generalized quantum processes have
been investigated in Refs. [51, 52].

In general, the basic objects in our resource
theories are process matrices, representing the
background processes connecting the parties’
laboratories. We start by establishing resource
theories of causal connection. In this case the
free objects are process matrices that do not
allow for signalling between the parties. For the
free transformations, we investigate three natural
sets, one contained inside the other. The first
set is the least restrictive one, and consists of
all proper operations on process matrices that
preserve the set of free processes. The second
set consists of operations that cannot be used to
establish signalling between the involved parties.
Finally, the third, most restrictive set consists
of operations that can be actively implemented
by the parties using only local operations and
shared correlations. The ensuing three possible
sets of free transformations – of which the latter
two are the most physically motivated ones – give
rise to three distinct resource theories of causal
connection, each with its own peculiar features.

Besides establishing a general resource the-
oretic framework, we introduce quantitative
measures of causal connection. In particular, we
propose the signalling robustness as a faithful
monotone of causal connection and find tight
bounds for this monotone for the case of causally
ordered processes as well as special sets of
causally indefinite processes. As it turns out,
both for the two- and three-party scenario, the
process with the highest signalling robustness
in the causally ordered case is a Markovian
process that only consists of unitary channels
linking one party to the next. This result implies
that non-Markovian processes do not offer a
higher amount of causal connection, despite
their ability to create correlations between the
outputs of different parties. Perhaps more
surprisingly, numerical results show that also
causal non-separability does not increase the
amount of causal connection, thus suggesting
that the advantages of causally non-separable
processes over causally ordered ones in quantum
information tasks [5, 42, 53–57] do not stem from
an increased amount of causal connection.

Like other types of robustness, the signalling
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robustness can be phrased as a semidefinite
program (SDP). Using this SDP formulation,
we provide an intuitive interpretation of the
signalling robustness in terms of the ‘number and
strength’ of causal loops that could in principle
be closed in a given process. This, in turn, offers
an intuitive interpretation of causal connection
even in cases where the underlying process is
causally indefinite.

We then explore convertibility of processes
under the free operations (for all three possible
sets thereof) in the resource theory of causal
connection. For some choices of free operations
– albeit, as we show, not all – we find that
they cannot change the causal ordering of a
process, nor can they transform causally ordered
processes into processes with indefinite causal
order. On the other hand, causally non-separable
processes can always be freely transformed into
processes with definite causal order by means of
free transformations.

Finally, we adapt our results and the
structural framework we establish for causal
connection to formulate a resource theory of
non-separability. While this latter resource
theory has been alluded to in the literature [6],
to our knowledge, it has not been fully worked
out yet. Leveraging our considerations on causal
connection, we lay out an explicit resource theory
of causal non-separability and characterize the
so-called causal robustness, introduced in Ref. [6]
as a monotone in the resource theory of
causal non-separability. Unlike in the case
of causal connection, as we show, there is
only one meaningful resource theory of causal
non-separability, namely the maximal one, i.e.,
where the set of free transformations coincides
with the set of all proper operations that cannot
create causal indefiniteness.

Finally, using these insights from the resource
theory of causal non-separability, we return to
the resource theories of causal connection, and
show that, for two of them, there is no total
order with respect to free operations, even when
only considering the set of causally non-separable
processes.

The paper is structured as follows. In
Sec. 2, we provide the necessary mathematical
prerequisites for the discussion of general
quantum processes and transformations thereof.
Based on the notion of non-signalling (NS)

constraints, in Sec. 3, we formally introduce the
set of free processes and free transformations, the
latter based both on axiomatic and operational
considerations. The signalling robustness, as
well as its formulation in terms of an SDP is
introduced in Sec. 4, where we also provide
its alternative interpretation in terms of the
number of causal loops that can be closed in a
given process. Tight bounds on the signalling
robustness in the bi- and multipartite case, as
well as the most resourceful process on two
parties and its transformations are presented in
Sec. 5. A derivation of the unique resource
theory of causal non-separability is provided in
Sec. 6, where we also provide an investigation of
the interconvertibility of causally non-separable
processes by means of free transformations
(with respect to the resource theory of causal
connection). The manuscript then concludes in
Sec. 7. Further mathematical background and
the derivation of all monotones of the resource
theory of causal connection can be found in the
Appendix.

2 Preliminaries

Throughout this paper, we predominantly con-
sider the following scenario: Two parties (Alice
and Bob) each have independent laboratories
in which they can receive quantum states,
manipulate them, and subsequently send them
forward (we will consider all involved systems to
be of finite dimension). In a causally ordered
framework, there are three possibilities: Alice’s
actions could have an influence on the state
that Bob receives (denoted by A ≺ B), Bob’s
actions could have an influence on the state that
Alice receives (denoted by B ≺ A) or neither
party can influence the other (denoted by A||B).
The former two cases allow for communication
between the parties, while in the latter case, no
signal can be sent between them.

The aim of this paper is to provide a mean-
ingful and operationally clear-cut framework
to quantify the ‘value’ of the possibility of
communication between the involved parties.
We will refer to this possibility as the causal
connection between the parties. We emphasize
that, even though we mostly work in the
two-party case, most of our results hold in more
generality, and we will be explicit whenever
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Figure 1: Causal connection between two parties.
Two parties, Alice and Bob, receive, manipulate,
and send forward quantum systems. The causal
connection between Alice and Bob determines whether
the operations performed by one party have an influence
on the state the other party receives. Specifically, we
consider the situation where Alice’s manipulation can
influence the input of Bob [panel (a)], or vice versa [panel
(b)]. We will also consider more general scenarios that
do not allow one to attribute a definite causal order, but
no logical paradoxes occur [panel (c)]. Note that the
case where none of the parties can influence the other
can be considered a special case of (a) or (b).

results depend on the number of parties involved.
The causal connection between multiple

parties is described by a process matrix [5,
6], which encapsulates all situations where the
parties have a definite causal order, as well
as more exotic scenarios in which the order
between the parties is indefinite. Independent of
the respective underlying process, the operations
Alice (A) and Bob (B) can perform on the
respective quantum systems they receive and
subsequently send forward are described by an
instrument JX = {Mk

X}, a collection of (trace
non-increasing) completely positive (CP) maps,
each corresponding to the implemented operation
given an observed measurement outcome of
party X, that add up to a CP trace-preserving
(TP) map. Once all possible joint probabilities
P(i, j|JA,JB) for all potential outcomes Alice
and Bob could obtain given their respective
instruments are measured, the underlying causal
order (or lack thereof) can be deduced.

Before providing a resource theory of causal
connection, we first introduce the mathematical
background needed to represent causal connec-
tion and its manipulation.

2.1 Choi-Jamio lkowski isomorphism and the
link product
For all of our considerations, it proves
convenient to employ the Choi-Jamio lkowski
isomorphism (CJI) to represent CP maps by

their Choi matrices [58–60]. Denoting the input
(output) space of party X by HXI

(HXO
), an

instrument can equivalently be represented by a
collection JX = {Mk

X} of positive semidefinite
matrices Mk

X ∈ B(HXO
⊗ HXI

) that satisfy
trXO

(
∑
kM

k
X) = 1XI

[4]. Whenever there is no
risk of confusion, we drop the explicit distinction
between a map and its Choi matrix and we
will employ the convention X = XIXO when
labelling Hilbert spaces. Whenever we want to
make the distinction between maps and Choi
matrices explicit, we use calligraphic letters to
denote maps, and their upright version to denote
the corresponding Choi matrix.

A particular CPTP map that we encounter
regularly is the partial trace trX , with
corresponding Choi matrix 1X , and the identity
channel IXO→YI

with corresponding Choi matrix
Φ+ =

∑
i,j |ij〉〈ij|, where {|ij〉} is a fixed product

basis of HXO
⊗ HYI

. Throughout, we will
often add subscripts to the respective objects
to denote the spaces they are defined on, and
we assume that objects with different subscripts
differ, i.e., MX 6∼= MZ , even if HX ∼= HZ .
Additionally, whenever applicable, we use the
convention MX := trY MXY , etc.1

It is convenient to introduce the link product
? which allows one to express the concatenation
of maps in terms of their respective Choi
matrices [4]. Specifically, let FXY ∈ B(HX⊗HY )
and LY Z ∈ B(HY ⊗ HZ) be the Choi matrices
of two maps F : B(HX) → B(HY ) and L :
B(HY )→ B(HZ). Then, the Choi matrix NXZ ∈
B(HX ⊗HZ) of the concatenation N = L ◦ F is
given by

NXZ = FXY ? LY Z

:= trY [(FXY ⊗ 1Z)(1X ⊗ LTY
Y Z)] ,

(1)

where rTY denotes the partial transpose with
respect to HY . Intuitively, the link product
simply provides a convenient way of connecting
different maps in the Choi representation. If the
two constituents of the link product do not share
any spaces they are defined on, then it coincides
with the normal tensor product, i.e., FX ? LY =

1Since the objects we consider are not always of unit
trace, we frequently abuse this notation and implicitly
assume that MX is a trace renormalized version of
trY MXY . This slight ambiguity does not affect the
arguments we make, and whenever necessary we are
explicit about it.
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FX ⊗ LY . As shown in Ref. [4], the link product
of two positive semidefinite (Hermitian) matrices
is again positive semidefinite (Hermitian).
Additionally, the link product is associative
and commutative for all cases we consider.2

In anticipation of future matters, it is worth
considering these latter two properties in more
detail. For example, the link product of three
maps

FX ? LY ? KXY = FX ? (KXY ? LY )
= (FX ? KXY ) ? LY

(2)

can be understood in two different ways. On the
one hand, as K ‘acting on’ L, yielding a new
matrix on HX which is then linked with F ; or
it can be read as K ‘acting on’ F , yielding a
new matrix on HY which is then linked with
L. We emphasize that the commutativity of the
link product does not imply commutativity of the
underlying maps. While we do not exclusively
employ the link product to phrase our results,
the flexibility it provides considerably simplifies
the presentation of statements and proofs.

2.2 Process matrices and causal order
Suppose that two parties, Alice and Bob, perform
local operations in two separate laboratories.
Using the CJI for Alice’s and Bob’s instruments,
the joint probability distribution of the outcomes
can be expressed in terms of a process matrix
W ∈ B(HAI

⊗HAO
⊗HBI

⊗HBO
) [5], as follows3

P(i, j|JA,JB) = tr[WT(M i
A ⊗M

j
B)]

= W ?M i
A ? M

j
B ,

(3)

Mathematically, the process matrix is the Choi
matrix of a higher-order map transforming
Alice’s and Bob’s local operations into proba-
bilities [42]. This matrix contains all spatio-
temporal correlations of the underlying process
that connects Alice’s and Bob’s laboratories [61,
62]. A graphical representation of this scenario
is provided in Fig. 2.

Demanding that quantum mechanics holds
locally by requiring Alice and Bob to implement

2Commutativity only holds up to reordering of the
tensor factors of composite systems, but this subtlety will
not be of importance for the considerations of this work.

3To comply with the definition of the link product, this
definition of the process matrix differs from the one in [5]
by a transpose. This difference is a mere notational one.

Figure 2: Process matrix. In their respective
laboratories, Alice and Bob can perform arbitrary
quantum operations M i

A,M
j
B transforming an input

space XI to an output space XO. All spatio-temporal
correlations between them are given by W and computed
by ‘contraction’ (i.e., link product) of W with M i

A and
M j

B . Locally, causality holds (as signified by the arrows),
but there is not necessarily a global ordering between the
events in different laboratories.

sets of quantum instruments, and that all
probabilities must be positive and normalized,
even when W acts on correlated operations,
implies

W ≥ 0 and tr[WT(MA ⊗MB)] = 1 (4)

for all Choi matrices {MA,MB} of CPTP
maps. These requirements can be succinctly
summarized (for two parties) as [6]

W ≥ 0, W = LV (W ), tr(W ) = dAO
dBO

,
(5)

where the projection operator4 LV is of the form

LV [W ] =AO
W + BO

W − AOBO
W − BIBO

W

+ AOBIBO
W − AIAO

W + AIAOBO
W ,

(6)

with XW := 1

dX
⊗ trXW . A generalization of

LV to more parties can be found in Ref. [6].
While the explicit form of the projection operator
LV is not intuitively obvious, individual terms
in Eq. (6) can be given a direct meaning. For
example, AO

W corresponds to the ‘Bob-to-Alice’
one-way signalling part of W , while AOBO

W
coincides with the non-signalling part of W . The
detailed forms of LV as well as all the projection
operators we provide in the subsequent sections
follow directly from their respective defining
equation (for example, Eq. (4) for LV ), but only
rarely allows for an intuitive interpretation – in

4The subscript ‘V’ refers to ‘valid’.
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the sense that it is not obvious why they must
contain certain combinations of individually
interpretable terms beyond the algebra that
yields them.

In what follows, we will refer to matrices W
that satisfy Eq. (4) (or the multi-party general-
izations thereof) as proper process matrices (or
simply processes) and denote the set of all such
matrices by Proc.

Throughout, we often make use of the fact that
the operator X

r is trace-preserving, self-dual,
and a projection, as well as the fact that

XY
r = Y X

r holds. Self-duality means that for
any two Hermitian matrices Q and R we have
tr[Q(XR)] = tr[(XQ)R], while the projection
property implies that X(XR) = XR for all
matrices R. Both of these properties can be
readily seen from the definition of X

r and also
hold in the link product, i.e., Q?XR = XQ?R =
XQ?XR whenever Q and R are both defined on
the space X.

In anticipation of later investigations, it
is worth discussing the properties of causally
ordered processes and their relation to non-
signalling constraints [63, 64] in more detail.
Following Refs. [3, 4], we often call a process
matrix that corresponds to a causally ordered
process a proper comb (or simply comb). Causal
order (for example, A ≺ B, for two involved
parties) means that Bob cannot signal to Alice.
Put differently, in this causal order, the choice of
Bob’s instrument cannot influence the statistics
Alice records. Using Eq. (3), this implies

WA≺B ? M i
A ? MB = WA≺B ? M i

A ? M
′
B , (7)

for all CPTP maps MB,M
′
B. Using trBO

MB =
trBO

M ′B = 1BI
, it follows that

WA≺B = 1BO
⊗WBIAOAI

(8)

holds, where WBIAOAI
satisfies trBI

WBIAOAI
=

1AO
⊗ ρAI

[due to the normalization constraint
of Eq. (4)], and ρAI

is a quantum state on HAI
.

In the more general, multi-party, case, we
distinguish between ‘input legs’ of a process
(labelled by {AI , BI , . . . }) and ‘output legs’ of
a process (labelled by {AO, BO, . . . }) (see Fig. 3
for a graphical representation). In slight abuse
of notation, we also use ≺ to denote an ordering
of legs (not just laboratories), e.g., AI ≺ AO ≺
BI ≺ BO ≺ CI for the example of Fig. 3.

Figure 3: Quantum comb. For any process we
distinguish between input legs – here, AO and BO –
and output legs – here, AI , BI , and CI . If the process
is causally ordered, then the hierarchy of trace conditions
is satisfied (see Eqs. (9) – (11)).

Causal ordering then imposes a whole
hierarchy of trace conditions that a comb has
to satisfy [3, 4]. For example, for the process
provided in Fig. 3, we have WABCI

≥ 0,

trCI
WABCI

= 1BO
⊗WABI

, (9)
trBI

WABI
= 1AO

⊗WAI
, (10)

and trAI
WAI

= 1 . (11)

More concisely, using the operators X
r defined

above, these conditions can be subsumed in one
projection operator LA≺B≺CI

as

W = LA≺B≺CI
[W ]

:= W − CI
W + CIBO

W

− CIBOBI
W + CIBOBIAO

W , (12)
and trW = dAO

dBO
, (13)

where, for compactness, we have dropped the
additional subscripts on W . The constraint
of Eq. (8) is then just a special case of the
above conditions, with a trivial final output leg.
Importantly, any comb that satisfies the above
conditions (or the multi-time generalization
thereof) corresponds to a causally ordered
process that can in principle be implemented as
a standard quantum circuit [3, 4]. We will also
refer to combs as deterministic operations.

On a formal level, causal ordering amounts to
signalling conditions. As mentioned, for a comb
that satisfies the causal ordering A ≺ B, the
comb that Alice ‘sees’ locally is independent of
the CPTP operations that Bob can implement.
On the other hand, for the same process, Alice
can generally influence the local comb Bob sees,
i.e., there exist CPTP maps MA and M ′A such
that WA≺B ? MA 6= WA≺B ? M ′A. As such,
Alice can inform Bob about what operation she
performed, and thus signal to him.

In our definition of free transformations of
process matrices, we frequently encounter such
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non-signalling conditions and often express the
properties of the objects we investigate by means
of projectors like LA≺B≺CI

employed above.

Finally, Eq. (8) (together with its version for
the case B ≺ A) allows us to provide the formal
definition of causally separable process matrices
(for two parties) as such process matrices that
can be written as

W = pWA≺B + (1− p)WB≺A , (14)

for some probability 0 ≤ p ≤ 1, where completely
non-signalling processes WA||B = 1AOBO

⊗ρAIBI

– which we also call parallel processes – can be
considered to belong to either the set A ≺ B
or B ≺ A in the above definition. Whenever
we want to express that a process is of order
X ≺ Y but not X||Y , we will denote it by
X~≺Y . We call the set of causally separable
process matrices Sep. While it is not necessarily
possible to represent all W ∈ Sep by quantum
circuits, they are nonetheless not overly exotic,
since they can be perceived as causally ordered
processes together with an initial coin flip that
decides which process is chosen in an individual
run.5

All causally ordered (A ≺ B,B ≺ A, and
A||B) processes as well as convex combinations
thereof are described by a process matrix of the
form (4). However, there are processes that
satisfy the requirements (4) (or variants of it, for
the case of more parties) but do not correspond
to a causally separable process [5, 65, 67] (see
Fig. 4 for a graphical representation of the set of
valid processes).

Such processes have been dubbed causally
non-separable [5, 6]. Beyond the foundational
intrigue they offer, they also widen the concept
of processes and allow us to consider the
largest class of conceivable resources for a
resource theory of causal connection. In turn,
their inclusion provides further insights into
the fundamental differences between causally
ordered and causally disordered processes; for
example, as we shall see, general processes have

5The structure of separable processes becomes more
involved in the multi-party case, where causal order could
be chosen dynamically, for example the causal ordering
between Bob and Charlie could depend on what Alice
does [65, 66]. These subtleties in the definition of
causally separable processes are not of relevance for our
considerations.

Figure 4: Sets of process matrices. The individual sets
of process matrices that are ordered A ≺ B or B ≺ A
form convex sets, with their intersection coinciding with
the set of parallel/non-signalling processes (A||B). The
convex hull of all causally ordered processes corresponds
to Sep. The set Proc of all proper process matrices
forms a strict (convex) superset of Sep, and all processes
in Proc \ Sep are causally non-separable (CNS).

more involved interconversion relations under
free transformations than those that are causally
ordered.

In addition, causal non-separability – instead
of causal connection – can itself be considered a
resource for quantum processes. Structurally, the
objects required to build up the corresponding
resource theory of causal non-separability are
similar to those employed in the resource
theory of causal connection, and both theories
share some of the same monotones. However,
defining and characterizing ‘meaningful’ sets
of free transformations for the case of causal
non-separability presents itself as a more layered
question than for causal connection (we provide a
detailed discussion in Sec. 6.1) and requires much
of the technical machinery that we provide in
the subsequent sections. Consequently, here, we
first start with a comprehensive discussion of the
resource theory of causal connection and return
to the resource theory of causal non-separability
in Sec. 6.

3 Resource theories of causal connec-
tion

Any resource theory is concerned with the
transformation of resources and the question of
what resources can be transformed into each
other given certain constraints. Here, the set
of resources are process matrices, describing the
background causal structure between a set of
parties. Accordingly, the transformations of
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Figure 5: General Adapters. A process matrix WAB

can be mapped onto another process matrix W ′A′B′

via an adapter, such that W ′A′B′ = ΥAIAOBIBO
?

WAB , where XI/O = XI/OX
′
I/O. Depending on the

considered resource theory, the adapter has to satisfy
certain constraints. The green border around the process
matrix W , belonging to the adapter Υ, signifies that,
in general, the adapter does not have to be causally
ordered.

resources are given by supermaps (which we
denote by Υ). We will call such transformations
adapters, since they can generally transform
the input and output systems in the parties’
laboratories, thus serving as “adapters” from
one type of system to another, and we call
them admissible adapters if they map any proper
process matrix onto a proper process matrix. A
diagrammatic representation of the action of an
adapter on a process matrix is shown in Fig. 5.

In the following, we specify precisely the set of
free objects, and the set of free transformations
(also called ‘free operations’ or, in what follows,
‘free adapters’). Since the property of interest
is causal connection, the choice of free objects
is rather straightforward: the free objects
are process matrices that do not allow for
communication between any of the parties. For
the free transformations, on the other hand, we
will see that – besides the basic requirement of
mapping proper processes to proper processes –
there are a few possible choices, all satisfying
the basic requirement that free objects should
be mapped onto free objects. In particular, we
consider free transformations that leave the set
of free processes invariant; that cannot be used
themselves to establish communication between
the parties; or that can be implemented using
exclusively non-signalling resources. We see
below that these requirements are distinct from
one another and lead to strictly different sets of
free transformations.

3.1 Free objects
In a resource theory of causal connection, the set
of free process matrices should not allow for any
signalling between the parties. Mathematically,
this means that the conditions

W ?MA = W ?M ′A

W ?MB = W ?M ′B (15)

have to hold for all CPTP maps MA, M ′A, MB

and M ′B, which means that W is ordered both
A ≺ B and B ≺ A. These conditions imply
that the set of free process matrices is the set
of ‘non-signalling’ or ‘parallel’ processes WA||B,
that is, processes of the form

WA||B ≥ 0 and WA||B = ρAIBI
⊗ 1AOBO

(16)

where ρAIBI
is a quantum state. Concretely, we

have WA||B ?MB = ρAI
⊗1AO

and WA||B ?MA =
ρBI
⊗ 1BO

for all CPTP maps MA and MB,
implying that no signalling between Alice and
Bob can occur. Conversely, it is easy to see that
processes of the form of Eq. (16) are the only ones
that do not enable communication between Alice
and Bob.

Hence, we define the set of free objects as
the set Free = {WA||B} of all process matrices
that satisfy Eq. (16). This definition extends
naturally to multiple parties. Equivalently, using
projectors, the set of free process matrices can
also be characterized as the set of all matrices
WA||B ∈ B(HA ⊗HB) that satisfy

WA||B ≥ 0,
WA||B = AOBO

WA||B,

and trWA||B = dAO
dBO

.

(17)

We emphasize that the set of free process
matrices is convex. While convexity is not
strictly necessary in a general resource theory, it
will be helpful in some of applications discussed
later in the paper.

It is important to point out the difference
between the above notion of non-signalling
process matrix and the notion of non-signalling
channel frequently used in the literature. In
the case of two parties, a non-signalling channel
is a bipartite channel N : B(HA ⊗ HB) →
B(HA′ ⊗ HB′), jointly acting on systems in
Alice’s and Bob’s laboratories. The channel N is
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non-signalling from Alice to Bob if Alice’s choice
of input states cannot influence Bob’s output
state, i.e.,

trA′{N [ρA ⊗ ηB]} = trA′{N [ξA ⊗ ηB]} (18)

for all ρA, ξA and ηB, and analogously for the case
where Bob cannot signal to Alice. A bipartite
channel is non-signalling channel (NS) if it is non-
signalling both from Alice to Bob and from Bob
to Alice (such channels are also called causal [63,
68]).

On the other hand, a non-signalling process
matrix, as defined in Eq.(15), describes a causal
structure where the local choice of CPTP map
of one party do not have any observable effect in
the other party’s laboratory. These two notions
of non-signalling can be related by considering
process matrices as channels from AO ⊗ BO to
AI ⊗ BI and realizing that, in this case, the
free processes defined in Eq. (16) correspond to a
strict subset of all non-signalling channels. The
reason for this difference is that, in the definition
of non-signalling channels, the parties are allowed
to signal only by preparing different states,
while in the definition of non-signalling process
matrix, the parties could signal by choosing local
quantum channels.

Throughout the paper, we also consider
more general signalling scenarios and always
understand non-signalling with respect to the
operations the respective party could perform in
their laboratory.

3.2 Free transformations
The transformations in a resource theory of
causal connection are represented by adapters
that transform process matrices into process
matrices. We define their action through their
associated Choi matrices Υ. Let W ∈ B(HAI

⊗
HAO

⊗ HBI
⊗ HBO

) be a process matrix which
is subjected to a transformation and let W ′ ∈
B(HA′I ⊗ HA′O ⊗ HB′I ⊗ HB′O ) be the resulting
process matrix (see Fig. 5). Then, using the
link product, the adapter responsible for this
transformation, Υ ∈ B(HAI

⊗HAO
⊗HBI

⊗HBO
),

with XI/O := XI/OX
′
I/O, acts on a process

matrix according to

W ′A′B′ := ΥAIAOBIBO
? WAB. (19)

The probability distribution observed by Alice
and Bob when performing their local instruments

Figure 6: Adapters as transformations of local oper-
ations. Instead of being considered a transformation
of the process matrix Alice and Bob share (depicted
in Fig. 5), adapters can also be understood as a
transformation of their local operations.

JA′ = {M i
A′} and JB′ = {M j

B′} on the
transformed process matrix W ′A′B′ is then given
by

P(i, j|JA′ ,JB′)
= W ′A′B′ ? M

i
A′ ? M

j
B′

= (WAB ?ΥAIAOBIBO
) ? (M i

A′ ? M
j
B′).

(20)

In a dual fashion, an adapter can also be
understood as a transformation of the local
operations performed by the parties. This view
can easily be understood thanks to the flexibility
of the link product:

P(i, j|JA′ ,JB′)
= (WAB ?ΥAIAOBIBO

) ? (M i
A′ ? M

j
B′)

= WAB ? [ΥAIAOBIBO
? (M i

A′ ? M
j
B′)]

= WAB ? M
ij
AB.

(21)

Consequently, one can consider ΥAIAOBIBO
in

terms of the mapping (see Fig. 6)

M ij
AB := ΥAIAOBIBO

? M i
A′ ? M

j
B′ , (22)

that maps the local operations of Alice and Bob
to a new, possibly correlated operation. This
corresponds to the dual, yet equivalent, action
of the way in which we considered the action of
the adapters in Eq. (20).

Let us now turn to the definition of free
adapters. As we anticipated, there are several
potential candidates for the set of free adapters,
since which transformations are considered free
ultimately depends on the level of control that
Alice and Bob may have of the causal structure.
In the following, we lay down a hierarchy of
physically motivated requirements corresponding
to different levels of control.

Since our central concern is the ability of
parties to communicate, natural requirements for
free adapters are:
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R1. To map proper process matrices onto proper
process matrices.

R2. To map free process matrices onto free
process matrices.

R3. To not allow for signalling.

R4. To be implemented without communication
between the parties.

Requirement R1 is not specifically a require-
ment on the free transformations per se, but
rather a requirement for any physically mean-
ingful transformation on the causal structure;
valid causal structures should be transformed
into valid causal structures. Requirement R2 is
the minimal requirement on free transformations:
they should map free objects onto free objects.
Requirements R3 and R4 concern the physical
properties of the adapters themselves and
come into play as soon as Alice and Bob
either have access to the adapter (Requirement
R3) or implement the adapter themselves, by
performing operations in their own laboratories
(Requirement R4).

In the following we investigate the various
sets of transformations that follow from these
requirements and how they relate to each other.
In particular, we show that Requirements R2 to
R4 – the requirements pertaining specifically to
free transformations – form a strict hierarchy:
the set of transformations corresponding to
Requirement R4 is strictly smaller than the
set of transformations corresponding to R3,
which in turn is strictly smaller than the
set of transformations corresponding to R2.
Consequently these three requirements will lead
to three distinct sets of free adapters, and thus
three distinct resource theories.

3.2.1 Admissible transformations

Let us start by analyzing Requirement R1,
that adapters map process matrices to process
matrices. Such adapters have been considered in
Ref. [47] but here we introduce them in a way
that is dual to previous considerations.

The set of transformations corresponding to
Requirement R1 is the set of all conceivable
transformations of causal structures, free or not.
Any adapter ΥAIAOBIBO

in this set satisfies the
basic condition

ΥAIAOBIBO
? WAB ∈ Proc (23)

for all process matrices WAB ∈ Proc. Note that
here and in what follows, we always assume Υ ≥
0 such that all probabilities are positive, even
when the adapters only act on parts of process
matrices [2, 42, 47].

We call any Υ ≥ 0 that satisfies Eq. (23)
an admissible adapter6 and denote it by ΥA ∈
ΘA. Importantly, Eq. (23) can be equivalently
rewritten as

ΥAIAOBIBO
? MA′B′ is NS channel (24)

for all NS channels MA′B′ . This is the property
that we use in this paper for the investigation of
the properties of admissible adapters.

The equivalence of Eqs. (23) and (24) can
be shown using the fact that process matrices
are equivalently characterized as the most
general supermaps transforming non-signalling
channels into probabilities [42], and by using
the commutativity and associativity of the link
product. The proof of equivalence is as follows.
First, suppose that Eq. (23) holds, that is, that
the matrix ΥA

AIAOBIBO
? WAB is a valid process

matrix whenever WAB ∈ Proc. This condition is
equivalent to

(ΥA
AIAOBIBO

? WAB) ? MA′B′ = 1 (25)

for every non-signalling channel MA′B′ [42].
Using the associativity and commutativity of the
link product, we then obtain the condition

WAB ? (ΥA
AIAOBIBO

? MA′B′) = 1 . (26)

for every process matrix WAB and for every
non-signalling channel MA′B′ . Now, since the
process matrix WAB is arbitrary, Eq. (26) implies
that ΥA

AIAOBIBO
? MA′B′ is a non-signalling

channel whenever MA′B′ is a non-signalling
channel. Hence, Eq. (24) must hold. Conversely,
suppose that Eq. (24) holds. Then, following the
above steps in the reverse order we obtain that
Eq. (23) must hold.

Summarizing, Eqs. (23) and (24) are equivalent
conditions. Physically, their equivalence is the
higher-order analogue of the relation between
Schrödinger and Heisenberg picture of a quantum
evolution.

The characterization of admissible adapters
in terms of NS channels can be used to derive

6In what follows, A will always stand for admissible,
while A and A denote the party Alice.
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an explicit equation for the constraints that an
admissible adapter must satisfy. Recall that a
channel with Choi matrix MAB is non-signalling
if and only if [63]

XO
MAB = XIXO

MAB , (27)

where X ∈ {A,B}. In App. A we show that this
is equivalent to the requirement

M = M − AO
M + AIAO

M − BO
M + AOBO

M

− AIAOBO
M + BIBO

M − AOBIBO
M

+ AIAOBIBO
M =: Lns[M ]

(28)

where we omitted the subscripts on MAB

and introduced the self-dual trace preserving
projector Lns onto the vector space spanned by
non-signalling channels. Naturally, since it is
the Choi matrix of a channel, MAB additionally
satisfies MAB ≥ 0 and trMAB = dAI

dBI
. Using

the projector Lns, in App. A we prove that the
requirement that an adapter maps non-signalling
maps to non-signalling maps is then equivalent to
the following definition:

Definition 1 (Admissible adapters). An admis-
sible adapter is a matrix ΥA ∈ B(HAI

⊗ HAO
⊗

HBI
⊗HBO

) that satisfies

ΥA ≥ 0 (29)
ΥA = ΥA − L′ns[ΥA] + (Lns ⊗ L′ns)[ΥA] , (30)
AB(L′ns[ΥA]) = ABA′B′ΥA , (31)
tr(ΥA) = dAI

dBI
dA′OdB

′
O
, (32)

where L′ns is the same projector as Lns but acts
on the primed degrees of freedom. The set of
admissible adapters is denoted ΘA.

Naturally, this definition can be extended to
the multi-party setting in a similar vein. Note
that this definition is equivalent to that provided
in Ref. [47], the only difference being that we
characterized the admissible adapters by their
action on NS channels, rather than their action
on process matrices. While both approaches lead
to the same definition of admissible adapters, the
dual route we took here will make it easier to
directly decide whether or not a given adapter is
admissible.

Finally, it is worth stressing that the admis-
sible adapters describe all logically conceivable
transformations of process matrices, not just the

free transformations. In the next sections we will
show concrete examples of admissible adapters
that map free processes to non-free processes
(i.e., they violate Requirement R2).

3.2.2 Free-preserving transformations

Let us now analyze Requirement R2, that
adapters map free objects to free objects. This
constitutes the minimal requirement on free
adapters. The ensuing set of free-preserving
adapters, denoted by ΥFP, is the set of adapters
that satisfy

ΥFP
AIAOBIBO

? WA||B ∈ Free, (33)

for all process matrices WA||B ∈ Free. Using
the characterization of free processes provided in
Eq. (17) this implies

A′OB
′
O

(ΥFP ? WA||B) = (ΥFP ? WA||B)

and tr(ΥFP ? WA||B) = dA′OdB
′
O

(34)

In App. B we show that this implies the
following characterization of the linear maps that
transform free processes to free processes.

Definition 2 (Free-preserving adapters). A free-
preserving adapter is a matrix ΥFP ∈ B(HAI

⊗
HAO

⊗HBI
⊗HBO

) that satisfies

ΥFP ≥ 0 (35)
AOBO

ΥFP = A′OB
′
OAOBO

ΥFP , (36)

A′B′AOBO
ΥFP = A′B′ABΥFP , (37)

tr(ΥFP) = dAI
dBI

dA′OdB
′
O
. (38)

The set of free-preserving adapters is denoted
ΘFP.

We emphasize that although the requirement
to be free-preserving guarantees that proper free
processes are mapped to proper free processes,
it alone does not guarantee that the resulting
set of operations is admissible, i.e., maps any
proper (non-free) process to a proper process. In
fact, there are free-preserving adapters that can
indeed map proper process matrices to objects
outside of the set Proc.

To see this, consider, for example, the
free-preserving adapter

Υ1SW = Φ+
AIB

′
I
⊗ Φ+

BIA
′
I
⊗ Φ+

AOA
′
O
⊗ Φ+

BOB
′
O
,

(39)
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which simply swaps Alice’s and Bob’s input
lines (see Fig. 7). This adapter maps process
matrices of the form ρAIBI

⊗ 1AOBO
to ρB′IA

′
I
⊗

1A′OB
′
O

, where ρB′IA
′
I

is simply a permutation of
ρAIBI

. On the other hand, starting with the
non-signalling map N = Φ+

A′IA
′
O
⊗ Φ+

B′IB
′
O

which

corresponds to independent identity channels
on Alice’s and Bob’s side, respectively, we
see that Υ1SW ? N = Φ+

BIAO
⊗ Φ+

AIBO

holds, where the latter is a channel that
allows for perfect communication from Alice
to Bob and from Bob to Alice, and hence
does not represent a NS channel, implying
Υ1SW /∈ ΘA. This fact can equivalently
be understood in the dual perspective. To
this end, we note that free-preserving adapters
are equivalently characterized as transformations
that map general channels A′IB

′
I → A′OB

′
O to

channels AIBI → AOBO. Since this latter
set of transformations is strictly larger than the
set of transformations that map NS channels
to NS channels, it follows that there exist
free-preserving adapters that are not admissible.

On the other hand, there also exist admissible
adapters that are not free-preserving. One such
example is the admissible adapter

Υ = W ′A′B′ ⊗ 1AB/dAO
dBO

, (40)

which discards any input process matrix and
substitutes it for some non-free process W ′ ∈
Proc \ Free. This simple adapter is clearly
admissible – since it replaces any process matrix
by a proper process W ′A′IA

′
OB
′
IB
′
O

– but maps free

processes to non-free ones.

We thus conclude that neither Requirement
R1 nor R2 alone define good candidates for free
adapters. In the next section we provide a
more suitable set by imposing both requirements
simultaneously.

3.2.3 Admissible and Free-preserving transforma-
tions

Naturally, the combination of both Requirements
R1 and R2 then leads us to the maximal set
of operations that both map proper processes
to proper processes and free processes to free
processes. The adapters in this set, which
we denote by ΥAFP, are the ones in the
intersection ΘAFP := ΘA ∩ ΘFP. As we will
see, adapters in this set – while mathematically

reasonable – have some undesirable properties;
for one, they can can change the causal ordering
of processes. Additionally, they can create
causal non-separability, making them somewhat
‘too powerful’ to be good candidates for the
free operations in a resource theory of causal
connection.7

For a simple characterization, we note that
some of the properties that make an adapter
free-preserving are already implied by the cor-
responding stronger requirements on admissible
adapters; both the trace of adapters ΥAFP ∈
ΘAFP as well as their trace-rescaling properties
are given by the requirements on admissible
adapters, making the corresponding conditions
for free-preserving adapters superfluous. In
particular, for any admissible adapter we have

A′B′AOBO
ΥA = A′B′AOBO

(L′ns[ΥA])
= A′B′AOBO

(Lns ⊗ L′ns[ΥA])
= A′B′AOBO

(Lns[ΥA])
= A′B′ABΥA ,

(41)

where we used the fact that L′ns is trace
preserving (such that A′B′(L′ns[ΥA]) = A′B′ΥA)
as well as the fact that ΥA ∈ ΘA (such that
L′ns[ΥA] = Lns ⊗ L′ns[ΥA]). The last equality
in the above equation is obtained by inserting
the definition of Lns. Consequently, two of the
properties of free-preserving adapters are already
implied by requirements on admissible adapters
such that the definition of free-preserving
admissible adapters is equivalent to

Definition 3 (Admissible and Free-preserving
adapters). An admissible and free-preserving
adapter is a matrix ΥAFP ∈ B(HAI

⊗HAO
⊗HBI

⊗
HBO

) that satisfies

ΥAFP ∈ ΘA , (42)
AOBO

ΥAFP = A′OB
′
OAOBO

ΥAFP. (43)

The set of admissible and free-preserving
adapters is denoted ΘAFP.

Interestingly, despite leaving the set of process
matrices that do not enable signalling between

7In Sec. 6.1, in the context of the resource theory of
causal non-separability, we will discuss the set ΘASP of
admissible adapters that preserve the set Sep of causally
separable process matrices, which turn out to be the only
meaningful set of free adapters in the resource theory of
causal non-separability. As we shall see there, ΘASP\ΘAFP 6=
∅, and no inclusion property holds amongst them.
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Figure 7: Swapping Adapter. An adapter Υ2SW that
merely swaps the spaces AI and BI , and AO and
BO, respectively, leaves the set of free process matrices
invariant. However, it obviously allows for signalling
between Alice and Bob, and lies thus in ΘAFP but not
in ΘNS. Note that the adapter Υ1SW that is mentioned
in the main text as an example of an adapter that is
free-preserving but not admissible has the same action
but without the second swap.

the involved parties invariant, adapters in ΘAFP
can both change the causal order of processes
they are applied to, and even create indefinite
causal order.

To see that admissible free-preserving adapters
can modify the causal order, consider an adapter
Υ2SW of the form (see Fig. 7)

Υ2SW = Φ+
AIB

′
I
⊗ Φ+

BIA
′
I
⊗ Φ+

A′OBO
⊗ Φ+

B′OAO
,

(44)

where we assume the dimensions of all involved
spaces to be equal. This adapter amounts to two
swap operations, which lead to the relabelling
AI 7→ B′I , BI 7→ A′I , AO 7→ B′O, and BO 7→ B′O.
It is easy to see that this adapter indeed maps
free processes to free processes as we have

Υ2SW
AIAOBIBO

? (ρAIBI
⊗ 1AOBO

)
= ρB′IA

′
I
⊗ 1A′OB′O ,

(45)

where the inverted the labels on ρB′IA
′
I

signify
that the resulting state is the same as ρAIBI

but
with its spaces swapped. Unlike the previous
example Υ1SW, however, the adapter, consisting
of two swap operations, is admissible. To see
this, we first consider its effect on a product
MA′IA

′
O
⊗MB′IB

′
O

of two CPTP maps. We have

Υ2SW
AIAOBIBO

? (MA′IA
′
O
⊗MB′IB

′
O

)
= MAIAO

⊗MBIBO
,

(46)

where MAIAO
= MB′IB

′
O

and MBIBO
= MA′IA

′
O

(up to a relabeling of the involved spaces). Now,
we recall that a matrix MAB is the Choi matrix
of a non-signalling map M : B(HAI

⊗ HBI
) →

B(HAO
⊗HBO

) if and only if MAB ≥ 0 and

MAB =
∑
i

λiM
(i)
A ⊗M

(i)
B ,

∑
i

λi = 1 , (47)

where all {M (i)
A ,M

(i)
B } are Choi matrices of

CPTP maps and λi ∈ R [42, 69]. Hence, Eq. (46)
implies that Υ2SW maps non-signalling maps to
non-signalling maps, and, therefore, since it is
positive semidefinite, Υ2SW ∈ ΘAFP. However,
given that it swaps the involved spaces, a process
that has causal ordering A~≺B is mapped to a
process of causal ordering B′~≺A′ by Υ2SW.

Physically, the supermap Υ2SW implements a
transformation of causal structures that inverts
the signalling relations between Alice and Bob:
for instance, if originally signalling is only
possible from Alice to Bob, then after the
transformation signalling is only possible from
Bob to Alice.

A slight modification of the above example
shows the existence of admissible and free-
preserving adapters that can map a process of
order A ≺ B to a process that is a convex mixture
of processes with orderings A ≺ B and B ≺ A.
The simplest example is an adapter that is a
convex mixture of Υ2SW and an identity adapter
ΥId, which leaves any process matrix it acts
upon unchanged (except for adding primes to all
involved spaces). Choosing Υmix = pΥ2SW +(1−
p)ΥId ∈ ΘAFP, with p ∈ (0, 1), then yields an
adapter that maps a process matrix WA≺B to

Υmix ? WA≺B = pWB′≺A′ + (1− p)WA′≺B′ ,
(48)

which is a convex mixture of causal orders.

However, the above process is still causally
separable, and it remains to investigate whether
admissible and free-preserving adapters can
transform causally separable to causally non-
separable processes. In App. C, we work
out a numerical method to search for such
adapters and to verify the causal non-separability
of the resulting processes. As a result of
this investigation, we indeed find admissible
and free-preserving adapters that map causally
separable to causally non-separable processes.
For details, see App. C.

The above observations suggest that, while the
set ΘAFP satisfies the first two requirements for a
set of free transformations, it may be too big for
a physically meaningful resource theory of causal
connection. On the one hand, it allows one to
change between causal orders, which seems to
require internal signalling in the adapter, and on
the other hand, perhaps more surprisingly, it also
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allows one to generate causally non-separable
processes from causally separable ones. On top
of this, it is intuitively clear that the realization
of many of the adapters in ΘAFP requires some
form of signalling between Alice and Bob. In
Secs. 3.2.4 and 3.2.5 we will make this intuition
rigorous, showing that the adapters that can be
physically realized without signalling are a strict
subset of ΘAFP.

The difference between adapters that do
not generate signalling and adapters that can
be implemented without signalling operations
can be better understood by referring to two
different interpretation of the adapters. The
first interpretation is that the adapters represent
physical transformations implemented by a third
party, other than Alice and Bob, who can alter
the causal structure between them. In this
setting, the natural requirement is that the
operation should not create causal connections
where such connections were not present. In
this case, one may be interested in the set of
admissible and free-preserving adapters.

The second interpretation is that the adapters
represent physical processes that are accessible to
the parties. That is, the adapter is a multiport
device, to which Alice and Bob can connect their
inputs and outputs. In this setting, Alice and
Bob have full access to the adapter at hand and
can, potentially, use it to exchange information
with one another, independent of the process
matrix they initially shared. In this setting,
however, the correct physical requirement is
Requirement R3, which demands that free
adapters should not allow for Alice and Bob
to communicate with each other, even if they
had full access to the inputs and outputs of the
adapter at hand. As it will turn out, demanding
this additional requirement then removes many
of the surprising (and overly powerful) properties
of admissible and free-preserving adapters.

3.2.4 Non-signalling transformations

While Requirements R1 and R2 impose restric-
tions on the kinds of process matrices that
can be achieved by the action of an adapter,
Requirement R3 focuses on the properties of
the adapter when seen itself as a potential
resource shared by the involved parties. In
particular, demanding Requirement R3 amounts
to giving Alice and Bob complete access to their

Figure 8: Local operations on an adapter. Given
access to an adapter ΥAIAOBIBO

, Alice and Bob could,
in principle, use it to transmit information between them.
To do so, Alice would perform deterministic operations
on her end of the adapter, and if Bob’s resulting part of
the adapter depended on said operations, the adapter
would allow for communication between the parties.
Non-signalling adapters are exactly those adapters that
do not allow for communication and the local adapters
are independent of the respective operations on the other
side (depicted above for Bob’s side). Note that, for the
depicted case, a deterministic operation is of the form
ΩXI X′

O
⊗ 1XO

.

respective ‘sides’ of the adapter and demanding
that they cannot use it for communication. We
will call adapters that satisfy this requirement
non-signalling adapters, denoted by ΥNS ∈ ΘNS.

Analogously to the case of channels and
processes, no signalling from Alice to Bob by
means of the adapter ΥNS means that, whatever
deterministic operation Alice performs on her
side of the adapter, once Alice’s part is discarded,
the remaining part on Bob’s side must be
independent of Alice’s operation, and vice versa
(see Fig. 8). The fact that the most general
deterministic operation ΩXIXO

a party X ∈
{A,B} could perform is a comb [4] with ordering
XI ≺ X ′I ≺ X ′O ≺ XO implies that it
has the special form ΩXIX

′
IX
′
O
⊗ 1XO

, with
trX′O ΩXIX

′
IX
′
O

= ΩXI
⊗ 1X′I and tr ΩXI

= 1. For
short, we say that the combs ΩXIX

′
IX
′
O

are of type

XI ≺ X ′I ≺ X ′O.
Now, a non-signalling adapter ΥNS

AIAOBIBO
has

to satisfy the condition that Alice’s operations
cannot signal to Bob, namely

ΥNS
BIBO

= ΥNS
AIAOBIBO

? ΩAIA
′
IA
′
O
⊗ 1AO

= ΥNS
AIAOBIBO

? Ω̃AIA
′
IA
′
O
⊗ 1AO

(49)

for all combs ΩAIA
′
IA
′
O

and Ω̃AIA
′
IA
′
O

of type AI ≺
A′I ≺ A′O. Similarly, for non-signalling from Bob
to Alice, it must hold that

ΥNS
AIAO

= ΥNS
AIAOBIBO

? ΩBIB
′
IB
′
O
⊗ 1BO

= ΥNS
AIAOBIBO

? Ω̃BIB
′
IB
′
O
⊗ 1BO

, (50)

Accepted in Quantum 2022-08-09, click title to verify. Published under CC-BY 4.0. 15



for all combs ΩBIB
′
IB
′
O

and Ω̃BIB
′
IB
′
O

of type BI ≺
B′I ≺ B′O.

Eqs. (49) and (50) can be explicitly character-
ized by a set of trace conditions, similar to the
trace conditions for causally ordered combs [4].
To derive the trace conditions for non-signalling
adapters, let us assume that Alice tries to send a
signal to Bob via the adapter Υ by simply feeding
states into it. Her corresponding comb would
have the form

ΩAIA
′
IA
′
O
⊗ 1AO

= ρAI
⊗ ηA′O ⊗ 1A′IAO

, (51)

where ρAI
and ηA′O can be arbitrary quantum

states. Now, requiring that the resulting comb

ΥAIAOBIBO
? (ρAI

⊗ ηA′O ⊗ 1A′IAO
) (52)

on Bob’s side is independent of ηA′O im-
plies trAO

ΥAIAOBIBO
= 1A′O

⊗ ΥAIBIBO
,

while additional independence of ρAI
implies

trA′I ΥAIBIBO
= 1AI

⊗ ΥBIBO
. The same

reasoning applies for operations on Bob’s side.
While these are not the most general

operations that Alice and Bob can perform, these
trace conditions are already sufficient to ensure
the impossibility of communication by means
of a non-signalling adapter (see App. D for a
proof). Combining them into the self-dual, trace
preserving projectors LA and LB, we arrive at
the general definition of a non-signalling adapter,
equivalent to that of non-signalling operations
introduced in Ref. [49]:

Definition 4 (Non-signalling adapters). A non-
signalling adapter is a matrix ΥNS ∈ B(HAI

⊗
HAO

⊗HBI
⊗HBO

) that satisfies

ΥNS ≥ 0 , (53)
ΥNS = (LA ⊗ LB)[ΥNS], (54)

and tr ΥNS = dA′OdA
′
I
dB′OdB

′
I
, (55)

where LX [Υ] = Υ−XO
Υ+XOX

′
O

Υ−X′IXOX
′
O

Υ+
XIX

′
IXOX

′
O

Υ. The set of non-signalling adapters
is denoted ΘNS.

We show that this definition indeed yields
adapters that satisfy Eqs. (49) – (50) in App. D.
While here we focus on the two-party case, this
definition, as well as the remaining properties of
non-signalling adapters we derive in this section,
straightforwardly extend to the multi-party
scenario. Since LA and LB are projectors, any

ΥNS that satisfies the above definition is invariant
under both LA and LB; invariance under LA
encapsulates non-signalling from Alice to Bob,
and vice versa for invariance under LB. The trace
condition in Eq. (55) ensures that the resulting
process matrices ΥNS

AIAOBIBO
? WAB are always

properly normalized.
Interestingly, it can be verified that the set of

non-signalling adapters, defined by Requirement
R3, automatically satisfies Requirements R1 and
R2 as well. That is, non-signalling adapters
not only cannot be used by Alice and Bob to
signal to each other, but they also constitute
transformations of process matrices that map
Proc 7→ Proc and Free 7→ Free. It is important
to stress, however, that Requirement R3 is more
restrictive than the combination of Requirements
R1 and R2; as we will see in the following, not
all admissible and free-preserving adapters are
non-signalling.

Let us first show that non-signalling adapters
satisfy Requirement R1, that is, they map valid
process matrices into valid process matrices.
This could be done by insertion, i.e., by showing
that the conditions of Def. 4 imply those of
Def. 1. Equivalently, here we show that any
ΥNS ∈ ΘNS maps non-signalling channels on A′B′

to non-signalling channels on AB. To this end,
we first note that, due to the decomposition
provided by Eq. (47), we can restrict our
discussion to non-signalling maps of the product
form MA′B′ = MA′ ⊗MB′ . For these maps, we
have

AO
MAB = AO

(ΥNS
AIAOBIBO

? MA′ ? MB′)
= AOA

′
O

ΥNS
AIAOBIBO

? MA′ ? MB′

= AOA
′
O

ΥNS
AIAOBIBO

? A′OA
′
I
MA′ ? MB′

= AOA
′
OA
′
IAI

ΥNS
AIAOBIBO

? MA′ ? MB′

= AOAI
(A′OA′I ΥNS

AIAOBIBO
? MA′ ? MB′),

(56)

where we have used the fact that X
r is a

self-dual projection (i.e., it can be moved around
freely in the link product) and the condition in
Eq. (27) A′O

MA′ = A′OA
′
I
MA′ of CPTP maps.

Since AI
r is a projection, the above implies

AO
MAB = AIAO

MAB. Thus, given that MAB

satisfies Eq. (27), it is non-signalling from Alice
to Bob. Analogously, we can show that MAB

is non-signalling from Bob to Alice. Both the
positivity of MAB and tr(MAB) = dAI

dBI
are
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easy to see, implying that an adapter ΥNS ∈
ΘNS maps any non-signalling channel MA′B′ to
a non-signalling channel MAB, thus satisfying
Requirement R1. Naturally, this result can be
extended to more than two parties.

Now we show that non-signalling adapters
also satisfy Requirement R2, i.e., they map free
processes to free processes. This follows by
application of the properties of non-signalling
adapters ΥNS and free processes WA||B, which
satisfy WA||B = AOBO

WA||B. With this, we have

WA′||B′ := ΥNS
AIAOBIBO

? WA||B

= AOBO
ΥNS
AIAOBIBO

? WA||B

= A′OB
′
O

(ΥNS
AIAOBIBO

? WA||B)

= A′OB
′
O
WA′||B′ ,

(57)

where, like in the previous derivations, we have
used the properties of the operator X

r as well
as those of non-signalling adapters. Again,
positivity and proper trace normalization follow
directly. Hence, non-signalling adapters are
free-preserving.

Summarizing, non-signalling adapters satisfy
Requirements R1 and R2; we have ΘNS ⊆ ΘAFP.
We now show that this inclusion is strict, i.e.,
ΘNS ⊂ ΘAFP (in what follows, ‘⊂’ will always
denote strict inclusion). For this purpose, we
provide a concrete example of an adapter that
satisfies Requirements R1 and R2 but not R3.

Again, we consider the adapter Υ2SW ∈
ΘAFP from Eq. (44), that implements two
swap operators on the process matrices that
it acts upon. We have previously shown that
this adapter is admissible and free-preserving.
However, as we have also seen, it can change
the causal order of processes, a property that,
as we show in the following, cannot be exhibited
by non-signalling adapters, proving that Υ2SW /∈
ΘNS.

Let us see that every non-signalling adapter
must preserve the causal order of process
matrices, a property which is interesting in its
own right. This statement is proven by direct
insertion. Let WAB be a process matrix with
causal ordering B ≺ A. From Eq. (8) we see that
this implies WAB = AO

WAB and AOAI
WAB =

AOAIBO
WAB. With this, we have

W ′A′B′ := ΥNS
AIAOBIBO

? WAB

= AO
ΥNS
AIAOBIBO

? WAB

= A′O
ΥNS
AIAOBIBO

? WAB = A′O
W ′A′B′ ,

(58)

where we have used the causality constraints on
WAB, the property AO

ΥNS = AOA
′
O

ΥNS [which
can be seen by direct insertion into Eq. (54)],
as well as the self-duality of the operators X

r.
In the same vein, one shows that A′OA

′
I
W ′A′B′ =

A′OA
′
IB
′
O
W ′A′B′ , implying that W ′A′B′ has causal

order B′ ≺ A′. Consequently, since the same can
be shown for processes that are ordered A ≺ B,
adapters ΥNS ∈ ΘNS do not change causal order,
which means that Υ2SW ∈ ΘAFP \ ΘNS. We thus
have ΘNS ⊂ ΘAFP.

From the linearity of the action of ΥNS, one can
also conclude that non-signalling adapters map
causally separable process matrices to causally
separable process matrices, a property that, as we
have seen, is not satisfied by all adapters ΥAFP ∈
ΘAFP either.

Hence, non-signalling adapters form a strict
subset of the set of admissible and free-preserving
adapters and not only satisfy the additional
desirable property of not allowing for signalling
between the involved parties, but moreover
preserve causal order. However, the fact
that non-signalling adapters do not allow for
signalling does not necessarily mean that they
can be implemented with non-signalling resources
alone. The implementation of adapters and the
final requirement R4 are discussed in the next
section.

3.2.5 Transformations from local operations and
shared entanglement

Requirement R4 demands that adapters should
be implementable using only non-signalling
resources, such as local operations and shared
entanglement. On the hierarchy of control over
the adapters, we are now at the point where
Alice and Bob do not just have access to their
respective parts of the adapter, but, in order
for the adapter to be free, they have to be able
to implement it without employing signalling
resources. Such non-signalling resources are
local operations and shared entanglement and,
following the literature on such operations [69,
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70], we denote the corresponding adapters by
ΥLOSE ∈ ΘLOSE.

As an example of such an adapter, consider
the case where Alice pre-processes the quantum
state she obtains by means of a CPTP map
ΛAI

, then performs her CP map M i
A′ , and

post-processes the resulting state by means of
a CPTP map ΓAO

before sending it forward.
Such processing would change Alice’s and Bob’s
respective probabilities, but would not constitute
any additional signalling (besides the one given
by W ) between both parties (see Fig. 9). With
this, if Bob also pre- and post-processes (using
the CPTP maps ΛBI

and ΓBO
), the joint

probabilities for measurements in their respective
laboratories are given by:

P(i, j|JA′ ,JB′)
= WAB ? (ΛAI

? M i
A′ ? ΓAO

)
? (ΛBI

? M j
B′ ? ΓBO

)
= (WAB ? ΛAI

? ΓAO
? ΛBI

? ΓBO
)

? (M i
A′ ? M

j
B′)

=: (WAB ?ΥLOSE
AIAOBIBO

) ? (M i
A′ ? M

j
B′) ,

(59)

where we have defined the adapter ΥLOSE
AIAOBIBO

∈
B(HAI

⊗HAO
⊗HBI

⊗HBO
) which encapsulates

how the original WAB ∈ B(HA ⊗ HB) gets
transformed when Alice and Bob perform their
local pre- and post-processing. Such local
operations (and the adapters ΥLOSE

AIAOBIBO
they

implement) have been considered in Ref. [6]
as a set of operations under which causal
robustness (a measure of causal non-separability,
see Sec. 6.2) is monotone. As above, here, we
have employed the flexibility of the link product;
while the pre- and post-processing operations Λ
and Γ can be understood as transforming the CP
maps M i

A′ and M j
B′ , respectively, they can also

be understood as a transformation of W , leading
to the above definition of the adapter ΥLOSE.

Additionally, Alice and Bob can perform
more general operations without signalling
to each other. For example, instead of
independent pre- and post-processing operations,
they could correlate their respective operations,
both in a classical or quantum way, effectively
implementing local combs CAIAO

(CBIBO
) with

causal ordering AI ≺ A′I ≺ A′O ≺ AO (BI ≺
B′I ≺ B′O ≺ BO) (see Fig. 9 for a graphical
representation).

Figure 9: Adapters from local combs. Alice and
Bob can effectively change the underlying process matrix
by applying local, mutually independent combs. As
a special, memoryless, case, this includes the scenario
where Alice and Bob merely pre- and post-process the
state they receive and feed forward, respectively, by
means of independent maps ΛAI

,ΓAO
,ΛBI

, and ΓBO
.

Due to their causal ordering, these combs
satisfy [4]:

trXO
CXIXO

= 1X′O
⊗ CXI

, trX′I CXI
= 1XI

,

(60)

and CXIXO
≥ 0 for X ∈ {A,B}. Following the

same reasoning that led to Eq. (59) we see that
the corresponding adapter is given by

ΥLOSE
AIAOBIBO

= CAIAO
? CBIBO

= CAIAO
⊗ CBIBO

.
(61)

Finally, Alice and Bob could also share parts of
an entangled state ρ

ÃI Ã
′
OB̃I B̃

′
O

which, together

with local CPTP operations, they can use to
implement an adapter (see Fig. 10 for a graphical
representation). Concretely, the most general
adapter ΥLOSE

AIAOBIBO
they could create in this

way is of the form

ΥLOSE
AIAOBIBO

= ρ
ÃI Ã

′
OB̃I B̃

′
O

? Λ
ÃIAI

? Γ
Ã′AO

? Λ
B̃IBI

? Γ
B̃′BO

(62)

This motivates the definition of LOSE adapters
as those transformation that can be implemented
by means of shared entanglement and local
operations:

Definition 5 (LOSE adapters). An adapter from
local operations and shared entanglement ΥLOSE ∈
B(HAI

⊗HAO
⊗HBI

⊗HBO
) is a linear operator

that can be written in the form of Eq. (62). The
set of these free adapters is denoted ΘLOSE.
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Figure 10: LOSE Adapters. Alice and Bob can share
an entangled state and use it for local processing by
means of the local maps Λ

X̃I ,XI
and Γ

X̃′XO
. The

resulting adapters do not allow for signalling between
the two parties and contain the adapters of Fig. 9 as a
special case. Note that the additional spaces X̃ ′O could
be absorbed – here and in the main text – into X̃I . The
additional ‘lines’ have been made explicit to emphasize
that the entanglement can be shared between all parts
of the adapter.

This definition is in the spirit of local
operations and ancillary entanglement provided
in Ref. [49]. Evidently, it can be extended to the
multiparty case, without any added difficulties.
Note that satisfaction of Eq. (62) automatically
implies ΥLOSE ≥ 0, as it is the link product of
positive semidefinite operators, and it guarantees
that ΥLOSE is properly normalized.

Any such adapter forbids signalling between
Alice and Bob, and therefore it automatically
satisfies Requirement R3, i.e., ΘLOSE ⊆ ΘNS. As
a consequence, it also preserves causal order and
satisfies Requirements R1 and R2 (see App. E for
a rigorous proof of these statements).

However, Requirement R4 is more restrictive
than Requirement R3, as there are non-signalling
adapters that cannot be implemented by local
operations and shared entanglement. To
show that the inclusion ΘLOSE ⊂ ΘNS is
strict, we employ a result of Ref. [68], where
the existence of non-signalling channels that
cannot be implemented by means of shared
entanglement and local operations was shown
(expressed in the nomenclature of Ref. [68], there
are bipartite channels that are causal but not
localizable). Using two such maps E : B(HAI

⊗
HBI

) → B(HA′I ⊗ HB′I ) and F : B(HA′O ⊗
HB′O )→ B(HAO

⊗HBO
) with corresponding Choi

matrices EAIBI
and FAOBO

, we can construct a
non-signalling adapter

ΥNS
AIAOBIBO

= EAIBI
⊗ FAOBO

. (63)

The fact that this indeed defines a non-signalling
adapter can be seen by direct insertion into
Eq. (54) and using the fact that E and F are
the Choi matrices of non-signalling channels. If
this adapter were of the form of Def. 5, then we
would have

EAIBI
⊗ FAOBO

= ρ
ÃI Ã

′
OB̃I B̃

′
O

? Λ
ÃIAI

? Γ
Ã′AO

? Λ
B̃IBI

? Γ
B̃′BO

.

(64)

Now, tracing out the degrees of freedom
AOBO (i.e., tracing out FAOBO

) and using the
properties of the maps on the RHS of the above
equation, we obtain

EAIBI
= ρ

ÃI B̃I
? Λ

AI ÃIA
′
I

? Λ
BI B̃IB

′
I

, (65)

where Λ
XIX̃IX

′
I

is the Choi matrix of a CPTP

map L : B(H
X̃I
⊗ HXI

) → B(HX′I ). However,

Eq. (65) would provide a decomposition of
EAIBI

in terms of local channels and shared
entanglement (which, by assumption, it does
not admit), thus implying that the adapter
ΥNS
AIAOBIBO

= EAIBI
⊗ FAOBO

cannot possess
a decomposition of the form of Eq. (64).
Consequently, we have shown the full hierarchy
of strict inclusions ΘLOSE ⊂ ΘNS ⊂ ΘAFP (see
Fig. 11).

While operationally clear-cut, the definition
of adapters from local operations and shared
entanglement is, however, too narrow to lend
itself to a simple characterization. Given a
positive semidefinite matrix Υ, it is unclear how
to show whether it is of the form of Eq. (62)
(already for channels, the membership to the set
of LOSE operations is NP hard [69]). This is
reminiscent of the difficulty to characterize, e.g.,
LOCC operations [71] in the resource theory of
entanglement, or the problem of characterizing
the set of entanglement-breaking supermaps that
are obtained from entanglement-breaking pre-
and post-processing [72]. In either of these cases,
the original set of transformations is extended
to the set of completely resource non-generating
operations (separable maps [73] in the former
and entanglement-breaking supermaps [72] in the
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Figure 11: Sets of adapters. The individual sets
of adapters follow from the Requirements R1 – R4.
Requirement R1 leads to the set ΘA of admissible
adapters (Def. 1); Requirement R2 leads to the set
ΘFP of free-preserving adapters (Def. 2), of which
the operators inside the beige area are not proper
transformations of process matrices; the combination
of both Requirements R1 and R2 leads to the set
ΘAFP of admissible and free-preserving adapters (Def. 3);
Requirement R3 leads to the set ΘNS of non-signalling
adapters (Def. 4), which coincides with the set ΘCA
of completely admissible adapters (Prop. 1); and
Requirement R4 leads to the set ΘLOSE of adapters from
local operations and shared entanglement (Def. 5).

latter case). Here, as we have seen, there are at
least two distinct possibilities of extending the set
ΘLOSE to a more mathematically amenable set of
free operations, namely ΘNS and ΘAFP.

3.2.6 Defining free transformations

The analysis of potential free operations for
a resource theory of causal connection yields
(at least) three distinct sets of free adapters,
ΘLOSE ⊂ ΘNS ⊂ ΘAFP, each corresponding to a
different level of control that the involved parties
have over the adapter at hand. Both of the
sets ΘLOSE and ΘNS respect Requirements R1,
R2 and R3: they map non-signalling maps to
non-signalling maps (and hence proper processes
to proper processes), they map free processes
to free processes, and they do not allow for
signalling between the parties that share them.
Additionally, they both preserve causal order. In
particular these latter two properties – both of
which are not necessarily satisfied by adapters
ΥAFP ∈ ΘAFP – are properties one would expect
from free transformations in a resource theory of
causal connection (see Tbl. 1 for a collation of the
properties of different sets of adapters). Hence,
the adapters in ΘAFP, while mathematically

Pres.
Proc

Pres.
Free

Pres.
Sep

non-
sign.

no sign.
required

ΘA yes no no no no
ΘFP no yes no no no
ΘAFP yes yes no no no
ΘNS yes yes yes yes no
ΘLOSE yes yes yes yes yes

Table 1: Sets of Adapters and their properties. The ΘA
and ΘFP constitute the sets of adapters that preserve
Proc and Free, respectively. Adapters in ΘAFP, ΘNS
(which coincides with ΘCA), and ΘLOSE preserve both
Proc and Free and can thus meaningfully be considered
as free. However, adapters in ΘAFP could be used for
signalling purposes and can map causally separable to
causally non-separable processes. Adapters in ΘLOSE, the
smallest set of free processes we consider, do not even
require signalling resources for their implementation.

clear-cut, seem overly powerful. Consequently,
in the following, we will predominantly focus on
the resource theories of causal connection based
on the free adapters ΘNS and ΘLOSE. Whenever
applicable, we will be explicit about whether
or not properties we derive are also valid for a
resource theory based on ΘAFP.

The sets ΘLOSE and ΘNS we focus on from
now on differ in the following aspect: on the
one hand, the set of NS adapters possesses a
simpler mathematical characterisation, while not
necessarily having a straightforward implementa-
tion in terms of non-signalling resources; on the
other hand, adapters from local operations and
shared entanglement are equipped with a simple
physical implementation but have a cumbersome
mathematical characterization.

From now on, our default choice of free trans-
formations will be the non-signalling adapters
(see Def. 4). That is, we set

ΘFree := ΘNS. (66)

Whenever free adapters are mentioned – unless
explicitly stated otherwise – it will be understood
that we are talking about non-signalling adapters
and in order to emphasize the non-signalling
property of the free adapters, we will continue
to denote the set of free adapters by ΘNS instead
of ΘFree.

3.3 Completely admissible adapters
Up to this point, when considering adapters
ΥAIAOBIBO

we have always considered their
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action on process matrices WAB (or, equivalently,
on non-signalling channels MA′B′). In principle,
though, an adapter ΥAIAOBIBO

could also act
on a non-signalling channel M̄A′ĀB′B̄ (with
A′IĀI 6→ B′OB̄O and B′IB̄I 6→ A′OĀO), i.e.,
act non-trivially only on parts of it (here, the
degrees of freedom denoted by primed labels),
and trivially on the rest (here, the degrees
of freedom denoted by labels with a bar).
A natural requirement on adapters is then
that they are completely admissible, i.e., they
map non-signalling channels to non-signalling
channels, even when acting non-trivially only
on parts of them. Somewhat surprisingly, this
additional requirement already removes all of the
peculiarities we have encountered with respect to
adapters in ΘA and ΘAFP, and, as we show in this
section, the set of completely admissible adapters
coincides with ΘNS, providing yet another reason
to choose the latter as the set of free adapters.

To show this, let us first define completely
admissible adapters:

Definition 6 (Completely admissible adapters).
A completely admissible adapter is a positive
semidefinite matrix ΥCA ∈ B(HAI

⊗HAO
⊗HBI

⊗
HBO

) that satisfies

ΥCA
AIAOBIBO

? M̄A′ĀB′B̄ (67)

is non-signalling AIĀI 6→ BOB̄O and BIB̄I 6→
AOĀO for all non-signalling channels M̄A′ĀB′B̄

(A′IĀI 6→ B′OB̄O and B′IB̄I 6→ A′OĀO) and
arbitrary additional spaces {ĀI , ĀO, B̄I , B̄O}.
The set of completely admissible adapters is
denoted ΘCA.

Naturally, the above definition is equivalent to
demanding that a completely admissible adapter
ΥCA
AIAOBIBO

maps proper process matrices to
proper process matrices even when only acting
non-trivially on a part of them.

It is easy to see that Def. 6 directly excludes
adapters like the two-swap Υ2SW ∈ ΘAFP, which
we discussed in Sec. 3.2.3 as an example of an
admissible and free preserving adapter that can
change the causal order of a process matrix.
More generally, it turns out that any adapter
that allows for communication between Alice
and Bob maps some non-signalling map to a
signalling map when only acting non-trivially
on a part of it. Since the set of non-signalling
adapters is exactly ΘNS, we have the following
Proposition:

Proposition 1. For any choice of spaces
{AI ,AO,BI ,BO} the corresponding sets of com-
pletely admissible adapters and non-signalling
adapters coincide, i.e.,

ΘCA = ΘNS . (68)

The proof of this theorem can be found
in App. F. Importantly, it provides a more
fundamental interpretation of non-signalling
adapters beyond the considerations of the
resource theory of causal connection; they
correspond exactly to the largest set of adapters
that is admissible as soon the adapters can
also non-trivially act on additional degrees of
freedom.

Naturally, the question arises, if, instead of
considering the set of completely admissible
adapters, one could have also considered the set
of completely free preserving adapters instead,
to arrive at a similar result. However, it is
easy to see that all free preserving adapters
are already completely free preserving: any
matrix ΥFP

AIAOBIBO
≥ 0 for which ΥFP

AIAOBIBO
?

(ρAIBI
⊗ 1AOBO

) = ρA′IB
′
I
⊗ 1A′OB

′
O

holds
for all quantum states ρAIBI

directly satisfies
ΥFP
AIAOBIBO

? (ρAI ĀIBI B̄I
⊗ 1AOĀOBOB̄O

) =
ρA′I ĀIB

′
I B̄I
⊗ 1A′OĀOB

′
OB̄O

for all quantum states

ρAI ĀIBI B̄I
. Consequently, requiring adapters to

be completely free preserving does not add any
additional constraints on the adapters in ΘFP.
With these final remarks on the structure of
adapters out of the way, we now return to the set
of free process matrices and show that it already
follows entirely from the properties of the set ΘNS
of free adapters that we chose.

3.4 Free objects revisited

So far it seemed natural to define the free process
matrices as those of the form ρAIBI

⊗1AOBO
since

they constitute the set of non-signalling process
matrices. However, except for the derivation of
ΘAFP, the set of free process matrices did not
crucially enter our consideration of free adapters,
since both ΘNS and ΘLOSE are derived from
considerations of the (non-) signalling properties
of the adapters instead of the free processes
themselves.

In principle, all free process matrices should be
obtainable from free adapters via contraction of
the excessive degrees of freedom. This property
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does indeed hold for all the sets ΘAFP, ΘNS, and
ΘLOSE. To prove this fact, it is enough to show
that every free process matrix can be generated
from adapters in the most restrictive set ΘLOSE.

To this purpose, note that ρA′IB
′
I
⊗

1AIAOBIBO
/dAO

dBO
is a LOSE adapter for

arbitrary quantum states ρA′IB
′
I
. In particular,

this holds even if the input of the adapter is
trivial, that is, if AI , AO, BI , and BO are
one-dimensional systems. In this case, the LOSE
adapter simply generates the free process matrix
ρA′IB

′
I
⊗ 1A′OB′O .

The above observation suggests an alternative
way to motivate the resource theory of causal
connection, starting from the free operations
instead of starting from the free objects. The
argument is as follows: (1) the operations (free
or not) of the resource theory are admissible
adapters, that is, valid transformations of process
matrices, (2) the free operations are those that
cannot be used to signal from Alice to Bob,
or vice-versa, that is, the adapters satisfying
Requirement R3, (3) the free objects are the
free transformations with trivial input systems
AI , AO, BI , and BO. This alternative
argument leads to the resource theory of causal
connection with the non-signalling adapters as
free operations. Naturally, the same argument
can be employed for the set of LOSE adapters
(yielding the same set Free of free process
matrices), leading to a resource theory of
causal connection with LOSE adapters as the
free transformations and non-signalling process
matrices as the free objects.

4 Measures of causal connection

Having the set Free of free objects and the set
ΘNS of free transformations at hand, we can now
introduce a measure of resourcefulness for process
matrices in terms of their generalized robustness,
i.e., their robustness against ‘worst-case’ general
noise [74]. Specifically, we analyse two kinds
of generalized robustness: with respect to the
set Free of free (or non-signalling) processes –
called generalized signalling robustness Rs(W )
– and with respect to the set Sep of causally
separable processes – called generalized causal
robustness Rc. This latter robustness is a
natural resource monotone for the resource
theory of causal non-separability (see Sec. 6.1).

Both of these robustness measures will provide
us with monotones of the resource theory of
causal connection and allow us to analyse the
interconvertibility of process matrices under free
adapters.

We start with a discussion of the signalling ro-
bustness and its physical interpretation, followed
by an investigation of the interconvertibility of
causally indefinite processes.

4.1 Robustness of signalling

A generally used concept for the resourcefulness
of an element of a resource theory is that
of robustness against worst-case noise. Here,
we follow this program and introduce the
(generalized) robustness of signalling, or simply
signalling robustness, Rs(W ), which measures
the maximal robustness of a process matrix W
under worst-case general mixing with respect to
the set of free objects (i.e., the non-signalling
process matrices in Free). We thus defineRs(W )
of a process W as

Rs(W ) = min
T∈Proc

{
s ≥ 0

∣∣∣∣W + sT

1 + s
= C ∈ Free

}
,

(69)

where T ∈ Proc is a proper process matrix.
Notice that, while we mostly work in the
two-party scenario, this definition is valid for any
number of parties. The signalling robustness is
a faithful measure of causal connection – clearly,
Rs(W ) = 0 for all W ∈ Free and Rs(W ) > 0 for
all W /∈ Free.

Additionally, Rs(W ) is a convex function on
Proc. While this property is not necessary for a
resource measure it sure is desirable. Convexity
can be proven in the same vein as the analogous
proof for the robustness of coherence [31] (see
App. G for an explicit proof).

More importantly, Rs(W ) is non-increasing
under the free adapters ΘNS, making it a
monotone of the resource theory of causal
connection. For the signalling robustness to be
non-increasing under the action of an adapter
Υ ∈ ΘNS, it is sufficient for Υ to map free
process matrices to free process matrices, a
fact we have already shown above. In detail,
let a process matrix W have an optimal [with
respect to the signalling robustness, see Eq. (69)]
decomposition W = (1+Rs(W ))C∗−Rs(W )T ∗,
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where C∗ ∈ Free and T ∗ ∈ Proc. Applying the
adapter Υ to W yields

Υ ? W

= (1 +Rs(W ))(Υ ? C∗)−Rs(Υ ? T ∗)
=: (1 +Rs(W ))C ′ −Rs(W )T ′,

(70)

where C ′ ∈ Free and T ′ ∈ Proc. Since
Eq. (70) is a valid – but potentially not optimal
– decomposition for Υ ? W , this implies that its
signalling robustness is at most Rs(W ). Hence,

Rs(Υ ? W ) ≤ Rs(W ). (71)

Since the above proof only relies on the
invariance of Free under the considered adapters,
Rs is also a monotone under the action of
adapters in ΘAFP. Being a monotone of
causal connection, Rs(W ) provides a necessary
condition for the interconvertibility of process
matrices by means of free adapters; if Rs(W ′) >
Rs(W ), then there is no free adapter Υ such
that W ′ = Υ ? W . As we shall see,
unsurprisingly, this condition is not sufficient.
For comprehensiveness, using recent results
presented in Ref. [40], in App. J we derive
all monotones of the resource theory of causal
connection, i.e., all functions f(WAB) that are
non-increasing under free adapters. This, in
turn, provides – in principle – an unambiguous
way to decide whether or not a process
matrix can be transformed into another by
means of free transformations. However, the
resulting monotones are rather abstract, and we
will not use them in what follows to decide
interconvertibility between processes.

Conveniently, analogously to other robustness
measures in the literature [23, 31, 75, 76] the
computation of Rs(W ) can be phrased as a
semidefinite program (SDP). Näıvely, for two
parties, we obtain Rs(W ) as the solution of the
optimization

given W

minimize s

subject to
W + sT

1 + s
= ρAIBI

⊗ 1AOBO

LV (T ) = T

tr(T ) = dAO
dBO

tr(ρAIBI
) = 1

T ≥ 0, ρAIBI
≥ 0, s ≥ 0,

(72)

which is not an SDP per se. However, by setting
T̃ := sT and ρ̃AIBI

:= (1 + s)ρAIBI
and making

the substitution T̃ = ρ̃AIBI
⊗ 1AOBO

−W , the
above problem can be stated as the following
SDP:

given W

min tr(ρ̃AIBI
)− 1

s.t. ρ̃AIBI
⊗ 1AOBO

−W ≥ 0
ρ̃AIBI

≥ 0.

(73)

This generalizes easily to more than two parties.
We can use the above SDP to obtain a better
operational understanding of the signalling
robustness via the corresponding dual problem.
As it is easy to see that the above primal problem
is strictly feasible (choose, e.g., ρ̃AIBI

= λ1AIBI

and λ > λmax, where λmax is the maximal
eigenvalue of W ), this dual provides the same
value for the signalling robustness as the original
SDP. By assigning the dual variable S to the first
inequality constraint of the primal, we obtain
Rs(W ) as the solution of the dual problem

given W

max tr(WS)− 1
s.t. S ≥ 0

1− trAOBO
(S) ≥ 0.

(74)

On the one hand then, the SDP (73) and its
dual provide the numerical tools to evaluate the
signalling robustness of some interesting process
matrices (and we will use them throughout
to compute numerical values for the signalling
robustness). On the other hand, the dual
problem provides us with a concrete physical
interpretation of the signalling robustness and
connects it to the concept of witnesses of causal
connection.

4.2 Operational interpretation of the signalling
robustness
Below, we will see that the signalling robustness
can be interpreted in terms of witnesses for
causal connection. Besides this somewhat
technical interpretation, the dual problem (74)
of the SDP (73) offers a much more direct and
operational interpretation of Rs(W ).

To see this, first note that the second condition
in the dual SDP (74) can be replaced by
trAOBO

S = 1 without loss of generality. Indeed,
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Figure 12: Contracting an A ≺ B comb with S′.
A channel with corresponding Choi matrix S′ generally
allows for signalling from BI to AI , depicted by the
dotted loop. Concatenating such a channel with, for
example, a comb WA≺B

AB with causal ordering A ≺ B
then closes causal loops. The remaining dotted lines
depict the other possible communication lines S′ allows
for.

for any S ≥ 0 that maximizes tr(WS) − 1 and
satisfies 1 − trAOBO

S = D ≥ 0, we can define

S′ = S +D⊗ 1AOBO
dAO

dBO
, which satisfies S′ ≥ 0 and

trAOBO
S′ = 1, as well as tr(WS′) ≥ tr(WS).

The property trAOBO
S′ = 1 together with S′ ≥ 0

implies that S′ is the Choi matrix of a general
– potentially two-way signalling – channel from
AIBI to AOBO.

Generally, ‘plugging’ such a channel into W ,
i.e., computing tr(WS′) = W ? S′T leads
to causal loops. To see this, we note that
the property LV (W ) = W implies AIBI

W =
AIAOBIBO

W = 1/(dAI
dBI

), which means that
trAIBI

W = 1AOBO
, making W the Choi matrix

of a channel from AOBO to AIBI . In general
then, concatenating a channel from AOBO to
AIBI (with corresponding Choi matrix W ) with
a channel from AIBI to AOBO creates causal
loops (see Fig. 12 for a graphical depiction).

In this sense, tr(WS′)−1 is a quantifier for the
‘amount’ of causal loops that would be closed in
W if one could contract it with a general AIBI →
AOBO channel S′. Importantly, this intuitive
interpretation is compatible with our previous
considerations; if W ∈ Free then tr(WS′)−1 = 0
and no causal loops can be closed.

4.3 Witnesses of signalling robustness and
transformations under free adapters

In addition to providing an intuitive interpre-
tation of the signalling robustness, the above
dual problem and, in particular, the new variable
S are directly related to witnesses of causal

connection. Here, we clarify this connection. The
set of free process matrices is convex, and as
such, there exist Hermitian matrices S̃ (called
witnesses) that satisfy tr(S̃W ) ≥ 0 for all W =
ρAIBI

⊗ 1AOBO
and tr(S̃W ) < 0 for at least one

W /∈ Free. This allows us to characterize the set
of witnesses of causal connection. Since

tr[S̃(ρAIBI
⊗ 1AOBO

)] = tr(ρAIBI
trAOBO

S̃)
(75)

has to be non-negative for all states ρAIBI
, we see

that a Hermitian matrix S̃ can only be a witness
of causal connection if trAOBO

S̃ ≥ 0.

Additionally, for S̃ to be a proper witness,
there should be at least one process matrix
W /∈ Free such that tr(WS̃) < 0, implying that
generally S̃ � 0. For any witness S̃, the matrix

λS̃ is also a witness for λ ≥ 0, implying that
− tr(S̃W ), which can be considered a measure
for causal connection, is in principle unbounded.
To obtain meaningful numerical values, the set
of witnesses needs to be restricted in a way
that does not limit the set of causally connected
process matrices W that can be ‘detected’ by the
witnesses. The respective restriction is a priori
somewhat arbitrary. Here, we choose it such
that we obtain a connection to the above dual
problem (74). That is, we impose the restriction
that all witnesses we consider are of the form

S̃ = 1/(dAO
dBO

)− S, (76)

where S ≥ 0 [which coincides with the second
condition of the dual (74)]. As trAOBO

S̃ ≥ 0, this
restriction then implies 1− trAOBO

S ≥ 0 (which
coincides with the first condition of the dual
problem). A priori, the above requirement (76)
excludes many potential witnesses and thus
might restrict the set of causally connected
processes that can be detected. However, for any
witness S̃ we can find a λ ≥ 0 and a matrix S ≥ 0
such that λS̃ = 1/(dAOBO

) − S. As λS̃ is still a
witness (for λ ≥ 0) and detects the same set of
causally connected processes as S̃, only allowing
for witnesses of the form 1/(dAO

dBO
)−S is thus

merely a rescaling but does not restrict the range
of detectable processes.

Since S̃ is a witness, we have − tr(S̃W ) ≤ 0
for all W = ρAIBI

⊗ 1AOBO
. This upper bound

is tight; for any ΛAB ≥ 0 with trAOBO
ΛAB =

1AIBI
, S̃ = 1/(dAO

dBO
)− ΛAB is a witness that
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satisfies Eq. (76). For this witness then, we have
tr[S̃(ρAIBI

⊗ 1AOBO
)] = 0.

Importantly, with this restriction on the
witnesses S̃, we see that the second line in the
dual problem (74) corresponds to

tr(WS)− 1 = tr[W (1/(dAO
dBO

)− S̃)]− 1
= − tr(WS̃), (77)

implying that the dual problem maximizes
the measure − tr(WS̃), which, as we have
seen, unsurprisingly yields 0 on the set
of free processes. We thus see that the
dual problem (74) which yields the signalling
robustness of a given process matrix W can
equivalently be understood as an optimization of
the measure − tr(S̃W ) of causal connection over
the set of witnesses of causal connection.

With these two interpretations of the signalling
robutstness at hand, we will now bound this
monotone both for the general two-party case,
as well as special multi-party cases and use these
bounds to discuss the notion of most resourceful
processes.

5 Bounds on the signalling robustness
and most resourceful processes
5.1 Maximal signalling robustness on two
parties
An important question in any resource theory is
that of the existence of a most valuable resource,
i.e., an object that allows one to obtain all
other objects via free transformations. While
such an object does generally not exist, in our
case one can ask the related (but strictly weaker
question) of an upper bound on the signalling
robustness, and whether this bound is tight (at
least in many relevant cases). Here we show
that Rs(W ) ≤ d2

Ō
− 1 for all two-party process

matrices W , where dŌ is the maximum of the
output dimensions of the two parties (Alice and
Bob), and this bound is tight.

As it turns out, a process WA→B that satisfies
this bound is given by a causally ordered process
that consists of an initial state preparation
(say, in Alice’s laboratory), an identity channel
between Alice and Bob, and a final discarding of
Bob’s output (see Sec. 5.2). While it is somewhat
self-evident that an identity channel between
two parties has high causal connection, it is

nonetheless surprising that neither additional
memory, nor causal indefiniteness allow for
larger amounts of causal connection (in the
two-party scenario). Similar results hold in
the multi-party scenario, suggesting that, even
beyond the case of two parties, neither memory
nor causal indefiniteness lead to improved causal
connection. Here, we first comprehensively
discuss the two-party case and then provide
partial results for the multi-party scenario.

The proof that in the two-party case Rs(W ) is
upper bounded by d2

Ō
− 1 has two steps. First,

we show that

d2
Ō
· AOBO

W −W ≥ 0 (78)

for all proper two-party process matrices W .
Then, using the dual SDP (74), we see that

Rs(W ) = max(tr(WS))− 1
≤ d2

Ō
max(tr(AOBO

WS))− 1 ≤ d2
Ō
− 1 ,
(79)

where we have used Eq. (78), the self-duality
of the operator AOBO

r , as well as the fact
that trAOBO

(S) ≤ 1 and tr(W ) = dAOBO
.

Consequently, showing that Eq. (78) holds
provides the upper bound we aim for.

Lemma 1. For any proper two-party process
matrix W ,

d2
Ō
· AOBO

W −W ≥ 0, (80)

where dŌ := max(dAO
, dBO

), holds.

Proof. For the proof, we first note that the map
D[W ] = d tr(W )1 − W is CP, where d is the
dimension of the space W lives on. Indeed, it is
easy to see that the Choi matrix ηD of D is given
by

ηD = d1⊗ 1− Φ+ . (81)

Since tr(Φ+) = d, we see that the above matrix
ηD is positive semidefinite, and D thus a CP map.
Consequently, applying D to only a part of a
positive matrix still yields a positive output, i.e.,

D(XO)[W ] = dXO
trXO

W ⊗ 1XO
−W

= d2
XO
· XO

W −W ≥ 0
(82)

holds for all positive semidefinite matrices
W (note that this relation has been proven
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independently in [77], but we provide an explicit
proof for self-containedness). Exchanging dXO

for dŌ = maxX=A,B{dXO
} does not change the

positivity of the map, such that

D̄(XO)[W ] := d2
Ō
· XO

W −W ≥ 0. (83)

Now, applying D̄(AO)◦D̄(BO) to a positive matrix
W , we see that

D̄(AO) ◦ D̄(BO)[W ]
= d4

Ō
· AOBO

W − d2
Ō

(AO
W + BO

W ) +W ≥ 0 .
(84)

Up to this point, we have not yet employed the
fact that W is a proper process matrix, and
the above equation thus holds for all positive
matrices W . Now, using that for proper process
matrices LV (W ) = W holds [see Eq. (6)], it
is easy to see that we have AO

W + BO
W =

W + AOBO
W [6]. With this, Eq. (84) reads

(d4
Ō
− d2

Ō
)AOBO

W − (d2
Ō
− 1)W ≥ 0 . (85)

Since the dimension dŌ is always assumed to
be at least 2, this equation directly implies the
assertion of the Lemma.

As outlined above, this Lemma then leads to
the desired bound on the signalling robustness
for two-party matrices.

Proposition 2. For any two-party process
matrix W , we have

Rs(W ) ≤ d2
Ō
− 1 , (86)

where dŌ = max(dAO
, dBO

).

This bound can be achieved by a causally
ordered comb if certain dimensional conditions
are satisfied. For example, without loss of
generality, let dAO

≥ dBO
. Then, if dAO

= dBI
,

the bound d2
Ō
− 1 = d2

AO
− 1 is saturated by a

process of the form

WA→B := 1AI

dAI

⊗ Φ+
AOBI

⊗ 1BO
, (87)

where Φ+
AOBI

=
∑
ij |ii〉〈jj| is the Choi matrix

of the identity channel. Choosing the proper

witness S = 1AI
⊗ Φ+

AOBI
⊗ 1BO

dBO
, we see that

tr(WA→BS)− 1 = d2
AO
− 1.

Importantly, while this bound holds for general
two-party processes, it is only tight for scenarios,

where the dimension of the largest output space
(AO above) is at most as large as that of the other
party’s input space (BI above). Intuitively, this
is due to the fact that there is no identity channel
from AO to BI when dAO

> dBI
, and the causal

connection between the parties is thus bounded
by the upper bound we gave in Prop. 2 but not
necessarily tight anymore (the influence of the
different dimensions of the involved spaces on the
tightness of the bounds we provide is discussed
in more detail in Sec. 5.4).

We emphasize that the fact that W is a
proper process matrix (and not just a positive
semidefinite matrix which satisfies tr(W ) =
dAO

dBO
) is crucial for the derivation of the

above bounds. For positive semidefinite matrices
W with tr(W ) = dAO

dBO
, it is easy to see

that the term tr(WS) can achieve its algebraic
maximum of dAI

dAO
dBI

dBO
and analogously for

more parties. This, then, also implies that
Lem. 1 holds for proper process matrices, but not
for general positive semidefinite matrices with
tr(W ) = dAO

dBO
.

5.2 Most resourceful process on two parties
Let us, for the moment, assume that all
dimensions of W are the same, i.e., dAI

= dAO
=

dBI
= dBO

. As we have seen, in this case, a
process with the maximal signalling robustness
is given by

WA→B := 1AI

dAI

⊗ Φ+
AOBI

⊗ 1BO
, (88)

which we will call the fully signalling process.
The process WB→A is defined analogously.

In principle, WA→B could be a good candidate
for the most resourceful process of the resource
theory of causal connection, in the sense that,
starting from WA→B, all other processes may
be reachable by means of free adapters. This,
however, is not the case for two distinct reasons.
On the one hand, if W ′A′B′ is defined on spaces
{A′I , A′O, B′I , B′O} with dX′I > dXI

and dX′O >
dXO

for X ∈ {A,B}, then the signalling
robustness of W ′A′B′ can exceed that of WA→B

(since dŌ′ > dŌ), implying that WA→B cannot
be transformed to all W ′A′B′ by means of free
transformations.

On the other hand, even when focusing on
transformations that do not change (or only
decrease) the respective dimensions, a free
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adapter cannot change the causal ordering of
the process matrix it acts on, such that WA→B

cannot be transformed to, for example, a process
that is ordered B~≺A, or a process that is causally
non-separable. At best, then, WA→B and WB→A

can be the most resourceful processes for all
process matrices that are of ordering A ≺ B and
B ≺ A, respectively, and that do not exceed them
with respect to the dimensions of the involved
spaces (we will henceforth assume this latter
property and not mention it explicitly anymore).
It will turn out that this is indeed the case, both
for two- and the three-party case.

Interestingly, the causally separable process

Wmix
q := (1− q)WA→B + qWB→A, (89)

which is a convex mixture of two fully signalling
processes, one in each direction, also satisfies
Rs(Wmix

q ) = d2
Ō
−1, which can be seen by setting

S = Φ+
AOBI

⊗ Φ+
BOAI

in the dual SDP (74).
Processes of this form do not have a

definite causal order (they are causally sepa-
rable, though), but since free adapters cannot
create causal non-separability, they cannot be
transformed to all process matrices. More
interestingly, as we will see, there are causally
non-separable processes that have a lower
signalling robustness than Wmix

q , implying that
the signalling robustness does not impose a total
order in the set of all process matrices.

Let us now show that, within the set of
two-party ordered processes WA≺B, the above
process WA→B is indeed the most valuable in
the sense that all two-party ordered processes
WA≺B can be obtained from it. This can be
easily seen by considering that every WA≺B

can be written as a concatenation of an initial
pure state ΨAIE on AI and some appropriate
ancillary system E and a CPTP map AOE → BI
with corresponding Choi matrix ΓAOEBI

, such
that WA≺B

AB = ΨAIE ? ΓAOEBI
? 1BO

[4]. It
is straightforward to see that, by performing
a local adapter in her laboratory, Alice can
prepare all states ΨAIE and implement all maps
ΓAOEBI

which, when applying such adapters
to WA→B, allows her to produce all possible
two-party ordered processes WA≺B (see Fig. 13
for a graphical representation). We thus have the
following proposition:

Proposition 3. Every process matrix W ′X′Y ′
with causal ordering X ′ ≺ Y ′ can be obtained

Figure 13: Constructing all A ≺ B two-party combs
from WA→B. Any causally ordered comb WA≺B can
be written as a circuit with an initial system-environment
state and a CPTP map that acts on the system and the
environment. By applying a local adapter, Alice can thus
transform WA→B to any process WA≺B (with system
dimensions smaller or equal than those of WA→B , that
is). For convenience, we have dropped the primes in the
system labeling in the bottom panel.

from WX→Y via free adapters if the dimensions
of the spaces W ′X′Y ′ is defined on do not exceed
those of the corresponding spaces of WX→Y .

The same holds true in the three-party case,
where, for example, the process matrix

WA→B→C = ηAI
⊗ Φ+

AOBI
⊗ Φ+

BOCI
⊗ 1CO

(90)
can be transformed to all processes of ordering
A ≺ B ≺ C. We provide the proof in App. H,
where we also present a conjecture for an ordered
process that cannot be reached in the four-party
case. Importantly, this latter four-party
conjecture – or any statement of this kind – only
make sense if we put restrictions on the respective
dimensions; having identity channels on arbitrary
dimensions at hand, will allow one to implement
all causally ordered processes on (sufficiently)
lower dimensions by simply using the additional
dimensions as a memory carrier. This is similar
to the analogous case in the resource theories
of entanglement, coherence and purity, where
all states on lower dimensions can be achieved
from a single resourceful state of sufficiently large
dimension [11, 12, 16, 32].

5.3 Transformations of bipartite processes
As we have seen, some process matrices cannot
be reached by transforming the most robust
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bipartite process with free adapters. The
first example of this kind we discuss is the
processWOCB

A′B′ (named after Oreshkov, Costa and
Brukner [5]), a two-party, causally non-separable
process matrix introduced in Ref. [5] and defined
as

WOCB

= 1
4

[
1AB + 1√

2

(
σzAO

σzBI
+ σzAI

σxBI
σzBO

)]
,

(91)

where σz and σx are Pauli matrices and we
have omitted the respective identity matrices and
tensor products. This causally non-separable
process cannot be reached from WA→B or
WB→A, since free adapters cannot map causally
ordered to causally non-separable processes.
By using the SDP (73), we find that the
signalling robustness of WOCB isRs(WOCB) = 1.
Consequently, it is also impossible to transform
WOCB to WA→B or WB→A by means of free
adapters, since the latter two processes have
– when all systems are qubits – a signalling
robustness of 3. Expectedly, there is no total
order in the set of processes with respect to the
free transformations ΘNS (this was already clear
from the fact that processes of order A~≺B cannot
be transformed to processes of order B~≺A and
vice versa by means of free adapters).

While WOCB cannot be transformed to WA→B

by means of free transformations, there exist
processes WA~≺B with causal order A~≺B such
that WA~≺B = WOCB ? Υ for some free adapter
Υ ∈ ΘNS. More generally, in the two-party case,
any causally non-separable process matrix W can
be ‘degraded’ to a process of causal order A~≺B
or B~≺A, i.e., there exists a free adapter Υ such
that W ? Υ is of causal order A~≺B or B~≺A.
This can be seen from the following, more general
Proposition:

Proposition 4. For any process matrix W with
Rs(W ) > 0 there exists a free adapter Υ such
that W ?Υ has a causal ordering A~≺B or B~≺A.

Proof. For the proof, note that Rs(W ) > 0
implies W 6= AOBO

W . Now, consider the free
adapter Υ(XO) that traces out the output space
XO and replaces it by a maximally mixed state,
i.e., Υ(XO) ?W = XO

W . The resulting process is
causally ordered A ≺ B if X = B and B ≺ A if
X = A. It remains to show that for at least one

of these possibilities we do not have A||B. To see
this, imagine that XO

W satisfies A||B for all X.
In this case we have

AO
W = AOBO

W and BO
W = AOBO

W . (92)

Inserting this into LV [W ] = W yields
W = AOBO

W which contradicts the assumption
Rs(W ) > 0.

Naturally, the above proposition is trivial if W
already has a definite causal order, but becomes
more insightful for the case where W corresponds
to a mixture of causal orders or a causally non-
separable process.

Finally, one might wonder if there are processes
that can be transformed into both definite causal
orderings A~≺B and B~≺A by means of free
adapters. An answer to this question is provided
by the following Proposition:

Proposition 5. Any causally non-separable
process matrix on two parties can be transformed
into a process matrix with ordering A~≺B, as well
as into one with ordering B~≺A, by means of free
adapters.

Before proving the above statement, we
emphasize that it is in line with Prop. 4, since
we haveRs(W ) > 0 for all causally non-separable
process matrices, but goes beyond it, since now
transformation to both definitive causal orderings
is possible.

Proof. For the proof, consider a free trace-and-
replace adapter that traces out the output of
Alice’s operation and feeds forward a fixed state
|Ψ〉〈Ψ|T (where the additional transpose is for
notational convenience), i.e., W ′ = Υ ? W =
〈ΨAO

|W |ΨAO
〉 ⊗ 1A′O . In what follows, for ease

of notation, without risk of confusion, we identify
AO and A′O, thus replacing 1A′O by 1AO

. Since
the corresponding adapter is a local operation
in Alice’s laboratory, it corresponds to a free
adapter, and the resulting W ′ is causally ordered
B ≺ A (but potentially B||A holds). Now, we
show that assuming that W ′ is ordered B||A for
all possible |Ψ〉 contradicts the assumption that
the original W was causally non-separable.

To this end, we choose a basis
{|Ψ(i)

AO
〉〈Ψ(i)

AO
|}
d2

AO
i=1 of B(HAO

) consisting
of pure states. Assuming that W ′i :=
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〈Ψ(i)
AO
|W |Ψ(i)

AO
〉 ⊗ 1A′O

is causally ordered
B||A for all i then implies

W ′i = ρ
(i)
AIBI

⊗ 1AOBO
∀i , (93)

where {ρ(i)
AIBI
} are quantum states. With this,

we can express W as

W =
d2

AO∑
i=1

ρ
(i)
AIBI

⊗∆(i)
AO
⊗ 1BO

, (94)

where {∆(i)
AO
}
d2

AO
i=1 is the dual set to the

basis {|Ψ(i)
AO
〉〈Ψ(i)

AO
|}
d2

AO
i=1 , in the sense that

tr(∆(j)
AO
|Ψ(i)

AO
〉〈Ψ(i)

AO
|) = δij . The validity of

Eq. (94) can be checked by direct insertion.
Since the process matrix of Eq. (94) factorizes
into an identity matrix on BO and the rest,
we see that it is causally ordered A ≺ B,
contradicting the assumption that W is causally
non-separable. Consequently, there must exist
at least one |Ψ(i)

AO
〉 for which W ′i is causally

ordered B~≺A. Running the same argument for
a trace-and-replace adapter on Bob’s side then
shows that it must also be possible to transform
a causally non-separable process matrix W to a
process of causal order A~≺B.

We note that, in the above proof, the
requirement of causal non-separability can be
relaxed. Indeed, it is sufficient if W is a convex
combination of causal orders but not of the form
A ≺ B, B ≺ A, or A||B.

The two above propositions provide an a
posteriori justification for the inclusion of
causally indefinite processes as valid objects in
a resource theory of causal connection; while free
adapters do not allow the transitioning from one
fixed causal order to another, causally indefinite
processes in a sense ‘bridge the gap’ between the
two sets, since each causally indefinite process
can be transformed to both A~≺B as well as B~≺A
processes. This, then, both raises the question,
whether there exists a most resourceful causally
non-separable process, as well as whether there
exists a causally indefinite process that allows
one to reach all causally ordered ones by
means of free adapters. We return to these
questions in Sec. 6.2, where we introduce a second
monotone of causal connection that is tailored to
the distinction between causally separable and

causally non-separable processes. First though,
we extend some of the results we found above for
the two-party case to the multi-party scenario.

5.4 Signalling robustness of multipartite
causally ordered processes
Some of the results on signalling robustness
translate straightforwardly to the multi-party
case. Here, we provide a couple of relevant cases
for which a bound on the signalling robustness
can be found. The somewhat technical proofs
are relegated to App. I.

For arbitrary many parties with causal order
A ≺ B ≺ C ≺ · · · a generalization of the
fully signalling process WA→B indeed maximizes
Rs(WA≺B≺C≺···). To see this, we require the
following proposition:

Proposition 6. Let Proc1:N be the set of all
causally ordered processes on N parties with
causal order X(1) ≺ X(2) ≺ · · · ≺ X(N). For
any W ∈ Proc1:N we have

Rs(W ) ≤
N−1∏
i=1

d2
X

(i)
O

− 1 := d2
Ō
− 1, (95)

where d
X

(i)
O

is the output dimension of party X(i)
O .

We emphasize that here, unlike in the
two-party case, we restrict our attention to the
causally ordered case, such that there is no
maximization over the output dimensions, but
rather the bound on the signalling robustness
only depends on all but the last output space,
which is intuitively clear, since the last output
space cannot signal to any of the other parties.
The set of processes for which the above bound
(or a variant thereof) holds can be slightly
enlarged to the set of all processes with a definite
last party and convex mixtures thereof (see
App. I).

For the case where all involved dimensions
are equal (the more general case is discussed in
App. I), it is then straightforward to show the
following corollary:

Corollary 1. If all involved dimensions are
equal, then the signalling robustness on the
set Proc1:N is maximized by the process
WX(1)→···→X(N).

As we show in App. H, for three parties,
WX(1)→···→X(N)

can also be transformed by
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means of free adapters to all other tripartite
processes that are ordered in the same way,
making it not only the most robust, but also the
most resourceful process.

For the interpretation of the provided result,
for simplicity, consider the case where all
dimensions are equal. Then, it appears to be
most advantageous from a causal connection
perspective to perfectly pass information in one
direction. Neither memory, nor convex mixture
with different causal orders yield better causal
connections. Upon numerical investigation, it
appears like this bound can also not be beaten by
causally non-separable processes in the tripartite
case, and we conjecture that this holds for
arbitrary numbers of parties. As mentioned, a
more thorough investigation of the multipartite
case can be found in App. I.

After this short discussion of the multi-party
case, let us now return to the two-party
scenario and analyse the interconvertibility of
processes by means of free adapters in more
detail, particularly within the set of causally
non-separable processes, where it presents itself
more layered than in the causally ordered one.

6 Resource theory of causal non-
separability

In the discussion of the resource theory of causal
connection, causally non-separable processes
formed the natural ‘bridge’ between the sets
of processes with different causal orders, and
allowed for a discussion of the signalling structure
of all processes that quantum mechanics (in
principle) allows for. Beyond this role for
the investigation of signalling properties, causal
non-separability can be considered a resource
in its own right – as evidenced, for example,
by the fact that causal non-separability can
allow for the violation of causal inequalities [5,
78], or outperform causally ordered processes
when it comes to distinguishing non-signalling
channels [53]. Somewhat unsurprisingly, the
corresponding resource theory of causal non-
separability is conceptually closely related to
the resource theory of causal connection.
Here, we first detail how the resource theory
of causal non-separability can be developed
following the same reasoning as above and show
that, unlike in the case of causal connection,

there is only one meaningful set of free
adapters when causal non-separability is the
resource of interest. In order to quantify the
resourcefulness of causal non-separability, we
provide a corresponding resource monotone, the
causal robustness (originally introduced in [6]),
which also turns out to be a resource monotone
for the resource theory of causal connection.
Consequently, it will allow us to investigate
the interconvertibility of causally non-separable
processes under free adapters with respect to
causal connection.

6.1 Uniqueness of the resource theory of causal
non-separability
For simplicity, we limit our discussion of
resource theories of causal non-separability to the
two-party case. Naturally, the set of free objects
in such a resource theories is the set Sep of
causally separable processes. Following the same
path we took for the resource theory of causal
connection, the different sets of possible free
transformations could be derived by imposing
qualitatively different requirements on them.
Such requirements on free operations8 Ξ are:

R1’. To map process matrices to process
matrices.

R2’. To map causally separable to causally
separable processes.

R3’. To not allow for the creation of causal non-
separability.

R4’. To be implemented with only causally
ordered resources between the parties.

Requirement R1’ is the same as R1 and simply
ensures that free operations are also admissible.
Requirement R4’ seems like the natural analogue
of R4. As we have seen, there are adapters
that are composed of signalling channels and
still yield admissible adapters, one such example
being Υ2SW . However, unlike R4 for the resource
theory of causal connection, R4’ does not always
lead to admissible adapters. To see this, consider
an adapter Ξ that is implemented by Alice and

8While mathematically they are the same type of
objects, for better distinction, we use two different
symbols, Ξ and Υ for adapters in the resource theory
of causal non-separability and that of causal connection,
respectively.
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Bob by making use of a resource that allows for
signalling from Bob to Alice. In many cases,
the resulting adapter cannot be applied to a
process matrix of causal ordering A ≺ B since
causal loops would be closed. An example for
such an adapter is Υ1SW /∈ ΘA. In addition
to potentially yielding ‘improper adapters’, from
a conceptual point of view, it is questionable
why (and how), in a situation where Alice and
Bob share a comb of a given causal order (say
A ≺ B), they should be able to signal in, say,
the opposite direction when making an adapter.
Intuitively then, the only types of adapters that
Alice and Bob can implement without potentially
running into logical contradiction seem to be
those that do not require signalling, i.e., adapters
in ΘLOSE. While this might be too restrictive –
as we mentioned, Υ2SW /∈ ΘLOSE would be an
admissible adapter that can be implemented by
means of signalling resources – ΘLOSE appears like
the largest set of adapters that Alice and Bob
can implement themselves that is not plagued
with interpretational issues. Requirement R4’
should thus be replaced by R4, implying that,
at the operational level, where Alice and Bob
are the ones to implement the free adapters,
there is no fundamental distinction between the
resource theory of causal non-separability and
that of causal connection.

Adapters that satisfy both requirements
R1’ and R2’ are the largest set of possible
free transformations in a resource theory of
causal non-separability, and we denote the
corresponding set of admissible separability
preserving adapters by ΘASP. It is natural to
compare this maximal set of free operation to
ΘAFP, the corresponding maximal set of free
operations for the resource theory of causal
connection. As we have seen, there are free
adapters Υ ∈ ΘAFP that map causally ordered
processes to causally non-separable processes.
Consequently, such adapters would not lie in
ΘASP. On the other hand, it is easy to construct
adapters that satisfy Ξ ∈ ΘASP but Ξ /∈ ΘAFP. An
example for such an adapter is given by

ξ = 1
dAO

dBO

1AB ⊗WA′B′ , (96)

where WA′B′ ∈ Sep \ Free. This adapter, when
acting on a process matrix simply discards it and
replaces it by a fixed, signalling process matrix
(and thus does not lie in ΘAFP). With this,

we see that, while they naturally share many
common adapters, there is no clear hierarchy or
inclusion relation between the two maximal sets
of free adapters for the resource theory of causal
connection and that of causal non-separability.

Requirement R3’ appears like the natural
analogy to the corresponding requirement R3
for the resource theory of causal connection.
However, on its own, it does not even guarantee
that the resulting set of adapters preserves Sep.
Basically, R3’ demands that, no matter what
Alice and Bob do locally, when they have access
to the adapter, they cannot use it to create a
process matrix that is causally non-separable.
Locally, the only operations they can perform
to transform an adapter to a process matrix is
to feed in a state and discard the final degrees
of freedom, i.e., given an adapter Ξ, they can
transform it to

W ′ = ρAI
⊗ ηBI

⊗ 1AOBO
? Ξ. (97)

Now, since ρAI
⊗ ηBI

⊗ 1AOBO
corresponds

to a non-signalling process, the requirement
that W ′ ∈ SEP is weaker than demanding
that non-signalling processes are mapped to
non-signalling processes, which, besides being
admissible, is the restriction on adapters that
lie in ΘAFP. Since adapters in ΘAFP can create
causally non-separable process matrices when
acting on a causally separable one, this means
that the set of free adapters emerging from
requirement R3’ is too big to be a meaningful
set of free adapters for the resource theory of
causal non-separability. On the other hand,
combining requirements R2’ and R3’ (and R1’)
to restrict ourselves to adapters that preserve
Sep does not introduce anything new, since the
resulting set of free adapters simply coincides
with ΘASP (i.e., the set already obtained from
the combination of R1’ and R2’): Since ρAI

⊗
ηBI

⊗ 1AOBO
is a process matrix in Sep,

satisfaction of R2’ ensures that it cannot be
mapped to a causally non-separable one, thus
already implying satisfaction of requirement R3’.
Consequently, while R3 yields an interesting and
physically meaningful set of free adapters, its
näıve translation R3’ for the resource theory
of causal non-separability does not lead to
additional restrictions/a meaningful new theory.

We conclude thus, given that R4 coincides with
R4’, there seems to only be a single meaningful
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resource theory of causal non-separability,
namely the one where the free transformations
are given by ΘASP. This statement notwithstand-
ing, one could, in principle, introduce other sets
of adapters that preserve Sep. For example, ΘNS,
the set of all non-signalling adapters preserves
Sep, since all such adapters preserve causal order.
However, there is no additional operational
motivation to restrict oneself to this set of
adapters as a natural set of free adapters in the
resource of causal non-separability.

It remains to briefly comment on the structure
of adapters Ξ ∈ ΘASP. As we have seen above,
for the resource theory of causal connection,
it is possible to phrase the properties of free
adapters in terms of linear constraints (besides
positivity that is). Mathematically, this is due
to the fact that the non-signalling requirement
on free process matrices, i.e., that they are
of the form ρAIBI

⊗ 1AOBO
is – besides the

positivity constraint – a linear one. On the
other hand, this fails to hold for the condition
of causal separability; linear combinations of
causally separable processes can well be causally
non-separable. This, in turn, makes a concrete
characterization of the adapters in the set ΘASP
more elusive and the question of whether a given
adapter lies in ΘASP a hard one to answer in
general.

Nonetheless, the resource theory of causal
non-separability can nicely be phrased within
the framework for the resource theory of causal
connection that we set up above. Here, we do
not aim to provide a full account of it, but merely
want to emphasize the structural similarities with
the resource theory of causal connection.

Additionally, in the same vein as above, it is
natural to introduce a robustness measure with
respect to the set Sep, the causal robustness,
as a monotone for the resource theory of causal
non-separability. While this monotone is not
faithful for causal connection, as it turns out, it
is nonetheless monotone under adapters in ΘNS
and ΘLOSE. Introducing the causal robustness
thus kills two birds with one stone – it completes
our brief discussion of the resource theory of
causal non-separability and provides us with
a second monotone for the resource theory of
causal connection, allowing, for example, for
the investigation of the interconvertibility of
processes in Proc \ Sep under adapters Υ ∈ ΘNS.

6.2 Robustness of causal non-separability

We have seen in the previous sections that the
stratification of the space of process matrices
with respect to free adapters of the resource
theory of causal connection presents itself as
somewhat layered. In particular, there is no total

order, i.e., W
ΘNS9 W ′ does not generally imply

W ′
ΘNS→ W . Concretely, we have seen this for pairs

of processes, where either both processes were
causally ordered, or one was causally ordered,
while the other was not. However, we have not
yet considered the case where both processes are
causally non-separable.

Since the previous results were obtained
based on the monotonicity of the robustness
of signalling under free adapters, they hold
independent of whether ΘLOSE, ΘNS, or ΘAFP is
considered as the set of free adapters. This will
fail to hold true for the results of the present
section, where we require preservation of Sep for
the derivation of our results.

By providing a second monotone for the
resource theory of causal connection, we show
that the lack of total order also holds within the
set of causally non-separable processes. To this
end, we consider the (generalized) robustness of
causal non-separability Rc, inspired by analogous
measures for the robustness of entanglement [74]
and coherence [31], and already introduced in
Ref. [6] for process matrices (following Ref. [6],
we will simply call Rc ‘causal robustness’). We
define Rc(W ) of a process matrix W as the
maximal robustness under worst-case general
mixing, now with respect to the set of causally
separable process matrices Sep (instead of the set
Free), i.e.,

Rc(W ) = min
T∈Proc

{
s ≥ 0

∣∣∣∣W + sT

1 + s
= R ∈ Sep

}
,

(98)

where T is proper process matrix and Sep is
the set of causally separable process matrices.9

Since free processes in the resource theory of
causal non-separability preserve Sep, the causal
robustness is a monotone of this resource theory.
More importantly for our purposes, it is also

9While the definition of the set Sep is straightforward
in the bipartite case, it becomes more subtle in the
multipartite setting [6, 65, 66]. Here, we predominantly
focus on the two-party case.
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a monotone for two of the resource theories of
causal connection we introduced above (those
based on ΘNS and ΘLOSE), and we now use it to
investigate how causally non-separable processes
can be converted into one another by means of
adapters in ΘNS.

6.3 Conversion of causally non-separable pro-
cesses under free transformations

Analogously to the signalling robustness, one
can show that the causal robustness is a convex
function and non-increasing under free adapters
(i.e., adapters in ΘNS). This latter point follows
directly from the fact that free adapters preserve
causal ordering (this fails to hold for adapters in
ΘAFP).

However, the causal robustness is not a faithful
measure for causal connection, since Rc(W ) = 0
for all W ∈ Sep, which is a strict superset
of Free. Nonetheless, the fact that it is
non-increasing under free adapters allows one to
show that there are pairs {W,W ′} of causally

non-separable process matrices for which W
ΘNS9

W ′ and W ′
ΘNS9 W holds, i.e., there is no

total order in the set of causally non-separable
processes with respect to free adapters in ΘNS.

As for the signalling robustness, the causal
robustness of a process matrix can be phrased
as an SDP and equivalently be calculated by
its primal and dual formulation. Its primal
SDP problem can be derived starting from
the definition of causal robustness in Eq. (98)
and following similar steps as for the signalling
robustness in Eqs. (72) and (73), to arrive at

given W

min
1
dO

tr(R̃)− 1

s.t. R̃−W ≥ 0
R̃ ≥ 0
R̃ ∝ R ∈ Sep.

(99)

The dual problem associated to the above SDP

reads

given W

max tr(WS)− 1
s.t. S ≥ 0

1
dO
1+ U − LA≺B(U) ≥ S

1
dO
1+ V − LB≺A(V ) ≥ S,

(100)

where LX≺Y (W ) := YO
W −YIYO

W +XOYIYO
W

is the projector onto the subspace of processes
with causal order X ≺ Y . Analogously as for the
robustness of signalling, S can be interpreted as
a witness of causal non-separability.

Evaluating either this SDP or its dual, the
causal robustness of WOCB [see Eq. (91)] can be
computed to be Rc(WOCB) = 0.1716, while the
causal robustness of WA→B is Rc(WA→B) = 0.
Hence, this pair of process matrices provides us
with an interesting example where

Rs(WOCB) < Rs(WA→B) (101)
and

Rc(WOCB) > Rc(WA→B) = 0, (102)

reinforcing that neither process matrix can be
converted into the other with free adapters.

There are also examples of pairs of process
matrices that are both causally non-separable
but that, nevertheless, cannot be converted into
each other. In order to find such examples, we
numerically sample process matrices and check
their properties. For bipartite process matrices,
this works as follows:

1. Fix input dimensions dAI
, dBI

and output
dimensions dAO

, dBO
.

2. Uniformly sample a positive
semidefinite matrix Q of size
(dAI

dAO
dBI

dBO
)×(dAI

dAO
dBI

dBO
).

3. Define W̃ := LV (Q) to be the projection of
Q on the subspace of valid process matrices,
where LV is the projection operator in
Eq. (6).

4. Define W = dAO
dBO

W̃

tr(W̃ )
.

5. Check whether W is a positive semidefinite
matrix. If not, discard W and repeat the
process. If yes, than W is a proper process
matrix.
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This method can be straightforwardly extended
to process matrices of multiple parties.

Sampling random processes in this way, we
find an example of a process matrix W#, whose
signalling robustness is Rs(W#) = 1.0581, while
its causal robustness is Rc(W#) = 0.0245.
Just like WOCB, the process matrix W# is
causally non-separable. However, there is no
clear hierarchy of robustness between them, since
they satisfy the relations

Rs(WOCB) < Rs(W#) (103)
and

Rc(WOCB) > Rc(W#) > 0. (104)

Notice that, even though both process matrices
in this example are causally non-separable, which
means that, in principle, there could exist a free
adapter that could convert one into the other, the
impossibility of such conversion is nevertheless
guaranteed by the lack of hierarchy between
them, as shown by the different ordering in their
signalling and causal robustness values. A data
file containing the matrices that correspond to
the processes WOCB and W#, along with the
values of their robustness, can be found in the
online repository [79].

It would then be interesting to find out
whether in the set of causally non-separable
processes there exist one process matrix that
could be transformed into all others with free
adapters (in principle, this is possible despite
the lack of total order). This process matrix
would necessarily have higher or equal causal
and signalling robustness then all other causally
non-separable processes.

In order to investigate the potentially most
valuable resource with respect to causal ro-
bustness, we applied a seesaw algorithm,
alternatingly optimising the witness S for a given
process matrix W and vice versa. Concretely, the
algorithm iterates the SDP (100) and the SDP
given by

given S

max tr(WS)
s.t. W ∈ Proc.

(105)

which takes the optimal witness from the solution
of SDP (100) as input and outputs the process
matrix that maximally violates it. The output
process matrix then becomes the input of

SDP (100) in the next round of iteration, and
so on. As this problem is non-convex, one is
not guaranteed to obtain the global optimum for
tr(WS) by means of this algorithm. However,
running the seesaw for a large number of different
initial process matrices provides a good guess for
the process matrices which maximize Rc(W ).

The highest value of causal robustness
that we have found for process matrices
in which all subspaces are qubits with our
seesaw is Rc(W ∗) = 0.2104. This value
exceeds Rc(WOCB) showing that WOCB cannot
be transformed into W ∗ with free adapters.
This same process matrix W ∗ has signalling
robustness of Rs(W ∗) = 1.4805, which is also
greater than Rs(WOCB) = 1. Hence, these two
causally non-separable process matrices satisfy
the relation

Rs(WOCB) < Rs(W ∗) (106)
and

Rc(WOCB) < Rc(W ∗), (107)

makingW ∗ a good candidate for a process matrix
that can be transformed into WOCB with free
adapters. A data file containing the matrices
that correspond to the processes WOCB and W ∗,
along with the values of their robustness, can be
found in the online repository [79].

In principle, the question of whether one
process can be transformed to another by means
of free adapters can be decided by the SDP

given W,W ′

find Υ
s.t. Υ ? W = W ′

Υ ∈ ΘNS .

(108)

Using this SDP, we have verified that the
conversion of W ∗ into WOCB with free adapters
is not possible. Although not conclusive, this
result indicates that there might not be a
causally non-separable process which represents
the most valuable resource with respect to causal
connection.

Considering the matter of a most resourceful
process matrix on more general grounds, we
may derive some insight from the analysis of a
hypothetical process.

Consider the matrix Z ∈ B(HAI
⊗HAO

⊗HBI
⊗

HBO
) consisting of an identity channel from AO
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to BI and another identity channel from BO to
AI , given by

Z := Φ+
AOBI

⊗ Φ+
AIBO

. (109)

Z is not a proper process matrix, as evidenced
by the fact that Z 6= LV (Z), since by allowing
for perfect communication in both directions it
could give rise to causal loops. This non-valid
process could be considered a natural extension
of the most valuable process with respect
to signalling robustness – the fully-signalling
bipartite ordered processes WA→B or WB→A

[see Eq. (88)] that can be transformed into any
other ordered processes of the same order and
subspace dimensions by means of free adapters –
to the realm of indefinite causal order. Indeed, all
ordered process matrices can be achieved from Z
by simply blocking one of the output spaces to
create a one-way fully-signalling ordered process,
and using a free adapter to transform it. It
can also be checked that WOCB and W ∗ can be
generated by applying free adapters to Z, as well
as all randomly sampled causally non-separable
processes we tried. Hence, it is not unreasonable
to expect that all bipartite processes could be
reached via free transformations on Z.

Although such an unrealistic resource may be
overkill when it comes to generating all bipartite
process matrices, the evidence presented here
suggests that it could actually be the required
resource, in the sense that no proper process
matrix might be able to fulfil such a role.

In order to better understand the non-valid
process Z, we investigate how far it is from
the set Proc of valid process matrices of the
same dimension. One potential measure for this
distance is the robustness of Z with respect to
the set of valid process matrices, i.e.,

RProc(Z) = min
T

{
s ≥ 0

∣∣∣∣Z + sT

1 + s
= W ∈ Proc

}
.

(110)

Here, we must carefully choose the character-
istics of the noise T against which we will be
measuring robustness. If T is set to be any valid
process matrix, then RProc(Z) will diverge, since
Z is not contained in the image of the projector
LV . A more viable option, although with an
arguably more far-fetched interpretation, would
be to set the noise to any T ≥ 0 of fixed trace

trT = dAO
dBO

. The solution of such a problem
for an all-qubit Z is then RProc(Z) = 3 and
W = Wmix [see Eq. (89)].

Perhaps surprinsingly, according to this notion
of distance, the valid process matrix closest to Z
is not a causally non-separable process such as
W ∗ or WOCB, but instead, an equally-weighted
convex mixture of two one-way fully-signalling
processes ordered in opposite directions, precisely
the most robust process matrix with respect to
signalling robustness.

While not a physical process, the discussion of
the (non-valid) process Z sheds some light on the
properties a most resourceful two-party process
matrix Wmax would have to satisfy. On the one
hand, it would have to contain perfect channels
both from Alice to Bob, as well as from Bob
to Alice, that can be ‘addressed’ independently,
such that one can degrade Wmax to both WA→B

and WB→A. This, already, seems to exclude the
existence of Wmax, since such a process matrix
would most likely contain closed loops and thus
lead to logical paradoxa. On the other hand,
Wmax would have to be causally non-separable,
since causal separability is preserved under free
adapters. Consequently, we conjecture that Z
(or variants thereof) is the only positive matrix
of the correct trace that can be transformed to
all processes by means of free adapters, but, as
already mentioned, Z is not a valid process itself.

7 Conclusion

In this paper, we have constructed a resource
theory of causal connection, making a first step
towards a systematic resource-theoretic under-
standing of signalling in general (non-)causal
structures. We derived the fundamental building
blocks of this theory – the sets of free objects
and free transformations – both on operational
grounds as well as more axiomatic considerations.
In turn, the resulting different levels of control of
the involved parties over the adapter yield a strict
hierarchy of sets of free transformations.

The axiomatic perspective leads to the largest
set of possible free transformations, which,
despite being free, still allows for internal
signalling as well as for the creation of causal
non-separability. The guiding principle in
the more operationally motivated settings were
generalized non-signalling conditions between the
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involved parties via free transformations. Like
in the case of many other resource theories –
most prominently that of entanglement – all
of these approaches lead to the same set of
free objects, but differ with respect to the
free transformations, thus giving rise to distinct
resource theories of causal connection.

In order to quantify the causal connection of
general processes, we introduced the signalling
robustness as a faithful monotone of the resource
theory of causal connection and provided a
general upper bound for this monotone for
the case of two parties, as well as tight
upper bounds for many relevant multi-party
scenarios. Somewhat surprisingly, the process
that maximizes the signalling robustness for
two parties is causally ordered, implying that
causal non-separability does not increase ‘the
amount of communication’ that is possible
between parties. Based on numerical evidence,
we conjecture that this also holds true for
an arbitrary numbers of parties, suggesting
that the communication advantages displayed by
causally indefinite processes are not rooted in an
overall greater ability to communicate when the
assumption of global causal order is dropped.
For two and three parties, in addition, we
provided the most resourceful causally ordered
process, respectively, i.e., the process that can
be transformed to all other processes of the same
causal order by means of free transformations.

Besides quantifying causal connection in
general processes, the signalling robustness has
a direct interpretation in terms of a witness of
causal connection. Concurrently, this robustness
can be understood as a measure of how many
causal loops can be closed in a given process.

Our results allow one to investigate and
quantify – under one common umbrella – the
ability to signal, both in causally ordered as
well as causally disordered processes. Naturally,
analogous considerations for the set of causally
separable processes as the set of free objects lead
to a resource theory of causal non-separability,
which we introduced, showed uniqueness of,
and compared to the resource theory of causal
connection. In the same vein, using the
framework we provided, one could also consider
other sets of resources in process matrices, like,
for example, the possibility of two-way signalling.
Such considerations will be subject to future

work.

As we showed by means of causal robustness, a
second monotone of the resource theory of causal
connection, causally non-separable processes
display a layered structure with respect to free
transformations, and there exist pairs of causally
non-separable processes where no process can
freely be transformed to the other. On the
other hand, while causally ordered processes can
only be transformed to processes of the same
causal order by means of free adapters, for two
parties, every causally indefinite process can be
transformed to processes of either causal order
by means of free transformations.

While quantifying causal connection, it is cur-
rently unclear what operational task is naturally
related to the signalling robustness. Using
techniques provided in Refs. [75, 76, 80], for every
process W that satisfies Rs(W ) > 0, one can
tailor a particular information-theoretic game
for which the process W will outperform every
process with vanishing signalling robustness (and
this outperformance is quantified by Rs(W )).
However, no single operational task is known,
for which the signalling robustness faithfully
quantifies performance. In particular, such a task
would have to involve bidirectional signalling,
since it would have to highlight both signalling
in the direction A → B as well as B → A
(for example, a task that only requires signalling
from Alice to Bob would not faithfully represent
the resourcefulness of a process that allows for
signalling from Bob to Alice). Besides this
operational question, it is of interest to both
find a general tight bound for the signalling
robustness for any number of parties, and to
investigate how the signalling robustness ties
in with the complete set of monotones for the
resource theory of causal connection that we
provide in App. J.

Additionally, there are still many natural open
questions with respect to the interconvertibility
of processes under free transformations, both sin-
gle shot as well as asymptotically, approximately,
and catalytically [38]. In particular these latter
points require detailed analysis since – unlike in
other resource theories like those involving states
and channels as resources – the tensor product
of process matrices in general does not yield a
proper process matrix [81].

Finally, as mentioned, in the causally ordered
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case, there are processes from which all others
can be reached by means of free transformations
for the two- and three-party scenario. This
suggests that these processes play a similar role
as that played by the ebit in the resource theory
of entanglement, giving rise to the question of
distillability [12, 82, 83] of causal connection for
general causally ordered processes.

All code developed for this work is openly
available in the online repository [79].
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and Č. Brukner, New J. Phys. 18, 013008
(2015).

[79] https://github.com/jessicabavaresco/
resource-theory-causal-connection.

[80] D. Rosset, F. Buscemi, and Y.-C. Liang,
Phys. Rev. X 8, 021033 (2018).
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APPENDIX

A Characterisation of admissible adapters

An admissible adapter ΥA
AIAOBIBO

should – besides being positive – map process matrices W ∈
B(HA⊗HB) onto process matricesW ′ ∈ B(HA′⊗HB′). Equivalently, as discussed, it can be understood
as a map that transforms non-signalling maps M ′A′B′ ∈ B(HA′ ⊗HB′) to non-signalling maps MAB ∈
B(HA ⊗HB). Let us take the latter standpoint to derive the linear constraints on the set of adapters
using techniques from [84]. First, we see that for any non-signalling map N ′ ∈ B(HA′⊗HB′) (whenever
there is no risk of confusion, we will drop the subscripts from now on) we have

N ′ = N ′ − A′O
N ′ + A′IA

′
O
N ′ and N ′ = N ′ − B′O

N ′ + B′OB
′
I
N ′ . (111)

Combining these two conditions, we see that

N ′ = N ′ − A′O
N ′ + A′IA

′
O
N ′ − B′O

N ′ + A′OB
′
O
N ′ − A′IA

′
OB
′
O
N ′ + B′IB

′
O
N ′ − A′OB

′
IB
′
O
N ′ + A′IA

′
OB
′
IB
′
O
N ′

=: L′ns[N ′]
(112)

holds for all non-signalling maps. Naturally, this equation is stronger than the requirement for general
trace preserving maps, since it implies A′OB

′
O
N ′ = A′IA

′
OB
′
IB
′
O
N ′, which is the TP requirement on the
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Choi matrices of maps B(HA′I ⊗HB′I )→ B(HA′O ⊗HB′O ). The operator L′NS defined above is a trace-

preserving self-dual projector. Now, demanding that ΥA maps non-signalling maps to non-signalling
maps implies

Lns[ΥA ? N ′] = ΥA ? N ′. (113)

for all non-signalling maps N ′. Since the span of the set of non-signalling maps is not the full space
of Hermitian matrices, the above equation does not yet fully determine the linear constraints on ΥA.
However, since L′ns is a projector, we see that every matrix N ′ = L′ns[R′] satisfies N ′ = L′ns[N ′] for
arbitrary R′ ∈ B(HA′ ⊗ HB′), implying that the span of the set of non-signalling maps is given by
L′ns[B(HA′ ⊗HB′)]. With this, using the self-duality of L′ns, we can transform the above equation to
a full linear constraint on ΥA such that it reads

(Lns ⊗ L′ns)[ΥA] ? R′ = (IAB ⊗ L′ns)[ΥA] ? R′ (114)

for all R′ ∈ B(HA′ ⊗HB′). This, then, implies that

ΥA = ΥA − (IAB ⊗ L′ns)[ΥA] + (Lns ⊗ L′ns)[ΥA] . (115)

Additionally, ΥA is trace-rescaling on the set of non-signalling maps (since it maps channels to
channels), i.e.,

tr(ΥA ? N ′) = dAI
dBI

dA′IdB
′
I

tr(N ′) (116)

for all non-signalling maps N ′. Using the same arguments as above, as well as the trace preservation
of L′ns, this translates to

tr[(IAB ⊗ L′ns[ΥA])(R′T ⊗ 1AB)] = dAI
dBI

dA′IdB
′
I

tr(R′) , (117)

which implies

trAB{IAB ⊗ L′ns[ΥA]} = dAI
dBI

dA′IdB
′
I

1A′B′ . (118)

With this, we obtain

tr(ΥA) = dAI
dBI

dA′OdB
′
O
. (119)

Using this, we see that

AB(L′ns[ΥA]) = ABA′B′ΥA , (120)

where we omitted the identity operator IAB. This gives us the conditions on an admissible adapter
presented in Def. 1.

B Free-preserving adapters
In the main text, we show that free-preserving adapters, besides being positive, have to satisfy the
following constraints:

A′OB
′
O

(ΥFP ? WA||B) = (ΥFP ? WA||B)

and tr(ΥFP ? WA||B) = dA′OdB
′
O
.

(121)
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Following the same arguments as in the previous section, any free process matrix WA||B can be
understood as WA||B = AOBO

R for some R, so that the first of the two above equations can be
rewritten as

A′OB
′
O

(ΥFP ? AOBO
R) = (ΥFP ? AOBO

R) . (122)

Using the self-duality of AOBO
r and the fact that the above has to hold for all R ∈ B(HA ⊗ BB), we

obtain

A′OB
′
OAOBO

ΥFP = AOBO
ΥFP (123)

as desired. Again, analogously to the proof in the previous section, the trace rescaling property of ΥFP

on the set of free process matrices can be rewritten as

tr(ΥFP ? AOBO
R) =

dA′OdB
′
O

dAO
dBO

trR (124)

for all R ∈ B(HA ⊗ BB), where we used the fact that AOBO
r is a trace preserving operator. This

implies trA′B′(AOBO
ΥFP) =

dA′
O
dB′

O
dAO

dBO
1AB, which, in turn, yields

tr(ΥFP) = dAI
dBI

dA′OdB
′
O

and A′B′AOBO
ΥFP = A′B′ABΥFP , (125)

as claimed in the main text.

C Admissible and free-preserving adapters can create causal non-separability
As we have seen in the main text, admissible and free-preserving adapters ΥAFP can change the causal
order of a non-free process and even create mixtures of causal orders. Now we are left to verify that
admissible and free-preserving adapters can also map non-free causally separable processes to causally
non-separable processes. We tackle this question numerically and we make use of the witnesses for
causal non-separability that where introduced in [6]. These witnesses are such that, if for a witness G
and a process matrix W we have tr(GW ) < 0, then the process matrix W is causally non-separable.
With this, one can search for an adapter ΥAFP ∈ ΘAFP that satisfies ΥAFP ?W /∈ Sep for some W ∈ Sep
via a see-saw SDP. In particular, if there is a causally separable W such that ΥAFP ? W /∈ Sep, then
there must also be a causally ordered process matrix WA≺B such that ΥAFP ? WA≺B /∈ Sep. As we
see in Sec. 5.1, for two parties, the most valuable process (in the sense that it maximizes the causal
robustness) with ordering A ≺ B is of the form

WA→B = ΨAI
⊗ Φ+

AOBI
⊗ 1BO

, (126)

where ΨAI
is an arbitrary quantum state.

Intuitively, this process matrix provides a good starting point when searching for causally non-
separable processes resulting from the action of an adapter ΥAFP ∈ ΘAFP on a causally ordered process.
Employing this guess, we run the following program to find such an admissible and free-preserving
adapter; first, we sample a random witness G for causal non-separability. For this given witness, we
run the SDP

given Witness of causal non-separability G

minimize tr[(Υ ? WA→B)G]
subject to ΥAFP ∈ ΘAFP

(127)

If the resulting ΥAFP is such that tr[(ΥAFP ? WA→B)G] < 0, then the resulting process matrix
ΥAFP ? WA→B is causally non-separable and we have indeed found an admissible and free-preserving
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adapter that maps causally separable to causally non-separable process matrices. To obtain better
and more robust results, the resulting adapter of the above SDP can be fed into a second SDP to
optimize the respective witness G, i.e.,

given Adapter ΥAFP ∈ ΘAFP

minimize tr[(ΥAFP ? WA→B)G]
subject to G is proper witness of causal non-separability.

(128)

While running these two SDPs is not guaranteed to yield an adapter ΥAFP ∈ ΘAFP with the desired
properties, it actually provides adapters for which tr[(ΥAFP ? WA→B)G] ≈ −0.1661 (as a comparison,
for the best witness of WOCB, one obtains tr(WOCBG) ≈ −0.1716). While not necessarily the best
achievable value, −0.1661 is well-beyond any potential numerical imprecision thresholds, implying
that we indeed found an adapter with the desired properties. Since it does not appear to possess a
particularly nice structure, we do not report it here explicitly, however, the code used to find this
adapter and a data file containing the matrices that correspond to the adapter ΥAFP, the causally
ordered, fully signalling process matrix WA→B, and the causally non-separable process matrix ΥAFP ?
WA→B can be found in the online repository [79].

D Definition of non-signalling adapters
In Sec. 3.2.4 we defined the set ΘNS of non-signalling adapters ΥNS

AIAOBIBO
∈ B(HAI

⊗HAO
⊗HBI

⊗
HBO

) as the set of positive semidefinite matrices that satisfy

ΥNS = LA[ΥNS], ΥNS = LB[ΥNS],
and tr[ΥNS] = dA′OdAI

dA′OdAI
,

(129)

where LX [ΥNS] = ΥNS−XO
ΥNS +XOX

′
O

ΥNS−X′IXOX
′
O

ΥNS +XIX
′
IXOX

′
O

ΥNS. While positivity guarantees
that adapters will lead to positive probabilities even when applied to process matrices with additional
degrees of freedom (i.e., degrees of freedom the adapter does not act on), the above trace conditions
and the normalization of ΥNS ensure that ΥNS does not allow for communication between Alice and
Bob, and that the resulting process matrix is properly normalized, i.e., tr[ΥNS ? W ] = dA′OdB

′
O

for all

W ∈ Proc and all ΥNS ∈ ΘNS.
Let us first show the former statement, namely that a non-signalling adapter that satisfies Eq. (129)

does not allow for communication between Alice and Bob. To see this, consider a deterministic
operation ΩAIA

′
O
⊗ 1AO

that Alice can perform. Due to its causal ordering we have A′O
ΩAIA

′
O

=
A′OA

′
I
ΩAIA

′
O

and tr[ΩAIA
′
O

] = dA′I . It is easy to see that with this, we have LA[Ω⊗1AO
] = AIA

′
IAOA

′
O

[Ω⊗
1AO

]. We thus obtain

ΥNS ? (Ω⊗ 1AO
) = (LA ⊗ LB)[ΥNS] ? (Ω⊗ 1AO

) = (LA ⊗ LB)[ΥNS] ? LA[Ω] =

= ΥNS ? AIA
′
IAOA

′
O

Ω = 1
dAI

dA′O
trAIAO

ΥNS,
(130)

where we have dropped the labels for concise notation and we have used the fact that the operators
LX are self-dual projections. Since the last line of the above equation is independent of the specific
comb Ω Alice employs, Bob’s local adapter is independent of Alice’s operations, implying that she
cannot signal to him via the non-signalling adapter ΥNS. Running the same argument for operations
on Bob’s side then shows that a non-signalling adapter indeed does not allow for signalling between
the involved parties. This, then, implies that adapters that satisfy the properties laid out in Def. 4
automatically satisfy the requirements of Eqs. (49) and (50).

Finally, it would remain to show that non-signalling adapters indeed satisfy tr(ΥNS
AIAOBIBO

?WAB) =
dA′OdB

′
O

, i.e., they transform process matrices to correctly-normalized objects. This has already been
done in the main text. As we saw, the free adapters form a proper subset of all valid adapters, i.e.,
ΘNS ⊂ ΘA, and all admissible adapters map proper process matrices to proper process matrices, i.e.,
they also preserve the correct normalization.
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Figure 14: Free adapters from shared entangle-
ment and local operations. For better orientation,
here, we reproduce Fig. 10 from the main text.

Figure 15: No signalling for adapters. Given the
adapter ΥAIAOBIBO

, the most general thing Alice
could do to send information to Bob would be to
perform a causally ordered comb ΩAIAO

. If the
adapter is non-signalling, then the resulting comb on
Bobs side (defined on BI , B

′
I , B

′
O, and BO) must be

independent of ΩAIAO
.

E Shared entanglement and local operations

In the main text, we claimed that ΘLOSE ⊂ ΘNS, implying that adapters from local operations and
shared entanglement satisfy not only Requirement R3, i.e., they do not allow for signalling between
Alice and Bob, but also Requirements R1 and R2, by mapping proper processes to proper processes
and free processes to free processes. We state this here in more detail as the following Lemma:

Lemma 2. An adapter of the form

ΥLOSE = ρ
ÃI Ã

′
OB̃I B̃

′
O

? Λ
ÃIAI

? Γ
Ã′AO

? Λ
B̃IBI

? Γ
B̃′BO

, (131)

stemming from shared entanglement and local operations, maps proper process matrices to proper
processes and does not allow for signalling between Alice and Bob.

Proof. We start by proving the former. Since the link product of positive objects is again a positive
object, we see that for an adapter of the form of Eq. (131) we have ΥLOSE ≥ 0 and thus W ′A′B′ =
ΥLOSE ? WAB ≥ 0 for all proper process matrices WAB. It remains to show that W ′A′B′ is a proper
process matrix. This can be done by checking its action on products MA′ ⊗MB′ of CPTP maps. We
have

W ′A′B′ ? MA′ ? MB′ = ρ
ÃI Ã

′
OB̃I B̃

′
O

? Λ
ÃIAI

? Γ
Ã′AO

? Λ
B̃IBI

? Γ
B̃′BO

? WAB ? MA′ ? MB′

=: NAB ? WAB

(132)

It is easy to see that the map NAB satisfies trAO
NAB = 1AI

⊗ NB and trBO
NAB = 1BI

⊗ NA with
CPTP maps NA and NB, implying that NAB is non-signalling between Alice and Bob.

Concretely, we have (see Fig. 14 for better orientation):

trAO
NAB = ρ

ÃI Ã
′
OB̃I B̃

′
O

? Λ
ÃIAI

? trAO
Γ
Ã′AO

? Λ
B̃IBI

? Γ
B̃′BO

? MA′ ? MB′

= tr
Ã′O

ρ
ÃI Ã

′
OB̃I B̃

′
O

? tr
Ã′I

Λ
ÃIAI

? Λ
B̃IBI

? Γ
B̃′BO

? trA′O MA′ ? MB′

= ρ
ÃI B̃I B̃

′
O

? tr
Ã′IA

′
I

Λ
ÃIAI

? Λ
B̃IBI

? Γ
B̃′BO

? MB′

= 1AI
? ρ

B̃I B̃
′
O

? Λ
B̃IBI

? Γ
B̃′BO

? MB′

=: 1AI
⊗NB

(133)
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where we have used trAO
Γ
Ã′AO

= 1
Ã′A′O

, trA′O MA′ = 1A′I
, tr

Ã′IA
′
I

Λ
ÃIAI

, and the fact that 1X is
the Choi matrix of trX . In a similar vein, it is easy to see that NB satisfies trBO

NB = 1BI
, i.e., it

is CPTP. The corresponding relations for trBO
NAB follow analogously. NAB is thus a non-signalling

map. Invoking the decomposition (47) of general non-signalling maps in terms of products of CPTP
maps implies that ΥLOSE maps non-signalling maps on ‘the primed degrees of freedom’ to non-signalling
maps ‘on the unprimed degrees of freedom’. As we have seen in the main text, this implies that it
maps proper process matrices to proper process matrices, which concludes the first part of the proof.

To show that the above ΥLOSE does not allow for signalling between Alice and Bob, we first note
that, in the above reasoning, we have already shown that ΥLOSE maps all non-signalling maps to
non-signalling maps (i.e., ΥLOSE ∈ ΘAFP). However, as discussed in detail in Sec. 3.2.4, this is not
sufficient to guarantee that the adapter does not enable any signalling between Alice and Bob. In
addition, we have to show that, given the adapter ΥLOSE, no matter what Alice ‘inserts’ into it, Bob
locally ‘sees’ the same comb (and vice versa). In the language of Def. 4, where we defined non-signalling
adapters, this means that ΥLOSE satisfies LA[ΥLOSE] = LB[ΥLOSE] = ΥLOSE. Here, for concreteness, we
will not use the projectors LA and LB to prove the non-signalling conditions, but rather show them
directly (yet equivalently) by proving that Alice cannot send signals to Bob by performing deterministic
operations on her side of the adapter.

In detail, this means that ΥLOSE ? ΩAIAO
is independent of any comb ΩAIAO

with ordering AI ≺
A′I ≺ A′O ≺ AO that Alice could ‘insert’ into the adapter (see Fig. 15).

This can be checked by direct insertion into Eq. (131) and using the causality constraints on
ΩAIAO

= 1AO
⊗ ΩAIA

′
O

:

ΥLOSE ? ΩAIAO
= 1AO

? Γ
Ã′AO

? ΩAIA
′
O
? ρ

ÃI Ã
′
OB̃I B̃

′
O

? Λ
ÃIAI

? Λ
B̃IBI

? Γ
B̃′BO

= 1
Ã′OA

′
OÃ
′
I

? ΩAIA
′
O
? ρ

ÃI Ã
′
OB̃I B̃

′
O

? Λ
ÃIAI

? Λ
B̃IBI

? Γ
B̃′BO

= ρ
B̃I B̃

′
O

? Λ
B̃IBI

? Γ
B̃′BO

,

(134)

which is independent of Alice’s operations. As for the previous derivation, here, we have alternatingly
used the properties of CPTP maps and causally ordered combs, in particular trAO

Γ
Ã′AO

= 1
Ã′OA

′
OÃ
′
I

,
tr
A′I Ã

′
I

Λ
ÃIAI

= 1
ÃIAI

, and trA′O ΩAIA
′
O

= 1A′I
⊗ΩAI

. Naturally, the same independence can be shown
with respect to Bob’s operations, implying that ΥLOSE

AIAOBIBO
does not enable any signalling between

Alice and Bob. Consequently, we have ΘLOSE ⊆ ΘNS. The fact that the inclusion is strict is proven in
the main text.

F Equivalence of ΘCA and ΘNS

Here, we provide the prove of Prop. 1, where we stated that the set ΘCA of completely admissible
adapters coincides with the set ΘNS of non-signalling adapters. As laid out in Sec. 3.3, a completely
admissible adapter ΥCA

AIAOBIBO
must – besides being a positive semidefinite matrix – map any non-

signalling map M̄A′ĀB′B̄ with A′IĀI 6→ B′OB̄O and B′IB̄I 6→ A′OĀO to a non-signalling map N̄AĀBB̄ =
ΥCA
AIAOBIBO

? M̄A′ĀB′B̄, where N̄AĀBB̄ is non-signalling AIĀI 6→ BOB̄O and BIB̄I 6→ AOĀO.

As was the case for admissible adapters, complete admissibility is equivalent to mapping any non-
signalling map of the form MA′Ā ⊗MB′B̄ – where MX′X̄ is an arbitrary CPTP map X ′IX̄I → X ′OX̄O

– to a non-signalling map NAĀBB̄ (see Fig. 16).

With this, one could derive the linear constraints on the set ΘCA of completely admissible adapters
in terms of a projector LCA and show that its properties correspond to those of the projectors that
define ΘNS [given in Eqs. (54) and (55)]. However, here, we take a more explicit route and directly
show that both ΘNS ⊆ ΘCA and ΘCA ⊆ ΘNS hold.

We start by showing ΘNS ⊆ ΘCA. Recall that for any ΥNS
AIAOBIBO

∈ ΘNS we have BO
ΥNS = BOB

′
O

ΥNS

and BOB
′
OB
′
I
ΥNS = BOB

′
OB
′
IBI

ΥNS. With this, we can show that NAĀBB̄ := ΥNS ? (MA′Ā ⊗MB′B̄) is
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Figure 16: Completely admissible adapters. An adapter ΥCA is completely admissible if it maps any non-signalling
map to a non-signalling map, even when only acting on parts of the map. As for the case of admissible adapters,
this is equivalent to mapping arbitrary tensor products of CPTP maps to a non-signalling map, i.e., if the adapter
in the figure is completely admissible, then NAĀBB̄ is non-signalling AIĀI 6→ BOB̄O and BIB̄I 6→ AOĀO for all
CPTP maps MA′Ā and MB′B̄ .

Figure 17: Complete admissibility and non-signalling. Taking the swap and a product map as the two maps on
Alice’s and Bob’s side, respectively, if the adapter ΥCA is completely admissible, then the resulting channel should be
non-signalling (here, this requirement is shown for non-signalling from Alice to Bob).

non-signalling BIB̄I 6→ AOĀO, i.e., BOB̄O
NAĀBB̄ = BOB̄OBI B̄I

NAĀBB̄. Concretely, we have

BOB̄O
NAĀBB̄

= BOB̄O
(ΥNS
AIAOBIBO

? MA′Ā ⊗MB′B̄) = BOB
′
O

ΥNS
AIAOBIBO

? MA′Ā ? B̄O
MB′B̄

= BO
ΥNS
AIAOBIBO

? MA′Ā ? B̄OB
′
OB
′
I B̄I

MB′B̄ = BOB
′
OB
′
IBI

ΥNS
AIAOBIBO

? MA′Ā ? B̄OB̄I
MB′B̄

= BOB̄OBI B̄I
(ΥNS
AIAOBIBO

? MA′Ā ? B̄OB
′
O
MB′B̄)

(135)

where we have both used the fact that the operators X
r can be moved around freely in the link

product and the property B̄OB
′
O
MB′B̄ = B̄OB

′
OB̄IB

′
I
MB′B̄ of CPTP maps. In the same vein (and using

X(X r) = X
r), we see that

BOB̄OBI B̄I
NAĀBB̄ = BOB̄OBI B̄I

(ΥNS
AIAOBIBO

? MA′Ā ? B̄OB
′
O
MB′B̄) . (136)

Comparison of Eqs. (135) and (136) implies BOB̄O
NAĀBB̄ = BOB̄OBI B̄I

NAĀBB̄. The fact that MAĀBB̄

is non-signalling from AIĀI to BOB̄O follows in the same way. Non-signalling adapters thus map
non-signalling maps to non-signalling maps, even when only acting on a part of them, implying
ΘNS ⊆ ΘCA.

To prove ΘNS ⊇ ΘCA, let us consider two particular CPTP maps on Alice’s and Bob’s side,
respectively, namely a swap ĀI ↔ A′O, A

′
I ↔ ĀO on Alice’s side, and a CPTP map MB′B̄ =

LB′ ⊗Φ+
B̄I B̄O

(where LB′ is CPTP and Φ+
B̄I B̄O

corresponds to an identity channel from B̄I to B̄O) on

Bob’s side (see Fig. 17). Since the swap on Alice’s side is merely a relabelling, we drop the usage of
bars on the labels for Alice from here on. Demanding that, for this particular choice of CPTP maps,
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the resulting channel is non-signalling BIB̄I 6→ AOA
′
I is equivalent to the requirement (see Fig. 17)

trBOB̄O
(ΥCA
AIAOBIBO

? LB′) = 1BI B̄I
⊗ CAIAO

, (137)

where CAIAO
is a causally ordered comb (since ΥCA

AIAOBIBO
is an admissible adapter), but its concrete

form is not important for the following argument. We now show that CAIAO
must be independent of

L′B if ΥCA
AIAOBIBO

is completely admissible. To see this, let us assume the contrary, that there exist
two different CPTP maps LB′ and KB′ such that

trBOB̄O
(ΥCA
AIAOBIBO

? LB′) := 1BI B̄I
⊗ CAIAO

6= 1BI B̄I
⊗ C#

AIAO
:= trBOB̄O

(ΥCA
AIAOBIBO

? KB′) .
(138)

Then, Bob can perform a CPTP map HB′B̄ that classically controls the CPTP maps LB′ (for
measurement outcome 0 on B̄I) and KB′ (for measurement outcome 1 on B̄I), i.e.,

HB′B̄′ = |00〉〈00|B̄I B̄O
⊗ LB′ + |11〉〈11|B̄I B̄O

⊗KB′ , (139)

and we assume that the degrees of freedom labeled with bars correspond to qubits. Now, contracting
this map with the adapter ΥCA

AIAOBIBO
(and tracing out the final degrees of freedom BO and B̄O)

yields [cf. (137)]

trBOB̄O
(ΥCA
AIAOBIBO

) ? HB′B̄ = |0〉〈0|B̄I
⊗ 1BI

⊗ CAIAO
+ |1〉〈1|B̄I

⊗ 1BI
⊗ C#

AIAO
. (140)

However, since HB′B̄ is itself a CPTP map, the above must – due to complete admissibility of
ΥCA
AIAOBIBO

– also factorize as

trBOB̄O
(ΥCA
AIAOBIBO

) ? HB′B̄ = 1BI B̄I
⊗DAIAO

, (141)

for some causally ordered comb DAIAO
. This, in turn, shows that CAIAO

= C#
AIAO

holds, i.e., Alice’s
part of the adapter is independent of the CPTP map that Bob performs (if Bob’s final degree of
freedom is discarded). The same argument can be employed to show that Bob’s part of the adapter
ΥCA
AIAOBIBO

is independent of the CPTP map that Alice performs (if Alice’s final degrees of freedom
are discarded). In fact, this is already sufficient to conclude that ΘNS ⊇ ΘCA, since it is exactly this
property that we used to derive the non-signalling conditions of ΘNS. Combining this with the fact
that ΘNS ⊆ ΘCA (shown above), we see that the requirements on completely admissible adapters are
equivalent to those on non-signalling adapters and we have ΘNS = ΘCA.

G Convexity of Rs(W )

In order to prove the convexity of Rs(W ), assume that for a given W = pW1 + (1 − p)W2, we have
found the process matrices T ∗ ∈ Proc and C∗ ∈ Free that lead to the minimal value in Eq. (69).
Then,

W = (1 +Rs(W ))C∗ −Rs(W )T ∗. (142)

Importantly, any other such pseudo-mixture representation W = (1 +R′)C ′ −R′T ′, where C ′ ∈ Free
and T ′ ∈ Proc satisfies (by definition) R′ ≥ Rs(W ).

Let C∗1 , C
∗
2 , T

∗
1 , and T ∗2 be the corresponding process matrices for W1 and W2, i.e., W1 = (1 +

Rs(W1))C∗1 − Rs(W1)T ∗1 and W2 = (1 + Rs(W2))C∗2 − Rs(W2)T ∗2 . For convenience, we will set
Ri := Rs(Wi). Consequently, we have

W = p(1 +R1)C∗1 + (1− p)(1 +R2)C∗2 − pR1T
∗
1 − (1− p)R2T

∗
2 . (143)
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Figure 18: General WA≺B≺C from WA→B→C .
By performing the correct local adapters and sharing
an entangled state, Alice and Bob can implement
the representation of general three-step combs. For
convenience, we have relabelled the spaces in the
resulting comb (bottom panel).

Figure 19: Conjectured unreachable comb. Starting
from WA→B→C→D, we conjecture that the above
comb, which basically corresponds to an identity channel
from AO to CI and an identity channel from BO to CI ,
cannot be reached by free adapters.

Up to normalization, the first two terms together form the convex combination of two free processes,
while the second two terms form a convex combination of proper process matrices. Thus, we can
express W as

W = [p(1 +R1) + (1− p)(1 +R2)]C ′ − [pR1 + (1− p)R2]T ′, (144)

where T ′ ∈ Proc and C ′ ∈ Free. This implies

Rs(pW1 + (1− p)W2) ≤ pRs(W1) + (1− p)Rs(W2), (145)

i.e., Rs(W ) is a convex function.

H Three-party processes from WA→B→C

In the main text we showed that all processes WA≺B that satisfied the dimensional constraints we
laid out can be obtained from the fully signalling process matrix WA→B by means of free adapters.
Here, we show that the analogous statement holds for processes of the form WA≺B≺C , which can all
be obtained from the fully signalling three-party process matrix

WA→B→C = ρAI
⊗ Φ+

AOBI
⊗ Φ+

BOCI
⊗ 1CI

(146)

by means of free adapters.

As for the two-party case, let us motivate this statement graphically (see Fig. 18 for a graphical
representation). Any causally ordered comb WA≺B≺C can be represented as a concatenation of an
initial system-environment state ΨAIE1 and two CPTP mappings AOE1 → BIE2 and BOE2 → CI with
corresponding Choi matrices ΛE1AOE2BI

and ΓE2BOCI
. It is then easy to see that, by only using shared

entantglement and local operations, starting from WA→B→C Alice and Bob can implement any such
Ψ,Λ and Γ, and thus reach all WA≺B≺C (see Fig. 18). In particular, let τEOE1 = ΨEOE1

∼= ΨAIE1

be the initially shared entangled state, and let ξAIEOA
′
I

= 1AI
⊗ Φ+

EOA
′
I

be the Choi matrix of a

local map in Alice’s laboratory that traces out the system on AI and relabels EO 7→ A′I . Then
ρAI

? τEOE1 ? ξAIEOA
′
I

= ΨA′IE1
∼= ΨAIE1 . Since the degree of freedom E1 is shared with Bob’s

laboratory, it is then sufficient for Bob to locally perform CPTP maps with corresponding Choi
matrices ΛBIE1E2B′I

and ΓE2B′OBO
. The identity maps in the fully signalling comb WA→B→C then
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lead to a relabelling BI 7→ AO and BO 7→ CI . Finally then, identifying A′I with AI , B
′
I with BI and

B′O with BO, we find that

WA→B→C ?Υ = (ρAI
⊗ Φ+

AOBI
⊗ Φ+

BOCI
⊗ 1CI

) ? (τEOE1 ? ξAIEOA
′
I
? ΛBIE1E2B′I

? ΓE2B′OBO
)

∼= ΨAIE1 ? ΛE1AOE2BI
? ΓE2BOCI

,
(147)

and thus all combs WA≺B≺C can be reached from WA→B→C by means of free adapters.

While the above derivation works for the case of three parties, it cannot be employed in the four-
party scenario, where we conjecture the existence of ordered processes that cannot be reached from
WA→B→C→D by means of free adapters. In particular, we expect the following process to not be
reachable (see Fig. 19):

W4parties = ΨAI
⊗ Φ+

AODI
⊗ ηBI

⊗ Φ+
BOCI

⊗ 1CODO
(148)

This process consists of an identity channel between Alice and Dave, and identity channel between Bob
and Alice, and either states that are fed in, or degrees that are traced out on the remaining degrees
of freedom. The reason why we conjecture that this process cannot be reached from WA→B→C→D by
means of an adapter that does not enable any communication between the parties is as follows: If an
adapter Υ does not enable direct communication between the respective parties, all signalling between
Alice and Dave, as well as the signalling between Bob and Charlie must have come from WA→B→C→D.
Consequently, signals that go from Alice to Dave must have gone via Bob (since there is no direct
channel between Alice and Dave in WA→B→C→D). However, Bob has an identity channel to Charlie,
but, at the same time, needs to feed forward signals from Alice to Dave, so that the resulting W4parties
can contain an identity channel between Alice and Dave. This, then, should not be possible, since Bob
cannot, at the same time, send his information undisturbed to Charlie, but concurrently also perfectly
feed Alice’s signals forward towards Charlie.

While somewhat intuitive, these arguments are not sufficient to exclude the possibility to obtain
W4parties from WA→B→C→D by means of free adapters. As we have seen, there are free adapters
that cannot be obtained from shared entanglement and local operations. They thus require internal
signalling for their implementation, however, this signalling is such that it cannot be employed by the
respective parties to signal to each other. In principle, though, this signalling might be activated by
concatenation with WA→B→C→D. Nonetheless, we conjecture that W4parties cannot be obtained from
WA→B→C→D by means of free adapters.

I Signalling robustness of multipartite causally ordered processes

Here, we provide proofs and generalizations of the results on the bounds on the signalling robustness
in the multi-party scenario mentioned in the main text. In Sec. 5.4 we claimed the following result:

Proposition 5. Let Proc1:N be the set of all causally ordered processes on N parties with causal order
X(1) ≺ X(2) ≺ · · · ≺ X(N). For any W ∈ Proc1:N we have

Rs(W ) ≤
N−1∏
i=1

d2
X

(i)
O

− 1 := d2
Ō
− 1, (149)

where d
X

(i)
O

is the output dimension of party X(i)
O .

Proof. The proof follows a similar line as that of Thm. B3 in Ref. [51]. First, consider the quantum
channel Λ̃[ρ] = tr(ρ)1/dX , where d is the dimension of the space X on which ρ is defined. This channel
can be written as Λ̃[ρ] = 1

d2
∑d2−1
j=0 UjρU

†
j , where the d2 unitary matrices {Uj} form an orthogonal
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basis of the space spanned by unitary matrices and U0 = 1. Using this decomposition of Λ̃, we can
write its action as

Λ̃[ρ] = 1
d2 ρ+ 1

d2

d2−1∑
j=1

UjρU
†
j =: ( 1

d2I + d2 − 1
d2 Γ̃)[ρ] , (150)

where Γ̃ is a CPTP map and I is the identity map. The map Λ̃ traces out the state it acts on and
replaces it by a maximally mixed state. Consequently, applying it to all output spaces X(i)

O (except
the last one) of W ∈ Proc1:N yields a process of the form ρXI

⊗ 1XO
. In detail, due to its causal

ordering, we have W = W
X

(1)
I X

(1)
O ···X

(N)
I

⊗ 1
X

(N)
O

. Applying Λ̃ to each output space of W except for
the last one yields

X
(1)
O ···X

(N−1)
O

W = 1/(d
X

(1)
O

· · · d
X

(N−1)
O

) tr
X

(1)
O ···X

(N−1)
O

W ⊗ 1XO
=: ρXI

⊗ 1XO
, (151)

where XI (XO) denotes all input (output) spaces. Now, employing Eq. (150) and setting d2
Ō

:=∏N−1
i=1 d2

X
(i)
O

, we obtain

X
(1)
O ···X

(N−1)
O

W =
N−1∏
i=1

( 1
d2
X

(i)
O

I
X

(i)
O

+
d2
X

(i)
O

− 1

d2
X

(i)
O

Γ̃
X

(i)
O

)[W ] =: ( 1
d2
Ō

IXO
+ (1− 1

d2
Ō

)Ω̃XO
)[W ] , (152)

where Ω̃XO
is a CPTP map. Let us assume that T := Ω̃XO

[W ] is a proper process matrix. In this
case, using the above considerations, we have 1/d2

Ō
W + (1− 1/d2

Ō
)T ∈ Free. Recalling the definition

of the signalling robustness

Rs(W ) = min
T∈Proc

{
s ≥ 0

∣∣∣∣W + sT

1 + s
= C ∈ Free

}
, (153)

we see that Rs(W ) ≤
∏N−1
i=1 d2

X
(i)
O

−1, which corresponds to the claim of the Proposition. It remains to

show that Ω̃XO
[W ] is indeed a proper process matrix. To this end, we note from Eq. (152) that Ω̃XO

corresponds to a convex combination of local CPTP maps that act on the respective output spaces
of each party. Since each such tensor product of maps simply corresponds to a post-processing of the
local output spaces, it transforms a proper process matrix to a proper process matrix, and analogously
so does a convex combination of such maps. This concludes the proof.

For the case where all involved dimensions are equal (the more general case will be discussed below),
it is now straightforward to show that a process of the form

WX(1)→···→X(N) =
1
X

(1)
I

d
X

(1)
I

⊗ Φ+
X

(1)
O X

(2)
I

⊗ · · · ⊗ Φ+
X

(N−1)
O X

(N)
I

⊗ 1
X

(N)
O

(154)

maximizes the signalling robustness on Proc1:N , as claimed in the main text. In clear analogy to the
two-party case, the matrix S ≥ 0 used in the dual SDP (74) for the computation of the signalling
robustness in the multi-party case satisfies

tr
X

(1)
O ···X

(N)
O

S = 1
X

(1)
I ···X

(N)
I

. (155)

Then, choosing

S = 1
X

(1)
I

⊗ Φ+
X

(1)
O X

(2)
I

⊗ · · · ⊗ Φ+
X

(N−1)
O X

(N)
I

⊗ 1
X

(N)
O

/d
X

(N)
O

, (156)

we see that tr(SWX(1)→···→X(N)) = d2
Ō
− 1. This proofs Cor. 1 of the main text.
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Evidently, the proof of Prop. 6 does not work for general, causally indefinite, processes, since we
explicitly used the fact that W factorizes, i.e., it satisfies W =

X
(N)
O

W . Nonetheless, we can slightly

generalize the above statement without changing the proof. In particular, even though we focused on
causally ordered processes, the only actual assumption we employ in the above proof is that there is a
definite last party (X(N) in the notation of the proof). Whether or not the remainder of the process
is causally ordered did not factor in. Consequently, we have the following corollary:

Corollary 2. Let Proc≺N be the set of all processes that have X(N) as the definite last party, i.e., if
W ∈ Proc≺N , then

X
(N)
O

W = W and
X

(N)
O X

(N)
I

W =
X

(N)
O X

(N)
I X

(N−1)
O

W . For all W ∈ Proc≺N we have

Rs(W ) ≤
∏N−1
i=1 d2

X
(i)
O

− 1, where d
X

(i)
O

is the output dimension of party X(i).

The proof of this statement follows along the same lines as that of Prop. 6 for causally ordered
processes.

Having found these upper bounds for the signalling robustness on the sets Proc1:N and Proc≺N of
causally ordered processes and processes with a definite last party, respectively, then allows one to
find an analogous bound on their convex hulls.

Corollary 3. Let Procconv
π(N) be the convex hull of all processes that have a definitive last party. Then,

for all W ∈ Procconv
π(N) we have Rs(W ) ≤ max

Ō
{d2

Ō
− 1}, where d2

Ō
is defined as in Prop. 6, i.e., the

dimension of all spaces except for the last one, and the maximization is over all possible causal orders
– given by the permutation π – of N parties.

Since Proc1:N ⊂ Proc≺N , the above Corollary also applies to the convex hull of Proc1:N .

Proof. If W ∈ Procconv
π(N) then it can be written as W =

∑
π pπW

π(N), where π is a permutation of N
elements, {pπ} is a probability distribution with

∑
π pπ = 1, and W π(N) denotes a process with final

party X(π(N)). Using the convexity of the signalling robustness, we obtain

Rs(W ) = Rs(W )
(∑

π

pπW
π(N)

)
≤
∑
π

pπRs(W π(N)) ≤ max
π
Rs(W π(N)) = max

Ō
{d2

Ō
− 1}. (157)

A priori, this bound is not tight. However, under the assumption that there is a causal ordering of
parties such that d2

Ō
is maximized and the dimensions of all input spaces are lower bounded by the

dimension of their respective preceding output spaces (i.e., d
X

(i)
O

≤ d
X

(i+1)
I

for all i = 1, . . . , N − 1),

we have the following Proposition:

Proposition 7. Let W be a process matrix defined on the N laboratories {X(i)}. Let X(1) ≺ X(2) ≺
· · · ≺ X(N) be an order in which d2

Ō
is maximized, and let d

X
(i)
O

≤ d
X

(i+1)
I

for all i = 1, . . . , N − 1.

Then there exists a causally ordered Markovian process WX(1)≺···≺X(N) that maximizes the signalling
robustness on Procconv

π(N), i.e., it satisfies

Rs(WX(1)≺···≺X(N)) = max
Ō
{d2

Ō
− 1} . (158)

Proof. First, assume that the dimension of neighboring input and output spaces is the same, i.e.,
d
X

(i)
O

= d
X

(i+1)
I

for all i = 1, . . . , N − 1. Then the above statement is directly implied by from Cor. 1
The case where d

X
(i)
O

< d
X

(i+1)
I

for some (or possibly all) adjacent laboratories follows in a similar
vein: First, we define a ‘generalized identity map’ I

X
(i)
O →X

(i+1)
I

by its action on all states ρ ∈ B(H
X

(i)
O

):

I
X

(i)
O →X

(i+1)
I

[ρ] =
(
ρ 0
0 0

)
∈ B(H

X
(i+1)
I

) , (159)
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i.e., I
X

(i)
O →X

(i+1)
I

[ρ] transmits ρ and merely pads it out with zeros such that the output lives in the
right space. The corresponding Choi matrix of I

X
(i)
O →X

(i+1)
I

is given by

Φ+
X

(i)
O →X

(i+1)
I

:=
(Φ+

X
(i)
O X

(i)′
O

0

0 0

)
, (160)

where H
X

(i)
O

∼= H
X

(i)′
O

. Using this generalized identity map, the corresponding witness S and the

causally ordered process WX(1)→···→X(N) can be defined in the same vein as in Eqs (154) and (156)
with the same result for the signalling robustness.

Since the signalling robustness of causally non-separable processes does not seem to exceed that
of the processes of Eq. (154), allowing for communication in several directions beyond probabilistic
mixing does not appear increase the amount of causal connection. The fact that the upper bound
cannot necessarily be achieved in the case where the input dimension of an input space is not larger
than or equal to its preceding output space then also possesses a straightforward explanation. In this
case, there is no identity channel from one laboratory to the other, leading to lower causal connection
and an unattainability of the bound max

Ō
{d2

Ō
− 1}.

J All monotones of the resource theory of causal connection
As we have seen, neither the signalling nor the causal robustness are sufficient to decide whether a
process can be converted into another by means of free adapters. Intuitively though, if one knew all
monotones of the resource theory of causal connection, one could unambiguously decide whether or
not two processes can be connected via free adapters. Here, using results from Ref. [40], we make
this intuition concrete and provide all monotones of the resource theory of causal connection. These
monotones, in turn, provide a necessary and sufficient condition for the convertibility of processes.

In Ref. [40], the complete set of monotones for a wide class of quantum resource theories of processes
has been derived. There, the authors consider sets of free maps that map CPTP maps onto CPTP
maps, and, under weak assumptions on the set of free CPTP maps, derive all monotones of such
a resource theory. Here, we follow these ideas to provide a characterization of all monotones in a
resource theory where the free processes are given by Free = {ρAIBI

⊗ 1AOBO
∈ B(HAB)}. Unlike

in the previous sections, we will not work with the Choi matrices of adapters, but consider the
free adapters as maps Υ̃ that map Choi matrices W on B(HAB) to Choi matrices W ′ on B(HA′B′).
Concretely, with this, we get the set of free transformations

Θ̄NS(AB → A′B′) = {Υ̃|ΥAIAOBIBO
∈ ΘNS} , (161)

where ΥAIAOBIBO
is the Choi matrix of Υ̃.

Considering the map Υ̃ instead of its Choi matrix ΥAIAOBIBO
will lead to some notational

simplifications in what follows. Naturally, everything can be phrased entirely in terms of Choi
matrices (or entirely in terms of maps, as is done in Ref. [40]). In what follows, whenever there
is no risk of confusion, we will drop the explicit input and output spaces and simply write Θ̄NS instead
of Θ̄NS(AB → A′B′).

Following Ref. [40], we can define the following monotones for our resource theory:

fQ(W ) = max
Υ̃∈Θ̄NS

tr(QΥ̃(W )) , (162)

where W is a proper process matrix on B(HAB) and Q is a proper process matrix on B(HA′B′). Note
that we can use the maximum instead of the supremum in the above equation, as the set of free
adapters we consider is compact, i.e., the maximum exists. Since the concatenation of free adapters
still yields a free adapter, it is easy to see that Eq. (162) indeed defines a monotone of the resource
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theory. With this, we obtain an analogous characterization of a complete set of monotones as the one
found in [40]:

Proposition 8. Let WAB be a proper process matrix on B(HAB) and W ′A′B′ be a proper process matrix
on B(HA′B′). Then there exists a free adapter Υ̃ ∈ Θ̄NS such that W ′A′B′ = Υ̃(WAB) iff

fQ(WAB) ≥ fQ(W ′A′B′) ∀Q ∈ ProcA′B′ , (163)

where ProcA′B′ is the set of valid process matrices on A′B′.

The proof proceeds analogous to the original proof of Thm. 4 in Ref. [40]. First, using convexity
and closedness of the set of all free adapters, we will show that Eq. (163) provides all monotones if
Q is Hermitian. In the second step, we show that it is sufficient to restrict Q to be a proper process
matrix on B(HA′B′).

Proof. Step 1: We denote the orbit of a process matrix WAB on B(HAB) under free transformations
by OW = {Υ̃(WAB)|Υ̃ ∈ Θ̄NS}. As Θ̄NS is convex and closed, so is OW . Consequently, any process
matrix W ′A′B′ is not an element of OW iff there exists a Hermitian matrix QA′B′ on B(HA′B′) such
that

tr(QA′B′W ′A′B′) > max
Υ∈Θ̄NS

tr(QA′B′Υ̃[WAB]) , (164)

where the above follows from the hyperplane separation theorem for convex sets. On the other hand,
W ′A′B′ is inside the set OW iff for all Hermitian matrices QA′B′ on B(HA′B′), we have

tr(QA′B′W ′A′B′) ≤ max
Υ∈Θ̄NS

tr(QA′B′Υ(WAB)) . (165)

Naturally, the ‘only if’ direction of the above equation holds trivially for any set, while the ‘if’
direction requires the convexity of the set. Eq. (165) allows one to check whether or not there exists
an Υ ∈ Θ̄NS such that Υ(WAB) = W ′A′B′ ; this is exactly the case when W ′A′B′ satisfies Eq. (165). Now,
we can show that Eq. (165) is equivalent to Eq. (163) when we allow QA′B′ to be Hermitian (instead
of a proper process matrix).

First, if Eq. (163) holds (for all Hermitian QA′B′), then we have

max
Υ̃′∈Θ̄NS(A′B′→A′B′)

tr[QA′B′Υ̃′(W ′A′B′)] ≤ max
Υ∈Θ̄NS(AB→A′B′)

tr[QA′B′Υ̃(WAB)] ∀QA′B′ . (166)

Choosing Υ̃′ to be the identity map (which is a free adapter), we see that Eq. (165) is satisfied, and
consequently W ′A′B′ ∈ OW .

Conversely, if Eq. (165) holds, then for any Υ̃′ ∈ Θ̄NS(A′B′ → A′B′) we have

tr(QA′B′Υ̃′(W ′A′B′)) = tr(Υ̃′†(QA′B′)W ′A′B′) ≤ max
Υ∈Θ̄NS(AB→A′B′)

tr[Υ̃′†(QA′B′)Υ̃(WAB)]

= max
Υ∈Θ̄NS(AB→A′B′)

tr[QA′B′Υ̃′ ◦ Υ̃(WAB)]

≤ max
Υ∈Θ̄NS(AB→A′B′)

tr[QA′B′Υ̃(WAB)] = fQ(W ) ,

(167)

where we used Eq. (165) in the second line, Υ̃′† is the dual map of Υ̃, and we have employed the fact
that Υ̃′ ◦ Υ̃ is still a free operation. As the above equation holds for all QA′B′ and free adapters Υ̃′,
it implies fQ(WAB) ≥ fQ(W ′A′B′). Now, it remains to show that we can restrict the set of matrices
QA′B′ for which we have to check the monotones to the set of proper process matrices.

Step 2: To show that proper process matrices are sufficient, we consider the matrix

Q̄A′B′ = (1− ε) 1A
′B′

dA′IB
′
I

+ εLV (QA′B′). (168)
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This matrix satisfies LV (Q̄A′B′) = Q̄A′B′ , and for ε small enough, we have Q̄A′B′ ≥ 0, i.e., Q̄A′B′ is –
up to normalization – a proper process matrix. For this matrix, we obtain

tr(Q̄A′B′W ′A′B′) = d2
A′OB

′
O

(1− ε) + ε tr(LV (QA′B′)W ′A′B′)

= d2
A′OB

′
O

(1− ε) + ε tr(QA′B′W ′A′B′) ,
(169)

where we have used the self-duality of LV and the fact that W ′A′B′ is a proper process matrix, i.e., it
satisfies LV (W ′A′B′) = W ′A′B′ . From the above equation we see that up to a constant offset that only
depends on the dimension dA′OB′O , and a positive constant pre-factor, fQ̄ yields the same value as fQ.
Consequently, checking Eq. (163) for proper process matrices QA′B′ is sufficient. This concludes the
proof.

Since we did not rely in the proof on the fact that there are only two parties, the above
straightforwardly generalizes to more parties.

While in principle providing a complete characterization of all the monotones of the theory of causal
connection, the monotones provided in Prop. 8 are rather abstract, which obstructs their intuitive
interpretation, and makes it hard to deduce how the monotones we already encountered in the main
text (the signalling and the causal robustness) fit in with this complete family of monotones. While
first steps towards an operational interpretation of such a family of monotones have been taken for
the case of supermaps acting on CPTP maps [85], giving the monotones we provided here a physical
interpretation remains an open problem.
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