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The notorious quantum measurement
problem brings out the difficulty to rec-
oncile two quantum postulates: the uni-
tary evolution of closed quantum sys-
tems and the wave-function collapse af-
ter a measurement. This problematics is
particularly highlighted in the Wigner’s
friend thought experiment, where the
mismatch between unitary evolution and
measurement collapse leads to conflict-
ing quantum descriptions for different ob-
servers. A recent no-go theorem has estab-
lished that the (quantum) statistics aris-
ing from an extended Wigner’s friend sce-
nario is incompatible when one try to
hold together three innocuous assump-
tions, namely no-superdeterminism, pa-
rameter independence and absoluteness of
observed events. Building on this ex-
tended scenario, we introduce two novel
measures of non-absoluteness of events.
The first is based on the EPR2 decom-
position, and the second involves the re-
laxation of the absoluteness hypothesis as-
sumed in the aforementioned no-go theo-
rem. To prove that quantum correlations
can be maximally non-absolute according
to both quantifiers, we show that chained
Bell inequalities (and relaxations thereof)
are also valid constraints for Wigner’s ex-
periment.
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1 Introduction

In spite of the undeniable success of quantum
mechanics as a physical theory, its foundations
remain unsettled by a number of thorny issues.
At the center of the debate is the measurement
problem [1, 2].The measurement problem makes
clear the apparent mismatch between the uni-
tary, reversible and deterministic evolution of
closed quantum systems and the non-unitary, ir-
reversible, probabilistic behavior after a mea-
surement in a collapse perspective. The prob-
lem arises from a reductionist perspective where
macroscopic phenomena, like irreversible mea-
surements and their consequent collapse, should
arise from the behavior of its microscopic descrip-
tions, like the unitary evolution described by the
Schrödinger’s equation [3].

The conceptual difficulties in the measurement
problem become apparent in the gedanken exper-
iment known as "Wigner’s Friend" [4]. The sce-
nario put forward by the thought experiment in-
volves a quantum system in a superposition of
states, an observer (Wigner’s friend) perform-
ing measurements on it and a super-observer
(Wigner) who observes the friend and the friend’s
measurements on the quantum system. Ac-
cording to the standard collapse descriptions,
Wigner’s friend describes the measurement as an
irreversible process, by the collapse of the wave
function describing the quantum system into one
of the eigenstates of the observable being mea-
sured. In turn, Wigner might consider his friend
and the system the friend is interacting with as a
joint quantum system, so that from Wigner’s per-
spective, the measurement process is described
by a global unitary evolution generating an en-
tangled state between both. In this case, Wigner
traces out the state of his friend to obtain the final
state of the system. Depending on who is observ-
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ing, Wigner or Wigner’s friend, we arrive then
at two possible distinct descriptions for the same
physical process, an apparent contradiction be-
tween the friend and Wigner’s perspective, since
the latter does not ascribe a well-defined value
to the outcome associated with his friend’s well
defined observation.

Eugene Wigner himself thought this gedanken
experiment supported that consciousness was a
necessary ingredient to describe quantum mea-
surements [4]. Contrastly, Everett and his many-
worlds interpretation [5], reconciled the irre-
versible nature of measurements with an uni-
tary behavior, since each of the possible out-
comes observed by Wigner’s friend would hap-
pen, only in different worlds. Resolutions based
on hidden-variable models would required ei-
ther faster-than-light signals [6], superdetermin-
ism [7, 8] or retrocausality [9]. To the Copen-
hagen [10], Relational [11] or Quantum Bayesian
interpretations [12], there is no issue brought
about by the thought experiment, as the quan-
tum state should be seen as relative to the ob-
server – a solution that might imply the rejection
of the idea that measurement outcomes are ab-
solute and agent-independent. Alternatively, one
can introduce extra mechanisms in quantum the-
ory, such as non-unitary quantum dynamics [13]
or the gravity-induced collapse of the wave func-
tion [14, 15], which would rule out the existence
of macroscopic superpositions.

More recently, the interest in the measurement
problem and its implications for the Wigner’s
friend experiment were reignited by new results
[16–28] showing how the assumptions of the uni-
versality of quantum theory (its applicability to
describe micro as well macroscopic phenomena)
and the absoluteness of events (globally well-
defined and observer-independent) imply exper-
imentally testable constraints. Of particular rel-
evance to us is the no-go theorem in Ref. [25],
that building up on the earlier results of Brukner
[16, 17] shows that there are quantum predictions
that are incompatible with the conjunction of
no-superdeterminism (NSD), parameter indepen-
dence (PI) and absoluteness of observed events
(AOE). Similar to Bell’s theorem [29], such as-
sumptions imply constraints on the statistics aris-
ing out of that scenario, called local friendliness
(LF) inequalities in [25], that must be obeyed by
any correlations compatible with them.

Leveraging the scenario established in Ref.
[25], our aim in this paper is two-fold. First,
we introduce two different measures of non-
absoluteness of observed events. Second, we
prove that quantum correlations can reach the
maximum of such measures, thus proving that
quantum events can be maximally non-absolute.
The first measure we consider is based on the
EPR2 decomposition [30], the fraction of events
of a given observed probability distribution that
cannot be considered to be absolute. The second
measure is based on the relaxation of the assump-
tion that events should be absolute. How much
should we give up on absoluteness in order to ex-
plain quantum correlations? With that aim, we
prove that the a relaxed version of the chained
Bell inequalities [31] constrains the set of corre-
lations compatible with absoluteness of events.

The paper is organized as follows. In Sec. 2 we
review the EWFS introduced in [25]. In Sec. 3 we
introduce the two measures of non-absoluteness
employed in the paper. In Sec. 4 we prove that
the chained inequality is also a valid LF inequal-
ity and generalize it to the case where the AOE
assumption is relaxed. Based on this inequality
we prove our main result, that quantum correla-
tions can lead to events that are maximally non-
absolute. In Sec. 5 we discuss our findings and
point out interesting future research directions.

2 The extended Wigner’s Friend Sce-
nario

The bipartite extended Wigner’s friend scenario
(EWFS), as introduced in Ref. [25] consists of
two observers (the friends), Charlie and Debbie,
and two superobservers Alice and Bob (the Wign-
ers). Charlie and Debbie share a source of corre-
lations on which they always perform some fixed
measurement each inside a completely isolated
laboratory, assumed to be space-like separated,
obtaining the outcomes c, d ∈ {0, . . . , k − 1}
for Charlie and Debbie respectively. Alice ob-
serves the laboratory containing Charlie and ap-
plies a measurement x ∈ {0, . . . ,m−1} obtaining
the outcome a ∈ {0, 1} in the following way: if
x = m − 1 then a = c, which is equivalent to
opening Charlie’s laboratory and ask about the
outcome Charlie has obtained; if x 6= m−1 Alice
performs an arbitrary measurement on the lab-
oratory. The same is done by Bob and Debbie.

Accepted in Quantum 2022-08-08, click title to verify. Published under CC-BY 4.0. 2



See Fig. 1 for an illustration of the EWFS.
To test the objectiveness of the friends’s ob-

servations, that is, the fact that what the friend
observes is "out there" and that its truth value
is not subjective to the agent observing it, the
EWFS relies on three assumptions, the con-
junction of which the authors in [25] call local
friendliness (LF). The first of these assumptions,
referred to as absoluteness of observed events
(AOE), states the existence of a joint distribu-
tion P(a, b, c, d|x, y) such that the experimentally
obtained joint probability distribution p(a, b|x, y)
satisfies:

p(a, b|x, y) =
∑
c,d P(a, b, c, d|x, y),

p(a = c|x = m− 1, y) = 1,
p(b = d|x, y = m− 1) = 1.

(1)

Notice that we choose to write this condition
in a slightly different way than reference [25].
This makes the problem more approachable from
the numerical perspective while remaining com-
pletely equivalent to the original definition.

The AOE assumption assigns values only to ob-
served outcomes. Since we deal with the proba-
bility distribution p(a, b|x, y) observed in a given
experiment realized by the two Wigners (Al-
ice and Bob), we do not impose that measure-
ments that are not performed do have results.
This is quite different from the local hidden vari-
able model entering in Bell’s theorem, that ac-
cording to Fine’s theorem [32] implies that even
the outcomes of non-performed measurements
should have a well defined probability distribu-
tion. In the EWFS, this is only the case for Al-
ice’s and Bob’s outcome associated with measure-
ments x = m− 1 and y = m− 1. More precisely,
while a behavior p(a, b|x, y) compatible with the
Bell scenario can be associated with a distribution
p(a0, a1, . . . , am−1, b0, b1, . . . , bm−1, a behavior
p(a, b|x, y) compatible with LF can only be asso-
ciated with a distribution p(a, b, am−1, bm−1|x, y)
or just p(a, b, c, d|x, y). Under the AOE assump-
tion, these special outcomes have values even
when the corresponding measurements are not
performed, that is, x 6= m − 1 and y 6= m − 1.
That follows from the fact that the outcome of Al-
ice associated with the measurement x = m−1 is
encoded in the outcome c, which is measured in
every run of the experiment by Charlie (a similar
argument holding for Bob and Debbie).

The second assumption, is that of no-

Figure 1: Pictorial illustration of the extended
Wigner’s friend experiment. The observers Charlie
and Debbie measure their parts of an entangled system,
obtaining measurement outcomes c and d, respectively.
In turn, the super-observers Alice and Bob input x and
y (respectively) and then observe their friends and mea-
surement devices, obtaining outcomes a and b, respec-
tively.

superdeterminism (NSD), expressed as

p(c, d|x, y) = p(c, d). (2)

stating that c and d are independent of x and y,
or equivalently that the choices of Alice and Bob
cannot affect the results of Charlie and Debbie
and the correlations shared among them. Notice
that this is reminiscent of the free-will or mea-
surement independence assumption in Bell’s the-
orem [33–36].

The third assumption, which we call parameter
independence (PI) (named locality assumption in
[25]), states that{

p(a|c, d, x, y) = p(a|c, d, x), ∀ a, c, d, x, y,
p(b|c, d, x, y) = p(b|c, d, y), ∀ b, c, d, x, y.

(3)
Notice that the conditions above imply the no-
signalling constraints [37] over the observed prob-
ability distribution p(a, b|x, y), that is,{

p(a|x, y) = p(a|x), ∀ a, x, y,
p(b|x, y) = p(b|y), ∀ b, x, y. (4)

The conjunction of assumptions (1), (2) and (3)
define the set of local friendliness (LF) correla-
tions that we call SLF .

3 Quantifying the absoluteness of
events
It is clear that if we drop the key conditions
p(a|c, x = m − 1, y) = δa,c and p(b|d, x, y =
m − 1) = δb,d from the AOE assumption, then
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the set of correlations compatible with (1), (2)
and (3) is equal to the set of non-signalling cor-
relations defined by (4) and that we denote by
SNS . From this observation we can introduce two
natural measures quantifying the absoluteness of
events.

The first one is inspired by the EPR2 de-
composition [30], and quantifies the fraction of
events associated with a given probability dis-
tribution that cannot be described by a local
friendly model. Quite generally, as SLF is a con-
vex polytope contained in SNS , any observed dis-
tribution on the EWFS can be decomposed as

p(a, b|x, y) = q · pLF (a, b|x, y)
+ (1− q) · pNS(a, b|x, y), (5)

where pLF (a, b|x, y) ∈ SLF and pNS(a, b|x, y) ∈
SNS . In other words, for a certain proba-
bility distribution p(a, b|x, y), the convex de-
composition of eq. (5) explores the fractions q
of local-friendliness and 1 − q of non-signaling
that p(a, b|x, y) admits. Put another way, one
may want to see a particular decomposition of
p(a, b|x, y) as in eq. (5) as a signature of the frac-
tion q of local-friendliness an event might have.
In this sense, our first measure of absoluteness
of events, that we call non-absoluteness fraction
Af , is then defined as the minimal fraction of
non-absolute events weight over all possible de-
compositions as in (5), that is,

Af (p(a, b|x, y)) = min
pLF ,pNS

(1− q), (6)

an optimization that can be performed using a
linear programming [38]. Notice that LF cor-
relations have Af = 0 while correlations with
maximally non-absolute events have Af = 1. A
possible interpretation of Af can be given as fol-
lows. If one considers the that joint probabilities
have a frequentist meaning, in a statistical experi-
ment, repeated many times, the non-absoluteness
fraction Af can be understood as the fraction of
runs of the experiment where the observed mea-
surements outcomes can be deemed to be non-
absolute, in the sense that they are incompatible
with the conditions p(a = c|x = m − 1, y) = 1
and p(b = d|x, y = m− 1) = 1.

Notice that any LF inequality provides a lower
bound to the non-absoluteness fraction. Given a
generic LF inequality of the form I(p(a, b|x, y)) =∑
a,b,x,y ωa,b,x,yp(a, b|x, y) ≤ ΩLF where ΩLF is

the maximum value achievable by a LF correla-
tion, it follows that

Af ≥ 1− ΩNS − ΩQ

ΩNS − ΩLF
, (7)

where ΩNS is the maximum value achievable by
no-signalling correlations and ΩQ is the value cor-
responding to a given quantum probability distri-
bution under test. This bound follows from the
fact that I(p) = ΩQ = q·I(pLF )+(1−q)·I(pNS) ≤
q ·ΩLF +(1−q) ·ΩNS . In particular, notice that if
ΩQ = ΩNS , that is, the quantum value achieves
the maximum no-signalling violation of the LF
inequality, then it follows that Af = 1.

As mentioned, the mathematical expression of
Af is similar to the so-called non-local fraction
Nf , introduced in Ref. [30], that quantifies the
non-locality of a given distribution p(a, b|x, y) in
a Bell scenario. The key difference, however, is
the fact that in the Bell case the probability pLF
should be substituted by pLocal, that is, by prob-
abilities compatible with local hidden variable
models. Since the local friendly set of correlations
is in general bigger than the local set, we have
that, for a given p(a, b|x, y), Nf ≥ Af—recall
that we are minimizing the function (1 − q). In
particular, we can have situations where Nf > 0
but Af = 0. Regarding the bound in Eq. (7)
the same idea holds. In the case of a Bell sce-
nario we would need to replace ΩLF by ΩLocal,
the bound of a given inequality respected by Bell
local correlations.

As a second measure of absoluteness of events
we consider a relaxation of the condition in (1),
that we call ε−AOE. Namely, we now allow that

p(a, b|x, y) =
∑
c,d P(a, b, c, d|x, y),

p(a = c|x = m− 1, y) ≥ 1− ε,
p(b = d|x, y = m− 1) ≥ 1− ε.

(8)

The conjunction of (8), (2) and (3) define the
set of relaxed local friendliness (RLF) correlations
denoted as SRLFε . Clearly

SLF ⊆ SRLFε ⊆ SRLFε′ ⊆ SNS . (9)

whenever ε ≤ ε′. See Fig. 2 for a pictorial illus-
tration.

From this we can define the non-absoluteness
coefficient Ac, given by

Ac(p(a, b|x, y)) = min 2ε s.t. p(a, b|x, y) ∈ SRLFε .
(10)
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Figure 2: Pictorial illustration of the SLF , its relaxed
version and SNS. As stated in the main text SLF ⊆
SRLFε ⊆ SRLFε′ ⊆ SNS whenever ε ≤ ε′. Furthermore
SLHV ⊆ SLF where SLHV refers to the set of Bell
local correlations. A point over the hypersurface limiting
SRLFε has Ac = 2ε and Af = (1− q).

Observed distributions compatible with LF have
Ac = 0 while maximally non-absolute events are
those where Ac = 1, thus implying that the
measurement outcome of Alice when her input is
x = m − 1 can be completely uncorrelated from
that of her friend Charlie (similarly for Bob and
Debbie).

Notice that the non-absoluteness coefficient
Ac, as opposed to the non-absolutness fraction
Af , has no analogue in a Bell scenario, since it
is defined via the relaxation of the absoluteness
of events, an assumption that plays absolutely
no role in Bell’s theorem. In our view, it is pre-
cisely the relaxation of the absoluteness of events
(AOE) that makes clear the distinction between
the extended Wigner scenario (local friendliness)
and the Bell scenario (local realism). As for the
interpretation of the non-absolutness coefficient
Ac, notice that is does not take the conditions
p(a = c|x = m − 1, y) = 1 and p(b = d|x, y =
m− 1) = 1 for granted. Quite the contrary, asks
how much such conditions have to be relaxed, in
the form p(a = c|x = m − 1, y) ≥ 1 − ε and
p(b = d|x, y = m − 1) = 1 − ε, such that the ob-
served data admits an explanation. In this sense,
the measure Ac is related to a correlation set that
contains the local friendly set and tends to the
non-signalling set as Ac → 1.

Our first result shows the relation between both
measures.

Result 1. The non-absoluteness coefficient is
upper bounded by the non-absoluteness fraction,
that is

Ac ≤ Af . (11)

Proof. First, we prove that Ac is a convex func-
tion: Let p(a, b|x, y) = q pA(a, b|x, y) + (1 −

q) pB(a, b|x, y), with 0 ≤ q ≤ 1. Assume that
Ac(pA) = 2εA and Ac(pB) = 2εB and as-
sume that these optimal values are attainable
with global distributions PA(a, b, c, d|x, y) and
PB(a, b, c, d|x, y), respectively.

A possible attempt for solving Ac(p) is
thus provided by qPA(a, b, c, d|x, y) + (1 −
q)PB(a, b, c, d|x, y), which enables us to ensure
that, at least, p(a, b|x, y) ∈ SRLFε for ε = q εA +
(1−q) εB. Since the proposed solution is not nec-
essarily optimal, we must have Ac(p) ≤ q 2εa +
(1− q) 2εB, which, by definition, is the same as

Ac(q pA+(1−q) pB) ≤ qAc(pA)+(1−q)Ac(pB).

Consider now a possible realization for Af (p),
given by pLF and pNS , i.e. p = q∗ pLF + (1 −
q∗) pNS , where 1 − q∗ = Af (p). Using the con-
vexity of Ac upon this decomposition leads to

Ac(p) ≤ q∗Ac(pLF ) + (1− q∗)Ac(pNS),

but since Ac(pLF ) = 0, we identify the rhs of the
above expression with Af (p)Ac(pNS), leading to
the inequality

Ac(p) ≤ Af (p)Ac(pNS),

for a given pNS participating in an optimal de-
composition of p(a, b|x, y) for Af (p). We could
tighten the inequality by performing a linear pro-
gram minimizing Ac(pNS) within every possi-
ble decomposition for p that has a fixed weight
1− q = Af (p). Going on the opposite direction,
however, we may loosen the inequality by con-
sidering the general bound Ac(pNS) ≤ 1, which
leads to the general lower bound for Af :

Ac(p) ≤ Af (p). (12)

To illustrate both measures of non-absoluteness
in a concrete scenario, we first consider relax-
ations of the complete set of LF inequalities de-
rived in [25] for scenario where m = 3 and k = 2.
This case is completely characterized by 6 classes
of non-trivial LF inequalities given by

I1 = −〈A2〉 − 〈A1〉 − 〈B2〉 − 〈B1〉 − 〈A2B2〉
− 2〈A2B1〉 − 2〈A1B2〉+ 2〈A1B1〉 − 〈A1B0〉

− 〈A0B1〉 − 〈A0B0〉
Ω1
≤ 6,
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I2 = −〈A2〉 − 〈A1〉 − 〈A0〉 − 〈B2〉 − 〈A2B2〉
− 〈A1B2〉 − 〈A0B2〉 − 2〈A2B1〉+ 〈A1B1〉

+ 〈A0B1〉 − 〈A1B0〉+ 〈A0B0〉
Ω2
≤ 5,

I3 = −〈A2〉+ 〈A1〉+ 〈B2〉 − 〈B1〉+ 〈A2B2〉
− 〈A2B1〉 − 〈A2B0〉 − 〈A1B2〉+ 〈A1B1〉

− 〈A1B0〉 − 〈A0B0〉 − 〈A0B1〉
Ω3
≤ 4,

I4 = −〈A1〉 − 〈A0〉 − 〈B1〉 − 〈B0〉 − 〈A2B1〉
+ 〈A2B0〉 − 〈A1B2〉 − 〈A1B1〉 − 〈A1B0〉

+ 〈A0B2〉 − 〈A0B1〉 − 〈A0B0〉
Ω4
≤ 4,

I5 = 〈A2B2〉 − 〈A2B0〉+ 〈A1B2〉+ 〈A1B0〉
Ω5
≤ 2,

I6 = 〈A2B1〉 − 〈A2B0〉+ 〈A0B1〉+ 〈A0B0〉
Ω6
≤ 2,

where 〈AxBy〉 =
∑
a,b=0,1(−1)a+bp(a, b|x, y) is

the expectation value of the measurement out-
comes of a and b Alice and Bob given the inputs
x and y, respectively (similarly for the marginal
expectation values 〈Ax〉 and 〈By〉).

Using the linear program described in the Ap-
pendix, we can see how these LF inequalities
change if we allow for relaxations of the AOE -
our condition (8). It follows that the LF bound
Ωi for each inequality Ii is modified to Ωε

i as

Ωε
1 = 6 + 8ε,

Ωε
2 = 5 + 8ε,

Ωε
3 = Ωε

4 = 4 + 8ε,

Ωε
5 = Ωε

6 = 2 + 4ε.

It follows immediately that a probability distri-
bution p(a, b|x, y) achieving a value of Ii given by
Ωε
i has Ac = 2ε. As we argue next, this is the

same value for Af , thus implying that Af = Ac
in those cases. To see that, notice that if Ii = Ωε

i

then the lower bound given by eq. (7) implies
that Af ≥ 2ε. Further we notice that any de-
composition p(a, b|x, y) = q · pLF (a, b|x, y) + (1−
q) · pNS(a, b|x, y) provides an upper bound given
by Af ≤ (1− q). In particular, if we choose pNS
as a no-signalling (NS) distribution achieving the
maximum Ωε=1/2

i of inequality Ii, pLF as a LF dis-
tribution achieving Ii = Ωi, and make q = 1−2ε,

we obtain that p(a, b|x, y) leads to Ii = Ωε
i with

1 − q = 2ε and thus Af ≤ 2ε. As the lower
and upper bounds for Af coincide, it follows that
Ac = Af = 2ε.

There are cases, however, where this equiv-
alence between Ac and Af does not hold any
longer. To show that, we consider a tripartite
scenario. As described in the Appendix, the fol-
lowing symmetry of Mermin’s inequality [39] is
also a valid LF inequality:

M = 〈A3B3C2〉+ 〈A1B1C2〉
+ 〈A1B3C1〉 − 〈A3B1C1〉 ≤ βM = 2.

If we allow for a relaxation ε of the AOE assump-
tion, it follows that the LF bound is changed as
Ωε
M = 2 + 8ε. This implies that a probability dis-

tribution achieving M = Ωε
M requires Ac = 2ε.

In turn, using the same approach described above
for the bipartite case, we can obtain lower and
upper bounds for Af that coincide and lead to
Af = 4ε. That is, in this case, Ac = Af/2.

4 Quantum events are maximally non-
absolute
Our main objective is to prove that quantum cor-
relations can be maximally non-absolute accord-
ing to both measures introduced above, that is,
that Af (pQ) = 1 = Ac(pQ) for some non-local
joint probability distribution pQ(a, b|x, y) in the
quantum set [40]. To do so, we first prove a gen-
eral inequality for the EWFS with dichotomic
outcomes but arbitrary measurements and an
AOE relaxation as in eqs.(8).

Result 2. For an EWFS with k = 2 (2 out-
comes), arbitrary m (measurement inputs), and
with the AOE relaxed as in eqs.(8) the following
inequality

C(m−1) := 〈Am−1Bm−1〉 − 〈A0Bm−1〉 (13)

+
m−2∑
l=0

(〈AlBl〉+ 〈Al+1Bl〉)

≤ 2(m− 1) + 4ε

tightly bounds the set SRLFε .

Before proceeding to our main result, it is wor-
thy mentioning that if ε = 0, that is, in the usual
EWFS, the inequality (13) is one of the symme-
tries of the so-called chained Bell inequalities [31].

Next we state our main result.
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Result 3. Quantum mechanics predicts proba-
bilities distributions pQ(a, b|x, y) in the extended
Wigner’s friend scenario that are maximally non-
absolute according to the non-absoluteness coef-
ficient as well as the non-absoluteness fraction.
That is, for which Af (pQ) = 1 and Ac(pQ) = 1.

Proof. The maximal value of C(m−1) allowed in
quantum mechanics is [42]

C
(m−1)
Qmax = 2m cos

(
π

2m

)
,

which can be reached by using a two-qubit system
in the entangled state |Ψ〉,

|Ψ〉 = 1√
2

(|00〉+ |11〉) ,

shared between Alice and Bob. Alice measures
one of the operators Aj = rjσx + sjσz and Bob
Bj = r′jσx + s′jσz for j ∈ {0, . . . ,m − 1}. Here,
σx and σz standing for the Pauli matrices, and

rj = sin
(
jπ

m

)
, sj = cos

(
jπ

m

)
,

and

r′j = sin
((2j + 1)π

m

)
, s′j = cos

((2j + 1)π
m

)
.

Based on the fact that quantum correlations
allow for maximal violations of the chained in-
equality (13), we will first prove that Af = 1.
Using the lower bound in eq. (7) it follows that
if ΩQ = ΩNS then Af = 1 and that it is exactly
the case of the chained inequality (13), since the
maximum quantum violation is equal to the al-
gebraic maximum (and thus also to βNS) in the
limit m → ∞. This proves that quantum corre-
lations can be maximally non-absolute according
to the measure Af .

The proof that Ac = 1 also follows a simple ar-
gument. Notice the maximal quantum violation
of the chained inequality reaches Cm−1 = 2m
a result that requires a relaxation ε = 1/2 in
(13) and thus implies maximal non-absoluteness
of quantum correlations also regarding the mea-
sure Ac.

5 Discussion
The interest in the quantum measurement prob-
lem and its formulation via Wigner’s thought ex-
periment have been recently reignited by a num-
ber of results and no-go theorems [17–26]. Simi-
larly to what Bell’s theorem [29] did for the EPR

experiment [43], these results establish testable
constraints of the assumptions – absoluteness of
observed events, no-superdeterminism and pa-
rameter independence – underlying suchWigner’s
scenarios. Holding on the assumptions of no-
superdeterminism and parameter independence,
the violation of some constraints, called local
friendliness inequalities, are thus experimental
witnesses of the non-absoluteness of events. Like-
wise to the Bell case [34, 44–47], it is natural
then to quantify the degree of non-absoluteness of
events implied by the violation of a LF inequality.

With that aim in mind, we have introduced
two different ways to quantify non-absoluteness.
The first measure, called the non-absoluteness
fraction Af , is based on the EPR2 decomposi-
tion [30] and measures the fraction of measure-
ment outcomes of given experiment that cannot
be considered absolute. The second measure,
called non-absoluteness coefficient Ac, considers
an explicit relaxation of the assumption of abso-
luteness of observed events and thus allows the
predictions of two observers about a given mea-
surement outcome to differ. We have established
that Af ≤ Ac, and have also detailed particu-
lar cases where the measures coincide and oth-
ers where they do not coincide, which shows that
both quantities are not trivial.

Following that, we show that a given symme-
try 1 of the chained Bell inequality [31] is still
a valid LF inequality, and also generalized it to
the case where relaxations of AOE are allowed.
With that, we were able to conclude that quan-
tum correlations can be maximally non-absolute
according to the two considered measures, that
is, Af = Ac = 1.

Notice that any local friendliness inequality is
also valid Bell inequality. Theoretically, that is no
issue, since the assumptions and the physical sce-

1Any Bell inequality has a number of symmetries, other
valid inequalities obtained via the permutation of mea-
surement outcomes, inputs or even the exchange of parties.
Those operations, however, are not generally valid when
we consider an extended Wigner friend scenario, as now
the parties are not on par with each other. For instance,
the absoluteness of events constraint specifies "special" in-
puts, for which the corresponding measurement outcome
should be the same as that obtained by the related friend.
This would break the symmetry of the inequality related
to the permutation of inputs. It is in this sense that we
say that even though a given Bell inequality can also be a
LF inequality, not all symmetries of that same inequality
will have the same property.
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LHV

LF
NS

Figure 3: Pictorial representation of the set of cor-
relations such that SLV ⊂ SRLF ⊂ SNS. Notice
that if the set of free operations for non-locality and
non-absoluteness differ, it might be possible to use free
operations for non-locality that nonetheless might acti-
vate the violation of a LF inequality.

nario is quite different in both cases. This is made
clear by the relaxation of AOE that we consider
here, a relaxation that simply would make no
sense in a Bell scenario. Experimentally, however,
the issue is trickier. From a device-independent
perspective, the finer details of the experiment
and the fact the systems that Alice and Bob mea-
sure are actually themselves observers are irrele-
vant, since Charlie, Debbie, their labs and quan-
tum systems should be treated as a black-box
and are thus indistinguishable from a simple com-
mon source in a Bell scenario. How can one then
decide whether the experimental violation of an
LF inequality is not just witnessing the standard
Bell nonlocality rather than non-absoluteness of
events? One option is to move to a semi-device-
independent description where we can distinguish
the observers inside the box from a simple source
of correlations. Another option, would be to find
experimentally testable differences between Bell
and the extended Wigner scenarios. For instance,
could it be that free-operations for Bell nonlo-
cality can nonetheless increase the level of non-
absoluteness of a given observed correlation (see
Fig 3)? If that would be the case, then one could
argue that an experiment where such operations
are realized and an increase in the violation of an
LF inequality is observed, would be a clear signa-
ture for non-absoluteness instead of the good old
Bell nonlocality. For that, a resource theory of
local friendliness will be needed and we hope our
work might motivate attempts in this direction.
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A The linear program formulation for the relaxation of absoluteness of Observed
Events
A numerical approach to assess the effects of a relaxation on the AOE condition is possible by writing
the problem as a linear program. To see this, first we show that the conditions PI and NSD are
equivalent to the following condition,{

p(a, c, d|x, y) = p(a, c, d|x), ∀ a, c, d, x, y,
p(b, c, d|x, y) = p(b, c, d|y), ∀ b, c, d, x, y.

(14)

Indeed, (2) and (3) imply (14),

p(a|c, d, x, y) = p(a|c, d, x)
=⇒ p(a|c, d, x, y)p(c, d|x, y) = p(a|c, d, x)p(c, d|x, y)
=⇒ p(a|c, d, x, y)p(c, d|x, y) = p(a|c, d, x)p(c, d|x)

=⇒ p(a, c, d|x, y) = p(a, c, d|x).

Also, (14) implies (2),

p(a, c, d|x, y) = p(a, c, d|x) =⇒ p(c, d|x, y) = p(c, d|x), (15)

and

p(b, c, d|x, y) = p(b, c, d|y) =⇒ p(c, d|x, y) = p(c, d|y). (16)

Finally, (14) implies (3),

p(a, c, d|x, y) = p(a, c, d|x)
=⇒ p(a|c, d, x, y)p(c, d|x, y) = p(a|c, d, x)p(c, d|x)

=⇒ p(a|c, d, x, y)p(c, d|x) = p(a|c, d, x)p(c, d|x)
=⇒ p(a|c, d, x, y) = p(a|c, d, x).

Notice that the same approach works by replacing a by b.
Using the relation 8, the problem of finding the upper bound for I =

∑
a,b,x,y ωa,b,x,yp(a, b|x, y) in

the presence of a relaxation ε, i.e., by a behavior featuring Ac = 2ε, can be formally expressed as a
linear program:

max
q∈Rk4∗m2

〈I,Πa,b,x,yq〉

s.t. q ≥ 0,

Nq = 1(m2),

(Πa,c,d,x,y −Πa,c,d,x,y′)q = 0(k2m) ∀a, c, d, x, y, y′,

(Πb,c,d,x,y −Πb,c,d,x′,y)q = 0(k2m) ∀a, c, d, x, x′, y,
Πa=c,x=0,y ≥ (1− ε)1(m),

Πb=d,x,y=0 ≥ (1− ε)1(m),

(17)

in which 1(·) is a column vector of the dimension indicated inside the brackets, the entries of which are
always 1 and the vector 0(·) is defined analogously. The matrix N is given by,

N =


1(k4∗m2) 0(k4∗m2) 0(k4∗m2) 0(k4∗m2)

0(k4∗m2) 1(k4∗m2) 0(k4∗m2) 0(k4∗m2)

0(k4∗m2) 0(k4∗m2) 1(k4∗m2) 0(k4∗m2)

0(k4∗m2) 0(k4∗m2) 0(k4∗m2) 1(k4∗m2)


T

. (18)
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The matrix Πa,b,x,y projects the vector associated with a distribution p(a, b, c, d|x, y) into the vector
associated with its marginal distribution p(a, b|x, y). The matrices Πa,c,d,x,y=0, Πa,c,d,x,y=1, Πb,c,d,x=0,y,
and Πb,c,d,x=1,y are defined in the same way, while Πa=c,x=0,y (Πb=d,x,y=0) returns a vector containing
the probability that a = c (b = d) for different values of y (x) as entries.

Finally, in equation (17), I is a vector such that 〈I,p〉 =
∑
a,b,x,y ωa,b,x,yp(a, b|x, y), for p being the

vector associated with the distribution p(a, b|x, y).
This analysis can be directly extended into the n-partite case, by generalizing relaxation (8), and

conditions (3) and (2) accordingly. By performing this analysis in the tripartite case, we observe
that some symmetries of the Mermin inequality are also valid LF inequalities. For instance given a
relaxation of AOE by an amount ε we have that,

M = 〈A3B3C2〉+ 〈A1B1C2〉+ 〈A1B3C1〉 − 〈A3B1C1〉 ≤ Ωε
M = 2 + 8ε. (19)

in which, Ωε
M = 2 + 8ε.

B Proof of Result2
Proof. We begin noticing that our ε−AOE relaxation is analogous to allowing a certain degree of
indeterminism in the scenario described in ref. [41].
Consider relaxation 8, and define the quantities αc,d, βc,d, and γc,d,

γ(c,d)
x,y := p(a = 0, b = 0|c, d, x, y),
α(c,d)
x,y := p(a = 0|c, d, x, y),
β(c,d)
x,y := p(b = 0|c, d, x, y).

Positivity implies that

max{0, α(c,d)
x,y + β(c,d)

x,y − 1} ≤ γ(c,d)
x,y ≤ min{α(c,d)

x,y , β(c,d)
x,y }. (20)

Now define the conditional correlators 〈AxBy〉c,d =
∑
a,b(−1)a+bp(a, b|c, d, x, y). It holds that,

〈AxBy〉c,d = 1 + 4γ(c,d)
x,y − 2α(c,d)

x,y − 2β(c,d)
x,y ,

which, combined with inequalities in eq. (20), and using the fact that 2 max{r, s} = r+ s+ |r− s| for
any real r and s, leads to

2
∣∣∣α(c,d)
x,y + β(c,d)

x,y − 1
∣∣∣− 1 ≤ 〈AxBy〉c,d ≤ 1− 2

∣∣∣α(c,d)
x,y − β(c,d)

x,y

∣∣∣ .
Hence the quantity Cm−1

c,d = 〈Am−1Bm−1〉c,d − 〈A0Bm−1〉c,d +
∑m−2
l=0 (〈AlBl〉c,d + 〈Al+1Bl〉c,d) is

bounded,

Cm−1
c,d ≤ 2− 2

∣∣∣α(c,d)
m−1,m−1 − β

(c,d)
m−1,m−1

∣∣∣− 2
∣∣∣α(c,d)

0,m−1 + β
(c,d)
0,m−1 − 1

∣∣∣+ m−2∑
l=0

(
2− 2

∣∣∣α(c,d)
l,l − β

(c,d)
l,l

∣∣∣
− 2

∣∣∣α(c,d)
l+1,l − β

(c,d)
l+1,l

∣∣∣) .
Using condition 3, the above expression can be simplified replacing α(c,d)

x,y (p(a = 0|c, d, x, y)) and
β

(c,d)
x,y (p(b = 0|c, d, x, y)), by α(c,d)

x (p(a = 0|c, d, x)) and β(c,d)
y (p(b = 0|c, d, y)) respectively,

Cm−1
c,d ≤ 2m− 2Jc,d,

in which

Jc,d =
∣∣∣α(c,d)
m−1 − β

(c,d)
m−1

∣∣∣+ ∣∣∣α(c,d)
0 + β

(c,d)
m−1 − 1

∣∣∣+ m−2∑
l=0

(∣∣∣α(c,d)
l − β(c,d)

l |+ |α(c,d)
l+1 − β

(c,d)
l

∣∣∣) .
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Notice that: ∣∣∣α(c,d)
l − β(c,d)

l

∣∣∣+ ∣∣∣α(c,d)
l+1 − β

(c,d)
l

∣∣∣ ≥ ∣∣∣α(c,d)
l − α(c,d)

l+1

∣∣∣ ,
with the equality holding true for β(c,d)

l verifying

β
(c,d)
l = 1

2
(
α

(c,d)
l + α

(c,d)
l+1

)
for l ≤ m− 2. (21)

Which leads to:

Jc,d ≥
∣∣∣α(c,d)
m−1 − β

(c,d)
m−1

∣∣∣+ ∣∣∣α(c,d)
0 + β

(c,d)
m−1 − 1

∣∣∣+ m−2∑
l=0

(∣∣∣α(c,d)
l − α(c,d)

l+1

∣∣∣) ,
equality being reached via equation (21).
On the other hand, we can perform a similar analysis considering α

(c,d)
l for l ∈ {1, . . . ,m − 2}.

Similarly to the previous case, we can use the triangle inequality successively in the terms within the
summation in Eq. (22) to conclude that

m−2∑
l=0

∣∣∣α(c,d)
l − α(c,d)

l+1

∣∣∣ ≥ ∣∣∣α(c,d)
0 − α(c,d)

m−1

∣∣∣ . (22)

We may saturate this lower bound by setting α(c,d)
l as

α
(c,d)
l = l

m− 1α
(c,d)
m−1 + m− 1− l

m− 1 α
(c,d)
0 , (23)

for l ∈ {1, . . . ,m−2}, which can easily be verified, for instance by noticing that α(c,d)
l+1 −α

(c,d)
l = (α(c,d)

m−1−
α

(c,d)
0 )/(m− 1). It should be noted that this choice of α(c,d)

l is equivalent to α(c,d)
l = (α(c,d)

l−1 +α
(c,d)
l+1 )/2,

which follows from the same reasoning as used for β(c,d)
l .

Using the triangle inequality again, we can find the optimal value of α(c,d)
0 :∣∣∣α(c,d)

0 −
(
1− β(c,d)

m−1

)∣∣∣+ ∣∣∣α(c,d)
m−1 − α

(c,d)
0

∣∣∣ ≥ ∣∣∣β(c,d)
m−1 − 1 + α

(c,d)
m−1

∣∣∣ , (24)

with the equality holding true when,

α
(c,d)
0 = 1

2
(
1− β(c,d)

m−1 + α
(c,d)
m−1

)
. (25)

From which we conclude that,

Jc,d ≥
∣∣∣α(c,d)
m−1 − β

(c,d)
m−1

∣∣∣+ ∣∣∣α(c,d)
m−1 + β

(c,d)
m−1 − 1

∣∣∣ .
Using the triangle inequality one last time, we can see that∣∣∣α(c,d)

m−1 − β
(c,d)
m−1

∣∣∣+ ∣∣∣α(c,d)
m−1 + β

(c,d)
m−1 − 1

∣∣∣ ≥ ∣∣∣2α(c,d)
m−1 − 1

∣∣∣ ,
which can be achieved by setting β(c,d)

m−1 = α
(c,d)
m−1, leading to the following tight relation:

Jc,d ≥
∣∣∣2α(c,d)

m−1 − 1
∣∣∣

We highlight that the values for which the above equation becomes an equality are always well-
defined. From equation (25), one gets that α(c,d)

0 ∈ [0, 1] as long as 0 ≤ α(c,d)
m−1 ≤ 1 and 0 ≤ 1−β(c,d)

0 ≤ 1
– which is always the case. From equation (23), for 1 ≤ l ≤ m−2, α(c,d)

l ∈ [0, 1] as long as 0 ≤ α(c,d)
m−1 ≤ 1

and 0 ≤ α(c,d)
0 ≤ 1 – which is always the case. The same holds for β(c,d)

l in the case l > 0.
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The above result leads to the following condition

Cm−1 =
∑
c,d

p(c, d)Cm−1
c,d ≤ 2m− 2J, (26)

J being a convex combination of Jc,d,

J =
∑
c,d

p(c, d)Jc,d

≥
∑
c,d

p(c, d)
∣∣∣2α(c,d)

m−1 − 1
∣∣∣ . (27)

This means that the minimum value of J is obtained by setting p(c∗, d∗) = 1, in which c∗ and d∗ are
such that

∣∣∣2α(c∗,d∗)
m−1 − 1

∣∣∣ ≥ ∣∣∣2α(c,d)
m−1 − 1

∣∣∣, for all c and d. Which implies that

J ≥ |2p(a = 0, c∗, d∗|x = m− 1)− p(c∗, d∗)|
= |2p(a = 0, c∗, d∗|x = m− 1)− 1|
= |2p(a = 0, c∗|x = m− 1)− 1|
= |2p(a = 0, c∗|x = m− 1, y)− 1| , (28)

in which we have set p(c∗, d∗) = 1.
If c∗ = 0, then p(a = 0, c∗|x = m − 1) ∈ [0, 1 − ε] and J ≥ 1 − 2ε, on the other hand, the case in

which c∗ = 1 imply that p(a = 0, c∗|x = m−1) ∈ [0, ε], which also lead to J ≥ 1−2ε. Thus concluding
that the following tight bound holds

Cm−1 ≤ 2(m− 1) + 4ε. (29)

C Alternative proof that the Chained Bell inequality is also a valid LF inequality

Result 4. The EWFS with k = 2 (2 outcomes) and arbitrary m (measurement inputs) is bounded by
the following LF inequality:

C
(m−1)
j = 〈Am−1Bm−1〉 − 〈AjBm−1〉+

m−2∑
l=j

(〈AlBl〉+ 〈Al+1Bl〉) ≤ 2((m− j)− 1) (30)

for j=0.

Proof. Before proceeding with the proof, it is worthy mentioning that for each j and m the inequality
above is one of the symmetries of the so-called chained Bell inequalities [31]. That said, we write this
inequality in a slightly different way of how it is typically presented (see for instance [48]), which can
be recovered from our expression by setting j = 0 and, by defining 〈AmBm−1〉 = −〈A0Bm−1〉.
Now consider the following symmetries of the chained inequality, which bound the Bell scenario for

k = 2 and arbitrary m,

C
(m−1)
j = 〈Am−1Bm−1〉 − 〈AjBm−1〉+

m−2∑
l=j

(〈AlBl〉+ 〈Al+1Bl〉) ≤ 2((m− j)− 1) (31)

Putting the term with l = j outside the summation we obtain

C
(m−1)
j = 〈Am−1Bm−1〉 − 〈AjBm−1〉+ 〈AjBj〉+ 〈Aj+1Bj〉+

m−2∑
l=j+1

(〈AlBl〉+ 〈Al+1Bl〉) ,
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and adding 0 = 〈Aj+1Bm−1〉 − 〈Aj+1Bm−1〉 to it we get

C
(m−1)
j = 〈Aj+1Bm−1〉 − 〈Aj+1Bm−1〉+ 〈Am−1Bm−1〉 − 〈AjBm−1〉+ 〈AjBj〉+ 〈Aj+1Bj〉

+
m−2∑
l=j+1

(〈AlBl〉+ 〈Al+1Bl〉) .

Now using the very definition of C(m−1)
j we obtain

C
(m−1)
j = 〈Aj+1Bm−1〉 − 〈AjBm−1〉+ 〈AjBj〉+ 〈Aj+1Bj〉+ C

(m−1)
j+1

= C̃
(m−1)
j + C

(m−1)
j+1 ,

in which

C̃
(m−1)
j = 〈Aj+1Bm−1〉 − 〈AjBm−1〉+ 〈AjBj〉+ 〈Aj+1Bj〉, (32)

is also a symmetry of the chained inequality with only two inputs.
Using this recurrence relation we can rewrite

C
(m−1)
0 = C̃

(m−1)
0 + C

(m−1)
1

= C̃
(m−1)
0 + C̃

(m−1)
1 + C

(m−1)
2

...

= C
(m−1)
m−2 +

m−3∑
j=0

C̃m−1
j .

By the results of reference [25], we know that in the EWFS, certain symmetries of the CHSH
inequality are a valid LF inequalities. In particular it holds that

C̃
(m−1)
j ≤ 2 ∀ j, (33)

and

C
(m−1)
m−2 ≤ 2, (34)

which implies that

C
(m−1)
0 ≤ 2 +

m−3∑
j=0

2

= 2(m− 1), (35)

concluding the proof.
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