Mitiq: A software package for error mitigation on
noisy quantum computers

Ryan LaRose!?, Andrea Mari!, Sarah Kaiser!, Peter J. Karalekas®!, Andre A. Alves*,
Piotr Czarnik®, Mohamed El Mandouh®, Max H. Gordon’, Yousef Hindy?2,

Aaron Robertson®, Purva Thakre!'®, Misty Wahl*, Danny Samuel®, Rahul Mistri,
Maxime Tremblay!!, Nick Gardner®, Nathaniel T. Stemen!, Nathan Shammah!, and
William J. Zeng!812

!Unitary Fund

ZMichigan State University, East Lansing, MI

3Current address: AWS Center for Quantum Computing, Pasadena, CA 91125, USA
“Hamburg University of Applied Sciences, Hamburg, Germany

*Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
®|nstitute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
"Instituto de Fisica Teérica, UAM/CSIC, Universidad Auténoma de Madrid, Madrid, Spain
8Stanford University, Palo Alto, CA

°Independent researcher

050uthern lllinois University, Carbondale, IL

Mnstitut quantique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
2Goldman, Sachs & Co, New York, NY

We introduce Mitiq, a Python package for error mitigation on noisy quan-
tum computers. Error mitigation techniques can reduce the impact of noise on
near-term quantum computers with minimal overhead in quantum resources
by relying on a mixture of quantum sampling and classical post-processing
techniques. Mitiq is an extensible toolkit of different error mitigation methods,
including zero-noise extrapolation, probabilistic error cancellation, and Clifford
data regression. The library is designed to be compatible with generic backends
and interfaces with different quantum software frameworks. We describe Mitiq
using code snippets to demonstrate usage and discuss features and contribu-
tion guidelines. We present several examples demonstrating error mitigation
on IBM and Rigetti superconducting quantum processors as well as on noisy
simulators.

arXiv:2009.04417v4 [quant-ph] 1 Aug 2022

1 Introduction

Methods to counteract noise are critical for realizing practical quantum computation.
While fault-tolerant quantum computers that use error-correcting codes are an ideal goal,
they require physical resources beyond current experimental capabilities. It is therefore
interesting and important to develop other methods for dealing with noise on near-term
quantum computers.

In recent years, several methods, collectively referred to as quantum error mitigation
methods [1], have been proposed and developed for this task. Among them are zero-noise

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 1

https://quantum-journal.org/?s=Mitiq:%20A%20software%20package%20for%20error%20mitigation%20on%20noisy%20quantum%20computers&reason=title-click
https://quantum-journal.org/?s=Mitiq:%20A%20software%20package%20for%20error%20mitigation%20on%20noisy%20quantum%20computers&reason=title-click

— scaling

. zne -

) inference

— representations

- pec —

@)
" - types
1

lr { tl"a'ln'lng
E — cdr

regression

— benchmarks

1 dinterface

Figure 1. The structure of Mitiq modules. Different error mitigation techniques are organized in different
modules, including zero noise extrapolation (zne), probabilistic error cancellation (pec), and Clifford
data regression (cdr). Other modules are dedicated to auxiliary tasks such as interfacing with different
quantum software libraries (interface) and bench-marking error mitigation strategies (benchmarks).

extrapolation [2, 3|, probabilistic error cancellation |2, 4], Clifford data regression [5, 6],
dynamical decoupling [7, 8, 9], randomized compiling [10], and subspace expansion [11].
Several error mitigation methods have also been tested experimentally [12, 13, 14, 15, 16,
17, 18]. To aid research, improve reproducibility, and move towards practical applications,
it is important to have a unified framework for implementing error mitigation techniques
on multiple quantum back-ends.

To these ends, we introduce Mitiq: a software package for error mitigation on noisy
quantum computers. Mitiq is an open-source Python library that interfaces with multiple
quantum programming front-ends to implement error mitigation techniques on various real
and simulated quantum processors. Mitiq supports Cirq [19], Qiskit [20], pyQuil [21], and
Braket [22] circuit types and any back-ends, real or simulated, that can execute them. The
library is extensible in that new front-ends and back-ends can be easily supported as they
become available. Mitiq currently implements zero-noise extrapolation (ZNE), probabilistic
error cancellation (PEC), and Clifford data regression (CDR), and its modular design
allows support for additional techniques, as shown in fig. 1. FError mitigation methods
can be applied in a few additional lines of code, but the library is still flexible enough for
advanced usage.

In section 2, we show how to get started with Mitiq and illustrate its main usage.
We then show experimental and numerical examples in section 3 that demonstrate how
error mitigation with Mitiq improves the performance of noisy quantum computations. In
section 4, we describe in detail the zero-noise extrapolation module. In section 5, we give an
overview of the probabilistic error cancellation module. In section 6, we present the Clifford
data regression module. We discuss further software details and library information in
section 7 including future development, contribution guidelines, and planned maintenance
and support. Finally, in section 8 we discuss the relationship between Mitiq and other
techniques for dealing with errors in quantum computers.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 2

[V R

Software Framework Circuit Type

Cirq cirq.Circuit
Qiskit giskit.QuantumCircuit
PyQuil pyquil.Program
Braket braket.circuits.Circuit

Table 1: The quantum software frameworks compatible with Mitiq. Since Mitiq interacts with circuits
but is not directly responsible for their execution, supporting a new circuit type requires only to define a
few conversion functions. Therefore, we expect the list in this table to grow in the future.

2 Getting started with Mitiq

2.1 Requirements and installation

Mitiq is a Python library that can be installed on Mac, Windows, and Linux operating
systems via PyPI by executing the instruction below at a command line.

pip install mitiq
Codeblock 1: Installing Mitiq through PyPlI.

To test installation, one can run the following.

import mitiq

mitiq.about ()

Codeblock 2: Testing installation & viewing package versions.

This code prints information about the Mitiq version and the versions of installed packages.

Authored by: Mitiq team, 2020 & later (https://github.com/unitaryfund/mitiq)
Mitiq Version: 0.9.3

Core Dependencies

Cirq Version: 0.10.0
NumPy Version: 1.20.1
SciPy Version: 1.4.1

Optional Dependencies

PyQuil Version: 2.28.0
Qiskit Version: 0.24.0
Braket Version: 1.5.16

Python Version: 3.7.7
Platform Info: Linux (x86_64)

Codeblock 3: Example output of codeblock 2.

In this example output, we see several packages. The core requirements of Mitiq are
Cirq (used to internally represent and manipulate quantum circuits), NumPy (used for gen-
eral numerical procedures), and SciPy [23| (used for curve fitting). The remaining packages
(pyQuil, Qiskit, Braket) are optional quantum software packages which can interface with
Mitiq. Although Mitiq’s internal quantum circuit representation is a Cirq Circuit, any
supported quantum circuit types can be used with Mitiq. The current supported circuit
types are summarized in table 1. A Mitiq QPROGRAM is the union of all supported circuit
representations which are installed with Mitiq. For example, if Qiskit is the only optional

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 3

w N

package installed, the QPROGRAM type will be the union of a Cirq Circuit and a Qiskit
QuantumCircuit. If pyQuil is also installed, QPROGRAM will also include the pyQuil Program

type.
The source code for Mitiq is hosted on GitHub at

https://github.com/unitaryfund/mitiq

and is distributed with an open-source software license: GNU GPL v. 3.0.
More details about the software, packaging information, and guidelines for contributing
to Mitiq are included in section 7.

2.2 Main usage

To implement error mitigation techniques in Mitiq, we assume that the user has a function
which inputs a quantum circuit and returns the expectation value of an observable. Mitiq
uses this function as an abstract interface of a generic noisy backend and we refer to it as
an ezecutor because it executes a quantum circuit. The signature of this function should
be as follows:

def executor(circuit: mitiq.QPROGRAM) -> float:

Codeblock 4: Signature of an executor function which is used by Mitiq to perform quantum error
mitigation.

Mitiq treats the executor as a black box to mitigate the expectation value of the
observable returned by this function. The user is responsible for defining the body of the
executor, which generally involves:

1. Running the circuit on a real or simulated QPU.
2. Post-processing to compute an expectation value.
3. Returning the expectation value as a floating-point number.

Example executor functions are shown in appendix A. Since Mitiq treats the executor
as a black box, circuits can be run on any quantum processor available to the user. For
example, we present benchmarks run on IBM and Rigetti quantum processors as well as
on noisy simulators in section 3.

Once the executor is defined, implementing a standard error mitigation technique such
as zero-noise extrapolation (ZNE) needs only a single line of code:

from mitiq.zne import execute_with_zne

zne_value = execute_with_zne(circuit, executor)

Codeblock 5: Using Mitiq to perform zero-noise extrapolation. The circuit is a supported quantum
program type, and the executor is a function which executes the circuit and returns an expectation
value.

The execute_with_zne function uses the executor to evaluate the input circuit at
different noise levels, extrapolates back to the zero-noise limit and then returns this value
as an estimate of the noiseless observable. Figure 2 shows a high-level workflow.

As described in section 4, there are multiple techniques to scale the noise in a quantum
circuit and infer (extrapolate back to) the zero-noise limit. The default noise scaling
method used by execute_with_zne is random local unitary folding [13] (see section 4.1),
and the default inference technique is Richardson extrapolation (see section 4.2). Different
techniques can be specified as arguments to execute_with_zne as follows.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 4

https://github.com/unitaryfund/mitiq

User mitiq.zne Hardware

\ 4

Quantum Noise-scaled
program | circuits
] |H v
1. Generate
circuits Execute on
; backend
L
Error- Measurement
mitigated |, results from|lg&
expectation | noisy
value e circuits [F

Figure 2: Overview of the zero-noise extrapolation workflow in Mitiq. An input quantum program is
converted into a set of noise-scaled circuits defined by a noise scaling method and a set of noise scale
factors. These auxiliary circuits are executed on the back-end according to a user-defined executor
function (see appendix A for examples) producing set of noise-scaled expectation values. A classical
inference technique is used to fit a model to these noise-scaled expectation values. Once the best-fit
model is established, the zero-noise limit is returned to give an error-mitigated expectation value.

zne_value = execute_with_zne (
circuit,
executor,
scale_noise=<noise scaling method>,
factory=<inference method>,

)

Codeblock 6: Providing arguments to execute_with_zne to use different noise scaling methods and
inference techniques.

In addition to zero-noise extrapolation, one might be interested in applying a different
error mitigation technique. For example, probabilistic error cancellation (PEC) [2, 4] is a
method which promises to reduce the noise of a quantum computer with the only additional
resource requirement being a higher sampling overhead.

Assuming the user has defined an executor as described above, PEC can be applied
as follows:

from mitiq.pec import execute_with_pec

pec_value = execute_with_pec(
circuit,
executor ,
representations=<quasi-probability representations of ideal circuit
gates>,

)

Codeblock 7: Using Mitiq to perform probabilistic error cancellation. The circuit is a supported
quantum program type, the executor is a function which executes the circuit and returns an
expectation value and the representations argument contains information about the quasi-probability
representations of the ideal gates in terms of the hardware noisy gates. This Codeblock is a template —
a complete, executable example can be found in the Mitiq documentation (see section 7.2).

The execute_with_pec function internally samples from a quasi-probability represen-
tation of the input circuit that depends on the input representations of individual
gates (see section 5.2 for more details on gate representations). The user-defined executor
is used to run the sampled circuits. Eventually, execute_with_pec combines the results

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 5

and returns an unbiased estimate of the ideal observable. As schematically represented in
fig. 6, the workflow is very similar to the previous case of ZNE (shown in fig. 2) but, in
this case, the noisy circuits are sampled probabilistically and executed at the base noise
level of the underlying hardware (noise scaling is not used).

The code examples shown in codeblock 4 to 7 demonstrate the main usage of Mitiq.
Alternatives to the execute_with_zne and execute_with_pec functions are described in
section 7.1 — these alternatives implement the same methods but offer different ways to
call them which may be more convenient, depending on context.

In the following section, we show results of benchmarks using Mitiq on IBM and Rigetti
quantum processors as well as noisy simulators. We then explain the structure of the library
in more detail.

3 Benchmarks with Mitiq

3.1 Randomized benchmarking circuits

(a) IBM Q London (b) Rigetti Aspen-8
1.4 Y~ Linear 1.4 Y¢— Linear
—A— Richardson | A~ Richardson

1.2 + —@— Quadratic 1.24 - ~@— Quadratic
8 I - Exponential A - Exponential
S 1.0{ @ 1.01
o& 08| @ 0.8 ‘E
< o

%

I\I I
04 I\I\I__I_ | III}III 3

0.2 0.2
0 1 2 3 4 5 6 0 1 2

Noise scaling A; Noise scaling A;

Figure 3: Zero-noise extrapolation on two-qubit randomized benchmarking circuits run on (a) the IBMQ
“London” quantum processor and (b) the Rigetti Aspen-8 quantum processor. Results are obtained from
50 randomized benchmarking circuits which contain, on average, 97 single-qubit gates and 17 two-qubit
gates for (a) and 19 single-qubit gates and 7 two-qubit gates for (b). Noise is increased via random local
unitary folding (see section 4.1), and markers show zero-noise values obtained by different extrapolation
techniques (see section 4.2). For example, the red circle is obtained by fitting a quadratic polynomial to
the data points (blue), whereas the purple square is obtained by fitting an exponential decay to the
same data points. (Note that some markers are staggered for visualization, but all are extrapolated to
the zero-noise limit.) In this example, the true zero-noise value is {(00|p|00) = 1. For (b), qubits 32
and 33 are used on the Aspen-8 processor, while for (a) the same two qubits are not necessarily used
for each run. For linear, quadratic and exponential extrapolations, all data points are used to fit the
corresponding extrapolation functions. For Richardson extrapolation, we use only three data points
(first, middle, and last), corresponding to a quadratic interpolation of the three points.

Figure 3 shows the effect of zero-noise extrapolation on two-qubit randomized bench-
marking circuits run on both IBM and Rigetti quantum computers. The blue curve shows
the expectation value (00|p|00) (which should be 1 for a noiseless circuit where p = [00)(00|)
at different noise levels, and markers show mitigated observable values obtained from dif-
ferent inference techniques. Error bars show the standard deviation over fifty independent
runs.

Depending on the noise model as well as base noise level, different inference techniques
can provide better zero-noise estimates. The aim of the experiments shown in fig. 3 is to
demonstrate how Mitiq can be used to easily apply different extrapolation techniques on

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 6

different backends. In this work, we are not interested in a rigorous comparison of the
performances of different extrapolation methods, since this would require a much more
detailed experimental and statistical analysis.

We discuss inference techniques more in section 4.2 and the limitations of zero-noise
extrapolation more in section 8.1.

3.2 Potential energy surface of H,

We now consider a canonical example of computing the potential energy surface of molec-
ular Hydrogen using the variational quantum eigensolver. We follow Ref. [24]| and use the
minimal STO-6G basis and Bravyi-Kitaev transformation to write the Hamiltonian for Ho
as

H = gol + g1Z0 + 9221 + 932021 + gaXo X1 + g5YoY1. (1)

Here, g; are numerical coefficients which depend on the atomic separation and 7, X,Y and
Z are Pauli operators. We use the same single-parameter variational circuit shown in fig. 1
of Ref. [24] and we minimize the expectation value of the Hamiltonian given in Eq. (1) via
independent brute force optimizations evaluated for different values of the atomic distance
(bond length). We simulate the experiment with and without error mitigation, assuming
the presence of single-qubit depolarizing noise with error probability p = 0.05 (acting after
each layer of gates).

(a) Unmitigated (b) Mitigated
151 % -E- p=0.0 1.5 -@- p=0.0
—~ B B~ p=0.02 ©- p=0.02
S 1of -8- p=0.04 1.0 -~ p=0.04
=] E:‘\. -E- p=0.06 -@- p=0.06
j =
© 0.5 W 0.5
as '
Vi \
g 0.01 i 'ta_“\- 0.0
~ \ |
© o5 ‘.D%ﬂﬂ'll“- -0.5
g . H EeppmreEEnEEREEEEEE
M =] uUDDULuuUUUIJDU
h BEEEE e EeHE
-1.0 !“!"!"-I.“. -1.0 gfe
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
Atomic distance (Angstroms) Atomic distance (Angstroms)
(c)
10° = ——r |
O
—
S ././/.7 e)
= @)
)
L 10 pt
=
8
é) . -# Unmitigated
o- Mitigated
10-2
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Noise strength p

Figure 4: Unmitigated (a) and mitigated (b) energy surfaces of Hy. The mitigated energy surfaces use
zero-noise extrapolation with random local unitary folding (see section 4.1) and second-order polynomial
inference (see section 4.2). Panel (c) quantifies the relative error of potential energy surfaces as the
L, distance ||Eo(r) — Ep(r)||2/]|Eo(r)]||2 for different (simulated) depolarizing noise strengths p. In
the previous formula, Ej is the ideal noiseless (p = 0) expectation value of the Hamiltonian, and r
denotes the inter-atomic distance. The code to reproduce the results of this Figure can be found in the
Examples section of the Mitiq documentation.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 7

800+ . 1 PEC samples
i i : —— PEC value
i | 1 — = Unmitigated Value
6001 ! i I
%) i i |
+ i | 1
5 5 ; I
3 400 i
© [
|
200 :
|
|
|

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Expectation Value

Figure 5: Expectation value estimated with PEC (green line) and the corresponding histogram of raw
unbiased PEC samples (gray bars). For comparison, also the unmitigated expectation value is shown
(red dashed line). The exact ideal result is zero. For the numerics, we used a density matrix simulation
and therefore shot noise is absent. The total number of PEC samples, corresponding to the sum of all
the histogram counts, is 1000. The mean of all the unbiased PEC samples (i.e. the mean value of the
gray histogram) corresponds to the error-mitigated PEC value represented as a vertical green line. The
circuit used in this example is shown in the inset.

Figure 4(a) shows unmitigated energy surfaces at three different noise levels while
fig. 4(b) shows the mitigated energy surfaces. To compute the mitigated curves, we use
zero-noise extrapolation with random local unitary folding (see section 4.1) and second-
order polynomial inference (see section 4.2). As can be seen, the mitigated curves overlap
with the true noiseless curve much more closely than the unmitigated curves. The error is
quantified in fig. 4(c).

3.3 Probabilistic error cancellation example

We finally consider a toy example where Mitiq is used to apply probabilistic error cancel-
lation. Consider the simple two-qubit circuit shown in the inset of fig. 5, corresponding to
U = CNOT; 2 0 X1 o Hy (where Hy is the Hadamard gate applied on the second qubit)l.
Assume that we want to measure the expectation value of O = |00)(00|, whose exact theo-
retical value is zero. We also assume that each gate of the (simulated) backend is followed
by local (single-qubit) depolarizing noise with error probability p = 0.1. Because of such
noise, the unmitigated expectation value is nonzero (0.0622). However, after using Mitiq to
implement PEC, one can improve the estimate by almost an order of magnitude (0.0071).
The results are reported in fig. 5, where the histogram of the raw PEC samples is also
visible.

4 /Zero-noise extrapolation module

We now describe the Mitiq library in more detail. The module structure is shown in
fig. 1 and includes a module to interface with supported quantum programming frame-
works, several modules associated to different error mitigation techniques, and a module
for benchmarking such techniques.

In this notation, the chronological order of the gates is from right to left, i.e., CNOT is the last gate of
Uu.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 8

In this section, we focus on the zero-noise extrapolation module mitiq.zne, while other
error mitigation modules are considered in the next sections.

Zero-noise extrapolation was first introduced in [2, 3] and works by intentionally in-
creasing (scaling) the noise of a quantum computation to then extrapolate back to the
zero-noise limit. More specifically, let p be a state prepared by a quantum circuit and
E' = E be an observable. We wish to estimate Tr[pE] = (E) as though we had an ideal
(noiseless) quantum computer, but there is a base noise level 79 which prevents us from
doing so. For example, 9 could be the strength of a depolarizing channel in the circuit.
The idea of zero-noise extrapolation is to compute

(E(v:)) = (E(Aiv0)) (2)

where (real) coefficients \; > 1 scale the base noise vy of the quantum computer. After this,
a curve is fit to the data collected via Eq. (2) which is then extrapolated to the zero-noise
limit. This produces an estimate of the noiseless expectation value (E).

To implement zero-noise extrapolation, we thus need two subroutines:

1. A means of scaling the noise v; = Ao for different scale factors A;, and

2. A means of fitting a curve to the noisy expectation values and extrapolating to the
zero-noise limit.

In the remainder of this section, we describe how these subroutines are implemented in
Mitiq, showing several methods for both noise scaling as well as fitting/extrapolation,
which we also refer to as inference.

4.1 Noise scaling

In one of the first formulations of zero-noise extrapolation [2], noise is scaled in supercon-
ducting processors by implementing pulses at lower amplitudes for longer time intervals.
Considering that most quantum programming languages support gate-model circuits and
not pulse-level access, it can be convenient to scale noise in a manner which acts on uni-
tary gates instead of underlying pulses. For this reason, Mitiq implements unitary folding,
introduced in [13], as a noise scaling method.

4.1.1 Unitary Folding

Unitary folding works by mapping gates (or groups of gates) G to
G — GG'G. (3)

This leaves the ideal effect of the circuit invariant but increases its depth. If G is a gate
of the circuit, we refer to the process as local folding. If G is the entire circuit, we call it
global folding.

In Mitiq, folding functions input a circuit and a scale factor — i.e., a number to
increase the depth of the circuit by. (In Eq. (2), each coefficient)\; is a scale factor.) The
minimum scale factor is one (which corresponds to folding no gates), a scale factor of three
corresponds to folding all gates, and scale factors beyond three fold some or all gates more
than once.

For local folding, there is a degree of freedom for which gates to fold first. This order in
which gates are folded can affect how the noise is scaled and thus the overall effectiveness
of zero-noise extrapolation. Because of this, Mitiq defines several local folding functions in
mitiq.zne.scaling, including:

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 9

W N e

6

10
11

12

13

15

16

VN

NN N

1. fold_gates_from_left
2. fold_gates_from_right

3. fold_gates_at_random

We explain how these functions work with the following example. We first define a
circuit, here in Cirq, which for simplicity creates a Bell state.

import cirq

qreg = cirq.LineQubit.range (2)

circ = cirq.Circuit(
cirq.ops.H.on(qreg[0]),
cirq.ops.CNOT.on(qreg[0], qregli]),

)

print ("Original circuit:", circ, sep="\n")
Original circuit:

0: ---H---0---

|

i g oooosos Ro==

Codeblock 8: Defining a Bell state circuit in Cirq to be folded.

We can now use a local folding function, e.g. fold_gates_from_left, to fold this
circuit.
from mitiqg.zne import scaling

folded = scaling.fold_gates_from_left (
circ, scale_factor=2,

7))

print ("Folded circuit:", folded, sep="\n")
Folded circuit:

0: ---H---H---H---0---

|

1: ———mmmmmm—m - X---

Codeblock 9: Local folding from left on a Cirq circuit.

We see that the first Hadamard gate H has been transformed as H — HHTH, to scale the
depth of the circuit by a factor of two.

In Mitiq, folding functions do not modify the input circuit. Because of this, we can
input the same circuit to fold_gates_from_right to see the effect of this method.

3 folded = scaling.fold_gates_from_right (

circ, scale_factor=2,

)
; print ("Folded circuit:", folded, sep="\n")
Folded circuit:
0: ---H---0---@---0---
I [|
1 —------ X---X---X---

Codeblock 10: Local folding from right on a Cirq circuit. The scaling module is imported in codeblock 9.

Here, we see that the second (CNOT) gate is folded instead of the first (Hadamard) gate,
as expected when we start folding from the right (or end) of the circuit instead of the left
(or start) of the circuit.

The previous functions fold gates according to the following rules:

1. If the scale factor is an odd integer 1 + 2n, all gates are folded n times.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 10

2. A generic real scale factor can always be written as A = 1 + 2(n + J), where n is an
integer and § < 1. In this case, all gates are folded n times and, moreover, a subset
of gates is folded one more time to better approximate the scale factor. The choice
of this subset of gates can be random (in fold_gates_at_random) or deterministic
(in fold_gates_from_left and fold_gates_from_right).

We emphasize that, although these examples used a Cirq Circuit, circuits can be
defined in any supported quantum programming language and the interface is the same as
above. In addition to Cirq, Mitiq supports other quantum libraries as listed in table 1. By
default, all folding functions return a circuit with the same type as the input circuit.

In the previous examples, each folded gate counts equally in the folded circuit depth.
However, this may not be a reasonable assumption for realistic hardware as different gates
have different noise levels. Because of this, each folding function in Mitiq supports “folding
by fidelity.” This works by passing an input dictionary of gate fidelities (either known
or estimated) as an optional argument to a folding function. More details on folding by
fidelity can be found in Mitiq’s documentation.

Finally, we mention global folding. In contrast to local folding which folds subsets of
gates, global folding folds the entire circuit until the input scale factor is reached. Below

we show an example of global folding using the same Bell state circuit circ defined in
codeblock 8.

folded = scaling.fold_global(circ, scale_factor=3.0)

print ("Folded circuit:", folded, sep="\n")
3 # Folded circuit:

0: ---H---@---@---H---H---0---

| | |

#1: —------ R O X---

Codeblock 11: Global folding on a Bell state circuit.

Here, we see that the entire Bell state circuit has been folded once to reach the input scale
factor of three. If the input scale factor is not reached by an integer number of global
folds, fold_global will fold a group of gates from the end of the circuit such that the
scale factor is reached.

4.1.2 Parameter-noise scaling

A gate is an abstract elementary operation which, however, is physically implemented as a
continuous dynamical evolution. This evolution is generated by a suitable time-dependent
control of a Hamiltonian that depends on the details of the hardware. FErrors in the
calibration of control pulses (e.g. pulse-area errors) or the classical noise affecting their
implementation (e.g. electronic noise) can generate a dynamical channel which is different
from the desired ideal gate.

In order to mitigate these type of errors, we need a practical way of scaling them. In
principle this would require the detailed knowledge of the platform-dependent pulses and
Hamiltonians, however, in Mitiq a simplified noise model is used instead. The simplified
model is based on the fact that any unitary gate G can always be expressed as G =
exp(—iH), for some constant Hamiltonian H = HT (which may be different from the
physical one). Therefore, each unitary gate admits a natural parametrization with respect
to a real exponent 6:

G(6) = exp(—iHb) = GY. (4)

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 11

https://mitiq.readthedocs.io/en/latest/guide/guide_04-folding.html#folding-gates-by-fidelity

A multi-parameter version of Eq. (4) was considered in [13], but is currently not used in
Mitiq. It is also worth to mention that gates are often directly defined in the parametric
form of Eq. (4) as, for example, in the case of Pauli rotations.

In this setting, a noise model approximately modeling calibration and control errors
can be expressed with respect to the classical parameter §. We can assume that the actual
gate is generated by a noisy parameter 6 that we can model as a random variable with
mean 6 and with some variance o2. Noise scaling can be achieved by artificially injecting
additional classical noise:

6 — 0N =0+56 (5)
where § is a random variable with zero mean and variance equal to (1 — A)o2, such that
the resulting noise scaled parameter) has mean 6 and variance Ao2.

In practice, if o2 is known for each noisy gate, parameter scaling can be obtained
by randomly over-rotating or under-rotating each gate according to the stochastic angles
defined in Eq. (4). This noise scaling technique can be applied with Mitiq as shown in the
next Codeblock.

from mitiq.zne.scaling import scale_parameters

scaled_circuit = scale_parameters(
circuit=<the circuit to scale>,
scale_factor=<the noise scale factor>,
base_variance=<the base level of noise>,
)
Codeblock 12: Applying parameter-noise scaling to a quantum circuit. The same base level of noise
(base_variance) is assumed for each gate of the circuit.

If the value of the base noise o2

is unknown, it needs to be estimated in order to apply
this noise scaling method. The function compute_parameter_variance in the sub-module
mitiq.zne.scaling can be used for this task. Alternatively, the user may independently
perform a custom estimation of o and only use Mitiq for the noise scaling step described
in codeblock 12.

The full application of ZNE obtained via the parameter-noise scaling method is shown
in the next Codeblock.
from functools import partial
from mitiq.zne.scaling import compute_parameter_variance, scale_parameters

5)

base_variance = compute_parameter_variance (
executor , <gate>, <qubit>,
scale_param_noise = partial(
scale_parameters, base_variance=base_variance,
)
zne_value = zne.execute_with_zne(
circuit,
executor,
scale_noise=scale_param_noise,
num_to_average=10,
)

Codeblock 13: Applying parameter-noise scaling for ZNE.

4.1.3 Using noise scaling methods in execute_with_zne

As mentioned in section 2.2, the default noise scaling method in execute_with_zne is
fold_gates_at_random. Different methods can be used by passing an optional argument

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 12

to execute_with_zne. For example, to use global folding, one can do the following.

from mitiq.zne import execute_with_zne
from mitiq.zne.scaling import fold_global

zne_value = execute_with_zne (
circuit,
executor ,
scale_noise=fold_global,

)

Codeblock 14: Using zero-noise extrapolation with global folding by passing fold_global as an optional
argument to execute_with_zne. The circuit and executor are as in section 2.2.

Depending on the noise model of the quantum processor, using a different folding method
may better scale the noise and lead to better results.

To end the discussion on noise scaling, we note that some scaling methods are deter-
ministic while some are non-deterministic. In particular, global folding and local fold-
ing from left/right return the same folded circuit if the scale factor is the same, but
fold_gates_at_random can return different circuits for the same scale factor. Because
of this, the function execute_with_zne has another optional argument num_to_average
which corresponds to the number of times to compute expectation values at the same scale
factor. For example, if num_to_average = 3, the noise scaling method is called three times
at each scale factor, and the expectation value at this scale factor is the average over the
three runs. Such averaging can smooth out effects due to non-deterministic noise scaling
and lead to better results in zero-noise extrapolation. fig. 4(b) uses fold_gates_at_random
with num_to_average = 5.

4.2 Classical inference: Factory objects

In Mitiq, a Factory object is a self-contained representation of a classical inference tech-
nique. In effect, it performs the “extrapolation” part of zero-noise extrapolation. This
representation is hardware-agnostic and even quantum-agnostic since it only deals with
classical data — namely, the input and output of a noisy computation. The main tasks of
a factory are as follows:

1. Compute the expectation value by running an executor function at a given noise
level, and record the result;

2. Determine the next noise level at which the expectation value should be computed;

3. Perform classical inference using the history of noise levels and expectation values to
compute the zero-noise extrapolated value.

The structure of a Factory is designed to account for adaptive fitting techniques in
which the next noise level depends on the history of previous noise levels and expectation
values. In Mitiq, (adaptive) fitting techniques in zero-noise extrapolation are represented
by specific factory objects. All built-in factories, summarized in table 2, can be imported
from the mitiq.zne.inference module.

4.2.1 Using factories in execute_with_zne to perform different extrapolation methods

We now show examples of performing zero-noise extrapolation with fitting techniques de-
fined by factories in table 2. As mentioned in section 2.2, this is done by providing a factory
as an optional argument to execute_with_zne. To instantiate a non-adaptive factory, we

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 13

g

10
11

12

Class Extrapolation Method

LinearFactory Extrapolation with a linear fit.
RichardsonFactory Richardson extrapolation.
PolyFactory Extrapolation with a polynomial fit.
ExpFactory Extrapolation with an exponential fit.
PolyExpFactory Similar to ExpFactory but the exponent can be a non-
linear polynomial.
AdaExpFactory Similar to ExpFactory but the noise scale factors are
adaptively chosen.

Table 2: Factories that can be imported from mitiq.zne.inference to perform different extrapolation
methods. More information is available in the Mitiq documentation and an analysis of the different
extrapolation methods can be found in Ref. [13].

input the noise scale factors we want to compute the expectation values at, as shown below
for the LinearFactory.

from mitiq.zne.inference import LinearFactory

linear_factory = LinearFactory(scale_factors=[1.0, 2.0, 3.0])

Codeblock 15: Initializing a factory object.

Here the scale_factors define the noise levels at which to compute expectation val-
ues during zero-noise extrapolation. This factory can now be used as an argument in
execute_with_zne as follows. As in section 2.2, the circuit is the quantum program
which prepares a state of interest and the executor is a function which executes the cir-
cuit and returns the expectation value of an observable.

; from mitiq.zne import execute_with_zne

zne_value = execute_with_zne (
circuit,
executor,
factory=linear_factory,

)

Codeblock 16: Using a factory object as an optional argument of mitiq.zne.execute_with_zne.

Instead of the default Richardson extrapolation at noise scale factors 1,2 and 3, this call
to execute_with_zne will perform linear extrapolation at the specified noise scale factors.
As mentioned in section 4.1, different noise scaling methods can also be used with the
optional argument scale_noise.

Most extrapolation techniques implemented in Mitiq are static (i.e., non-adaptive) and
can be instantiated in a similar manner as the LinearFactory. For example, to use a
second-order polynomial fit, we use a PolyFactory object as follows.

from mitiq.zne import execute_with_zne
from mitiq.zne.inference import PolyFactory

zne_value = execute_with_zne(
circuit,
executor ,
factory=PolyFactory(scale_factors=[1.0, 2.0, 3.0], order=2),

Codeblock 17: Instantiating a second-order PolyFactory.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 14

https://mitiq.readthedocs.io/en/latest/guide/guide_05-factories.html

1
2
3
1
5

NN
N

Other static factories follow similar patterns but may have additional arguments in their
constructors. For example, ExpFactory can take in a value for the horizontal asymptote
of the exponential fit. For full details, see the Mitiq documentation.

Last, we show an example of an adaptive fitting technique defined by the AdaExpFactory.
To use this method (introduced and described in Ref. [13]), we can do the following:

from mitiq.zne import execute_with_zne
from mitiq.zne.inference import AdaExpFactory

zne_value = execute_with_zne (
circuit,
executor ,
factory=AdaExpFactory(scale_factor=2.0, steps=5),

Codeblock 18: Using execute_with_zne with an adaptive fitting technique.

Instead of a list of scale factors, here we provide the initial scale factor and the rest are
determined adaptively. The number of scale factors determined is equal to the argument
steps. Additional arguments which can be passed into the AdaExpFactory are described
in the Mitiq documentation.

4.2.2 Using custom fitting techniques

A custom fitting technique can be used in Mitiq by defining a new factory class which
inherits from the abstract classmitiq.zne.inference.Factory (for general techniques) or
mitiq.zne.inference.BatchedFactory (a subclass of Factory suitable for non-adaptive
techniques). To get noise scale factors and expectation values, the methods
Factory.get_scale_factors() and Factory.get_expectation_values() can be used.

Below, we define a static factory which performs a second-order polynomial fit and
forces the expectation value to be in the interval [—1, 1].
from mitiq.zne.inference import (

BatchedFactory, PolyFactory,

)

import numpy as np

i class MyFactory(BatchedFactory) :

@staticmethod
def extrapolate(
scale_factors, exp_values, full_output,

) 8
result = PolyFactory.extrapolate(
scale_factors,
exp_values,
order=2,
full_output=full_output,
)

if not full_output:
return np.clip(result, -1, 1)

if full_output:
In this case "result" is a tuple
zne_limit = np.clip(results[0], -1, 1)
return (zne_limit, *results([1:])

Codeblock 19: Defining a custom fitting technique by creating a new factory object.
This factory can now be used as an argument in execute_with_zne to use the custom

fitting technique. Other fitting techniques can be defined in a similar manner as the code
block above.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 15

https://mitiq.readthedocs.io/en/latest/guide/guide_05-factories.html
https://mitiq.readthedocs.io/en/latest/apidoc.html#mitiq.factories.AdaExpFactory

User mitiq.pec Hardware

Quantum Probabilistically
program sampled circuits

- Y

1. Generate Execute on
circuits r backend
Error- Measurement
mitigated |, results from|lg&
expectation | noisy
value circuits H

2. Inference

Figure 6: Overview of the probabilistic error cancellation workflow in Mitiq. An input quantum program
is converted into a set of auxiliary circuits which are probabilistically sampled according to the PEC
technique described in the main text. These sampled circuits are executed on the back-end according to
a user-defined executor function and produce a set of noisy results. The noisy expectation values are
combined (with a suitable linear combination) to obtain an unbiased estimate of the ideal expectation
value.

5 Probabilistic error cancellation module

Probabilistic error cancellation (PEC) [2, 4] is another error mitigation technique which is
available in Mitiq. Its workflow is schematically represented in fig. 6: a set of auxiliary cir-
cuits are probabilistically sampled, executed on a noisy backend and, eventually, the noisy
results are post-processed to infer an error-mitigated expectation value. In principle, this
method can probabilistically remove the noise of a quantum computer without additional
resources apart from a higher sampling overhead. More information about the advantages
and the limitations of PEC is given in section 8.2.

A key step of PEC is to represent each ideal unitary gate G in a circuit as an average
over a set of noisy gates which are physically implementable {O,}, weighted by a real
quasi-probability distribution n(a):

g = Zﬂ(a)oa, (6)

where >, n(a) = 1 (trace-preserving condition). The calligraphic operators G and {O,}
should be considered as linear super-operators acting on density matrices and not on state
vectors |2, 4]. If a representation like Eq. (6) is known for each ideal gate of a circuit, then
any ideal expectation value can be estimated as a Monte Carlo average over different noisy
circuits, each one sampled according to the quasi-probability distributions associated to
the ideal gates |2, 4]. The real coefficients n(«) which appear in Eq. (6) can be negative
for some values of « and, because of this negativity, the required number of Monte Carlo
samples can be large |2, 4]. In principle, assuming a perfect tomographic knowledge of the
noisy gates O, this method allows for a perfect cancellation of the hardware noise (for a
sufficiently large number of samples).

In the remainder of this section, we describe how one can define gate representations
and how one can probabilistically sample from them using Mitiq.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 16

S N

6

~

10
11

12
13
14
15
16
17

5.1 Noisy Operations

The r.h.s. of Eq. (6) is a sum over noisy operations O,. A noisy operation is an elemen-
tary gate (or a small sequence of gates) acting on specific qubits which can be physically
implemented on hardware. To each noisy operation we can associate a (small) QPROGRAM
describing the gates to be applied on the physical qubits. Moreover, from a quantum
tomography analysis, one can associate to a noisy operation also a numerical matrix repre-
senting the completely-positive and trace-preserving channel induced by the operation. In
Mitiq, this concept is captured by the NoisyOperation class, which can be initialized as
follows:

from mitiq.pec.types import NoisyOperation

noisy_operation = NoisyOperation(
circuit=<sequence of operations as a QPROGRAM>,
channel _matrix=<optional superoperator matrix>,

)

Codeblock 20: Initialization of a NoisyOperation from a sequence of operations and the (optional)
super-operator matrix.

Once the set of all noisy operations {O,} has been defined, we can associate to each
operation the corresponding quasi-probability n(«) via a simple Python dictionary:
basis_expansion = {

<1st noisy operation>: <1st real coefficient>,
<2nd noisy operation>: <2nd real coefficient>,

}

Codeblock 21: Defining a basis expansion as a Python dictionary which associates a real coefficient to
each noisy operation.

5.2 OperationRepresentation Objects

The dictionary in the previous codeblock 21 completely defines the linear combination
in the r.h.s. of Eq. (6) but it contains no information about the Lh.s. of Eq. (6). This
motivates the use of an OperationRepresentation class which can be used to store and
manipulate all the information which is contained in Eq. (6).

from mitiq.pec.types import OperationRepresentation

operation_rep = OperationRepresentation (
ideal=<ideal operation as a QPROGRAM>,
basis_expansion=<basis expansion dictionary>,

)

Codeblock 22: Initializing an OperationRepresentation object. The first argument is the ideal
operation that we want to express as a linear combination of noisy operations. The second argument is
the associated basis_expansion which can be defined as shown in codeblock 21.

Given a list of OperationRepresentation objects, associated to all the gates of a
circuit of interest, the user can easily apply PEC via the function execute_with_pec as
shown in codeblock 7 of section 2.

5.3 How to determine the quasi-probability representations?

In practice, depending on how detailed is the knowledge of the hardware noise model, there
are two main ways of deriving quasi-probability representations for PEC.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 17

Method 1: If the hardware noise model is well approximated by a simplified theoreti-
cal quantum channel (e.g. depolarizing or amplitude damping), one can typically apply
known analytical expressions to compute the quasi-probability representations of arbitrary
gates [2].

Method 2: Assuming an over-simplified noise model may be a bad approximation. In this
case, the suggested approach is to perform the complete process tomography of a basis
set of implementable noisy operations (e.g. the native gate set of the backend). Given the
superoperators of the noisy implementable operations, one can obtain the quasi-probability
representations as solutions of numerical optimization problems [2]. In Mitiq, this is pos-
sible through the find_optimal_representation() function that can be imported from
mitiq.pec.representations. An example showing how to use this function is given in
the section called What additional options are available in PEC? of the Mitiq documenta-
tion (see section 7.2).

5.4 Sampling Functions

The function execute_with_pec internally performs the Monte Carlo sampling process
which is necessary to estimate an expectation value with PEC. However, the user may be
interested in manually sampling gates and circuits for a variety of reasons, e.gq., for research
purposes, for intermediate manipulations, for efficiency optimizations, etc.

In particular, to sample an implementable NoisyOperation from the quasi-probability
distribution of an ideal operation one can do as follows:

noisy_operation, sign, eta = operation_rep.sample ()

Codeblock 23: Sampling an implementable NoisyOperation from the quasi-probability representation
of an ideal operation. The quasi-probability representation is given by the OperationRepresentation
object defined in codeblock 22. In addition to the sampled noisy_operation, the method sample ()
returns the associated coefficient (eta) that appears in Eq. (6) and its sign (sign).

Typically, one is interested in sampling an entire implementable circuit from the quasi-
probability representation of an ideal circuit. This can be easily achieved via the
sample_circuit function, which internally performs repeated calls to the previous
sample_sequence function:

from mitiq.pec.sampling import sample_circuit

sampled_circuit, sign, norm = sample_circuit(
ideal_circuit=<ideal circuit as a QPROGRAM>,
representations=<list of oper. representations>,

)

Codeblock 24: Sampling an implementable circuit from the quasi-probability representation of an
ideal_circuit. Such quasi-probability distribution is implicitly deduced from the input list of
OperationRepresentations objects associated to the gates of the input ideal_circuit .

6 Clifford data regression module

In this section, we present the mitiq.cdr module which implements two recent error
mitigation approaches known as Clifford data regression (CDR) and variable noise Clifford
data regression (vinCDR) [5, 6]. In both techniques, a trained regression model mapping
noisy to exact expectation values is used to mitigate the effect of noise on some observable
of interest. The model is trained using data produced by the execution of near-Clifford
circuits performed on a noisy quantum computer and on a classical simulator.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 18

Generate Training Data

@ B

{x:} i}

4

Learn To Correct

exact

noisy

Predict
e [}+—— Enoisy Emitigated

b0 A—[A

_D—n

Figure 7: Summary of the CDR mitigation method showing the steps realized to mitigate an observable
of interest. First the training set composed of noisy {z;} and exact {y;} expectation values is generated
using near-Clifford circuits which are classically simulable. This data is used to fit a linear ansatz which
is then used to estimate the noise-free value for some observable of interest E. We can visualize vnCDR
as adding another axis to the training data, along which noise is increased. Diagram modified from [5].

6.1 Clifford data regression (CDR)

The Clifford data regression [5] technique uses near-Clifford quantum circuit data to learn
a model approximating effects of the noise on an expectation value of an observable (E) =
TrpFE for a quantum state p given by a quantum circuit of interest. The learned model is
used to mitigate the noisy expectation value (F(vp)) obtained with a quantum computer
with the base noise level 7g. The mitigated expectation value (E)™itigated i ohtained using
the following procedure:

1. Construct the training circuits corresponding to states {pf*®",i = 1,...,n} by re-
placing non-Clifford gates in the circuit of interest by Clifford gates.
train

2. For each training circuit p;"*" evaluate classically a noiseless expectation value of E,
y; = Trp; E, and its noisy expectation value x; using a quantum computer.

3. Fit exact and noisy expectation values of the training circuits {(z;,y;)} with a linear
model y = ax + b.

4. Use the fitted model to mitigate (E(vo))

<E>mitigated _ G<E(’Yo)> +b.

6.2 Variable noise Clifford data regression (vnCDR)

CDR can be generalized to enable learning the noise effects from near-Clifford training cir-
cuits simulated at different noise levels A;. This approach is called variable noise Clifford

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 19

User mitiqg.cdr Hardware CcClassical

—— Simulator
Near-Clifford
approximations
Quantum r
program
Noise-scaled [—— = '; -
circuits v il @
1. Generate 1 classical
circuits Execute on simulator
backend
—
Error-

o Measurement
mitigated
: results from
EEEEREUCH noisy circuits
value Y

2. Inference

Figure 8: Overview of the Clifford data regression workflow in Mitig. An input quantum program is
converted into a set of noise-scaled circuits and a set of training circuits (near-Clifford approximations
in which the noise is also scaled). All the auxiliary circuits are executed on the real backend while
the near-Clifford training circuits are executed also on a classical simulator. The noisy and the exact
(simulated) results are post-processed to infer the ideal expectation value of the original quantum
program.

data regression [6] and can be used to learn a zero-noise extrapolation model for an ob-
servable E and a quantum circuit preparing the state p. The viCDR procedure to obtain
(B)mitigated jpcludes evaluation of the training circuits on a quantum computer at different
noise rates \;yp and fitting a extrapolation model:

1. Prepare the training circuits {p{™® i = 1,...,n} using Clifford substitutions, follow-
ing the same procedure for CDR.

2. For each training circuit p{™® evaluate classically a noiseless expectation value of E,

y; = Trp;E/, and its noisy expectation values x;; using a quantum computer with
several noise rates \jyp, Ay > 1,1 =1,...,m.

3. Fit the expectation values of the training circuits with a linear ansatz given by
y = f(x1,22,...,2m). Where

j,(SU],7:U27 ceey a?ﬂ%) = :E:: T + b. (’7)
=1

4. Use the fitted ansatz to correct the noisy expectation values of E:
(Bymiseated = F((E(A)), (B(A270)), - -+ (E(Am0))) -

The default linear ansatz used within Mitiq includes a constant term. Recently this was
shown to lead to better mitigated results on real quantum hardware [25].

6.3 Applying CDR and vnCDR with Mitiq

Clifford data regression is implemented in Mitiq according to the workflow schematically
represented in fig. 8. This error mitigation technique can be applied with the following
code Codeblock:

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 20

1

)
3
1

from mitiq.cdr import execute_with_cdr

cdr_values = execute_with_cdr (
circuit,
executor,
simulator=<near-Clifford classical simulator>,
observables=<the observables to mitigate>,

)

Codeblock 25: Applying CDR with Mitiq. The function execute_with_cdr can be used to mitigate
errors the expectation values of the input observables. The input executor is a user-defined function
for running the input circuit and the associated training circuits on a quantum backend. The input
simulator is the ideal counterpart of the noisy executor and is necessary to obtain exact classical
simulations of the (near-Clifford) training circuits.

Similarly, variable-noise Clifford data regression can be applied by specifying the op-
tional list of noise scale factors in the function execute_with_cdr.

from mitiq.cdr import execute_with_cdr

cdr_values = execute_with_cdr (
The same arguments used for CDR:

Additional argument for applying vnCDR:
scale_factors=<the noise scale factors>,

)

Codeblock 26: Applying vnCDR with Mitiq by calling execute_with_cdr and passing a list of noise
scale_factors. Optionally, a noise scaling method can be specified via the argument scale_noise,
whose default value is fold_gates_at_random.

One of the key features of both CDR and vnCDR is the construction of a set of clas-
sically simulable near-Clifford circuits. At the time of this writing, CDR implemented
within Mitiq assumes that the input circuit is pre-compiled in the following gate set
{Rz,v/X,CNOT}. This ensures that all the non-Clifford gates are contained in the Ry
gates. This is particularly suitable for IBM processors but may be less appropriate for
other backends. Different gate sets may be supported in the future.

7 Additional library information

In this section, we provide technical details and meta-information about the Mitiq library.

7.1 Alternative ways of using Mitiq

As we have already shown, errors affecting the estimation of expectation values can be
reduced with appropriate functions returning the mitigated expectation value as a real
number, e.g. execute_with_zne, execute_with_pec. Here, we show two alternative
methods for applying the same error mitigation process. Depending on context, these
alternative but equivalent methods may provide a simpler usage.

The first method is provided by the function mitigate_executor which inputs the
same arguments as execute_with_* except the quantum circuit. This function returns a
new executor which implements error mitigation when it is called with a quantum program,
as shown below.

from mitiq.zne import mitigate_executor

mitigated_executor = mitigate_executor (

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 21

w

executor ,
scale_noise=<noise scaling method>,
factory=<inference method>,

zne_value = mitigated_executor (circuit)

Codeblock 27: Modifying an executor with the function mitigate_executor. The new
mitigated_executor performs zero-noise extrapolation when called on a quantum circuit.

The mitigate_executor function can also be imported from other modules in order
to apply different techniques. For example, probabilistic error cancellation can be applied
after importing mitigate_executor from mitiq.pec.

The second method is to directly decorate the executor function such that it auto-
matically performs error mitigation when called. Also in this case, one should use the
decorator corresponding to the desired error mitigation technique, e.g.: zne_decorator,
pec_decorator, etc.

from mitiq import QPROGRAM
from mitiq.zne import zne_decorator

@zne_decorator (
factory=<inference method>,
scale_noise=<noise scaling method>,

)
def executor (circuit: QPROGRAM) -> float:

zne_value = executor (circuit)

Codeblock 28: Decorating an executor with zne_decorator so that zero-noise extrapolation is
implemented when the executor is called on a quantum program

In the above Codeblock, the zne_decorator takes the same optional arguments as
execute_with_zne. If no optional arguments are used, the decorator should still be called
with parentheses, e.g. @zne_decorator().

Decorators (or mitigate_executor) could be used to easily stack multiple error miti-
gation techniques. For example, in the next Codeblock, a noisy executor is first mitigated
with PEC and later with ZNE.
from mitiq import QPROGRAM

from mitiq.zne import zne_decorator
from mitiq.pec import pec_decorator

@zne_decorator (<zne arguments>)

; @pec_decorator (<pec arguments>)

def executor (circuit: QPROGRAM) -> float:

mitigated_value = executor (circuit)

Codeblock 29: Multiple decorators can be used to combine different error mitigation methods

Whether there is any practical advantage in combining multiple techniques is still an open
research question. Mitiq can be an appropriate toolkit for exploring this research direction.

7.2 Mitiq documentation

/
/

Mitiq’s documentation is hosted online at https://mitiq.readthedocs.io and includes a
User’s Guide and an API glossary. The User’s Guide contains more information on top-
ics covered in this manuscript and additional information on topics not covered here; for

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 22

https://mitiq.readthedocs.io

example, more examples of executor functions and an advanced usage guide for factory
objects. The API glossary is auto-generated from the docstrings (formatted comments to
code objects) and contains information about public functions and classes defined in Mitiq.

7.3 Contribution guidelines

We welcome contributions to Mitiq from the larger community of quantum software devel-
opers. Contributions can come in the form of feedback about the library, feature requests,
bug fixes, or pull requests. Feedback and feature requests can be done by opening an
issue on the Mitiq GitHub repository. Bug fixes and other pull requests can be done by
forking the Mitiq source code, making changes, then opening a pull request to the Mitiq
GitHub repository. Pull requests are peer-reviewed by core developers to provide feedback
and /or request changes. Contributors are expected to uphold Mitiq development practices
including style guidelines and unit tests. More details can be found in the Contribution
guidelines documentation.

8 Discussion

Now that we have described error mitigation techniques in Mitiq and how to use them,
we discuss limitations of these techniques as well as the relationship between zero-noise
extrapolation, probabilistic error cancellation, and other strategies.

8.1 Limitations of zero-noise extrapolation

Zero-noise extrapolation |2, 3] is a useful error mitigation technique, but it is not without
limitations. First and foremost, the zero-noise estimate is extrapolated, meaning that
performance guarantees are quite difficult in general. If a reasonable estimate of how
increasing the noise affects the observable (e.g., the blue curves in fig. 3) is known, then
ZNE can produce good zero-noise estimates. This is the case for simple noise models
such as depolarizing noise, but noise in actual quantum systems is more complicated and
can produce different behavior than expected, e.g. fig. 3(b). In this case the performance
of ZNE is tied to the performance of the underlying hardware. If expectation values do
not produce a smooth curve as noise is increased, the zero-noise estimate may be poor
and certain inference techniques may fail. In particular, one has to take into account
that any initial error in the measured expectation values will propagate to the zero-noise
extrapolation value. This fact can significantly amplify the final estimation uncertainty.
In practice, this implies that the evaluation of a mitigated expectation value requires more
measurement shots with respect to the unmitigated one.

Additionally, zero-noise extrapolation cannot increase the performance of arbitrary cir-
cuits. If the circuit is large enough such that the expectation of the observable is almost
constant as noise is increased (e.g., if the state is maximally mixed), then extrapolation
will of course not help the zero-noise estimate. The regime in which ZNE is applicable
thus depends on the performance of the underlying hardware as well as the circuit. A
detailed description of when zero-noise extrapolation is effective, and how effective it is, is
the subject of ongoing research.

8.2 Limitations of probabilistic error cancellation

The limitations of probabilistic error cancellation |2, 4| are similar to those of other error
mitigation methods: more circuit executions are necessary compared to the unmitigated

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 23

https://github.com/unitaryfund/mitiq
https://github.com/unitaryfund/mitiq/blob/master/CONTRIBUTING.md
https://github.com/unitaryfund/mitiq/blob/master/CONTRIBUTING.md

case and the method it is not appropriate in the asymptotic regime of many gates or large
noise. Compared to ZNE, PEC has the important advantage of producing an unbiased
estimation. This means that, if the quasi-probability representations of all the gates are
known with sufficiently large accuracy, in the limit of many samples, the PEC estimation
converges to the ideal expectation value. Unfortunately, PEC has some practical disad-
vantages too. The number of samples grows exponentially with respect to the circuit size
and to the amount of noise. Moreover, the full tomography of the noisy gates is typically
necessary in order to build the quasi-probability representations for the ideal gates. One
should also take into account that tomographic errors in the characterization of the hard-
ware gates can propagate through the PEC process inducing a significant error in the final
estimation.

8.3 Limitations of Clifford data regression

Clifford data regression [5, 6] has the promising advantage of being a self-tuning technique
since the inference model is not assumed a priori but learned during the training phase.
However, this technique presents some limitations as well. The training phase typically
introduces a significant overhead (many training circuits must be executed with both quan-
tum and classical hardware). Moreover, the training data is extracted from near-Clifford
circuits which may have a different response to the hardware noise compared to the true
circuit of interest. It is also worth noting that this technique requires an efficient classical
simulator of near-Clifford circuits in addition to a quantum backend.

8.4 Overview of error mitigation techniques

Zero-noise extrapolation was first proposed in [2, 3| and first demonstrated experimentally
in [12|. References [13, 26] have extended the noise scaling and extrapolation techniques.
Additionally, these references and this paper show experimental demonstrations of zero-
noise extrapolation and how it can improve the results of noisy quantum computations.

The purposeful randomization of gates is another approach to quantum error mitiga-
tion. Specific techniques include compiling the quantum circuit with twirling gates [10],
expressing noiseless gates in a basis of noisy gates as in probabilistic error cancellation [2],
and a hybrid proposal improving the scaling of the technique with circuit depth and other
resources [4]. Such techniques have been investigated experimentally in trapped ions [18]
and superconducting qubits [27] (implementing gate set tomography).

Subspace expansion refers to another set of error mitigation techniques. In Ref. [28], a
hybrid quantum-classical hierarchy was introduced, while in Ref. [29], symmetry verifica-
tion was introduced. It has been demonstrated with a stabilizer-like method [30], exploiting
molecular symmetries [11], and with an experiment on a superconducting circuit device [31].
Other symmetry-based protocols have since been proposed [32, 33, 34]. Other error miti-
gation techniques include approximating error-correcting codes in quantum channels [35],
and have been extended to improve quantum sensing [36], metrology [37], and reduce errors
in analog quantum simulation [27].

8.5 Differences and relations to neighbouring fields

Quantum error mitigation is deeply connected to quantum error correction and quantum
optimal control, two fields of study that also aim at reducing the impact of errors in
quantum information processing in quantum computers. More generally, quantum error
mitigation is also related to the general theory of open quantum systems. While these

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 24

are fluid boundaries, it can be useful to point out some differences among these more
established fields and the emerging niche of quantum error mitigation.

8.5.1 Quantum error correction

Quantum error correction creates logical qubits out of multiple error-prone physical qubits.
After applying logical operations which correspond to the physical operations we want
to perform in our circuit, ancilla qubits are measured to diagnose which (if any) errors
occurred. Depending on the outcome of these “syndrome measurements”, correction opera-
tions are performed to remove the errors (if any) that occurred. If the error rate lies below
a certain threshold, errors can be actively removed. We can thus say that the goal of error
correction is to detect and exactly correct errors, while the goal of error mitigation is to
lessen the effect of errors.

The drawback of quantum error correction techniques is that they require a large over-
head in terms of additional physical qubits needed to create logical qubits. Current quan-
tum computing devices have been able to demonstrate some components of quantum error
correction with a very small number of qubits [38, 39|. Indeed, some techniques for quan-
tum error mitigation emerged as more practical quantum error correction solutions [40].

8.5.2 Quantum optimal control

Optimal control theory encompasses a versatile set of techniques that can be applied to
many scenarios in quantum technology [41]. It is generally based on a feedback loop
between an agent and a target system. A key difference between some quantum error
mitigation techniques and quantum optimal control is that the former can be implemented
in some instances with post-processing techniques, while the latter relies on an active
feedback loop. An example of a specific application of optimal control to quantum dynamics
that can be seen as a quantum error mitigation technique is dynamical decoupling [7, 8,
9]. This technique employs fast control pulses to effectively decouple a system from its
environment, with techniques pioneered in the nuclear magnetic resonance community [42].
Quantum optimal control techniques are being integrated into quantum computing software
as a means for noise characterization and error mitigation [43].

8.5.3 Environment-induced error protection

More in general, quantum computing devices can be studied in the framework of open
quantum systems [44, 45, 46], that is, systems that exchange energy and information with
the surrounding environment in controlled and unwanted ways.

Since errors occur for several reasons in quantum computers, the microscopic descrip-
tion at the physical level can vary broadly, depending on the quantum computing platform
that is used as well as the computing architecture, and error mitigation strategies can
be employed with an awareness of this variability. For example, superconducting-circuit-
based quantum computers have chips that are prone to cross-talk noise [47|, while qubits
encoded in trapped ions need to be shuttled with electromagnetic pulses, and solid-state
artificial atoms, including quantum dots, are heavily affected by inhomogeneous broaden-
ing [48]. Considering the physical layer of the actual device [49, 50|, as well as modeling
and adapting the control pulses, can in practice result in more effective error mitigation
strategies.

One approach to reduce the impact of noise and errors is to tailor a larger computational
space to protect the system from exiting the computational basis. This approach has been
particularly fruitful in the context of bosonic quantum codes [51, 52, 53, 54].

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 25

Moreover, autonomous error correction approaches have been recently proposed and
experimentally verified [55], which exploit the environment to induce error-robust pro-
cesses. More in general, decoherence-free subspaces have been proposed within the study
of Liouvillian dynamics |56, 57, 58, 59].

9 Conclusion

We have introduced a fully open-source library for quantum error mitigation on near-
term quantum computers. Our library can interface with multiple quantum programming
libraries — in particular Cirq, Qiskit, pyQuil, and Braket — and arbitrary quantum pro-
cessors (real or simulated) available to the user. In this paper, we presented experimental
and numerical examples demonstrating how error mitigation can enhance the results of
a noisy quantum computation. We then discussed the library in detail, focusing on the
specific modules of Mitiq associated to different error mitigation techniques: zero-noise
extrapolation, probabilistic error cancellation and Clifford data regression. After men-
tioning additional software information including support and contribution guidelines, we
discussed how the error mitigation techniques in our library relate to other error mitigation
techniques as well as quantum error correction, quantum optimal control, and the theory
of open quantum systems.

In future work, we plan to incorporate additional error mitigation techniques into the
library and to expand the set of benchmarks to better understand when quantum error
mitigation is beneficial. Work can also be done to improve the existing modules, for
example by implementing different noise-scaling methods, inference techniques, or new
error cancellation protocols. One candidate noise-scaling method is pulse stretching which
will be possible when pulse-level access to quantum hardware becomes available through
more cloud services [60]. A high-level road map for future development which includes
more information on these ideas as well as other ideas can be found on the Mitiq Wiki.

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Accelerated Research in
Quantum Computing under Award Number de-sc0020266 and by IBM under Sponsored
Research Agreement No. W1975810. RL acknowledges support from a NASA Space Tech-
nology Graduate Research Opportunities Award. M.H.G is supported by “la Caixa” Foun-
dation (ID100010434), Grant No. LCF/BQ/DI19/11730056. PC was supported by the
Laboratory Directed Research and Development (LDRD) program of Los Alamos National
Laboratory (LANL) under project numbers 20190659PRD4 and 20210116DR. We thank
IBM and Rigetti for providing access to their quantum computers. The views expressed
in this paper are those of the authors and do not reflect those of IBM or Rigetti.

References

[1] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. “Hybrid quantum-
classical algorithms and quantum error mitigation”. J. Phys. Soc. Japan 90,
032001 (2021).

[2] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. “Error mitigation for short-
depth quantum circuits”. Phys. Rev. Lett. 119, 180509 (2017).

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 26

https://github.com/unitaryfund/mitiq/wiki
https://dx.doi.org/10.7566/jpsj.90.032001
https://dx.doi.org/10.7566/jpsj.90.032001
https://dx.doi.org/10.1103/PhysRevLett.119.180509

3]
4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

Ying Li and Simon C. Benjamin. “Efficient variational quantum simulator incorporat-
ing active error minimization”. Phys. Rev. X 7, 021050 (2017).

Suguru Endo, Simon C. Benjamin, and Ying Li. “Practical quantum error mitigation
for near-future applications”. Phys. Rev. X 8, 031027 (2018).

Piotr Czarnik, Andrew Arrasmith, Patrick J Coles, and Lukasz Cincio. “Error mitiga-
tion with Clifford quantum-circuit data” (2020). arXiv:2005.10189.

Angus Lowe, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles,
and Lukasz Cincio. “Unified approach to data-driven quantum error mitigation” (2020).
arXiv:2011.01157.

Lea F. Santos and Lorenza Viola. “Dynamical control of qubit coherence: Random
versus deterministic schemes”. Phys. Rev. A 72, 062303 (2005).

Lorenza Viola and Emanuel Knill. “Random decoupling schemes for quantum dynam-
ical control and error suppression”. Phys. Rev. Lett. 94, 060502 (2005).

Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar. “Demonstra-
tion of fidelity improvement using dynamical decoupling with superconducting qubits”.
Phys. Rev. Lett. 121, 220502 (2018).

Joel J Wallman and Joseph Emerson. “Noise tailoring for scalable quantum computa-
tion via randomized compiling”. Phys. Rev. A 94, 052325 (2016).

Jarrod R. McClean, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hart-
mut Neven. “Decoding quantum errors with subspace expansions”. Nature Com-
mun.11 (2020).

Abhinav Kandala, Kristan Temme, Antonio D. Corcoles, Antonio Mezzacapo, Jerry M.
Chow, and Jay M. Gambetta. “Error mitigation extends the computational reach of
a noisy quantum processor”. Nature 567, 491-495 (2019).

Tudor Giurgica-Tiron, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J.
Zeng. “Digital zero noise extrapolation for quantum error mitigation”. 2020 IEEE Int.
Conf. Quantum Comp. Eng. (QCE) (2020).

Miroslav Urbanek, Benjamin Nachman, and Wibe A. de Jong. “Error detection on
quantum computers improving the accuracy of chemical calculations”. Phys. Rev.
A102 (2020).

Christophe Vuillot. “Is error detection helpful on IBM 5Q chips?”. Quantum Inf.
Comp.18 (2018).

Google Al Quantum et al. “Hartree-Fock on a superconducting qubit quantum com-
puter”. Science 369, 1084-1089 (2020).

Chao Song, Jing Cui, H. Wang, J. Hao, H. Feng, and Ying Li. “Quantum computation
with universal error mitigation on a superconducting quantum processor”. Science

Adv.5 (2019).

Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang,
and Kihwan Kim. “Error-mitigated quantum gates exceeding physical fidelities in a
trapped-ion system”. Nature Communications 11, 587 (2020).

Alan Ho and Dave Bacon. “Announcing Cirq: An open-source framework for NISQ
algorithms”. Google Blog (2018). url: ai.googleblog.com/2018/07/announcing-cirq-
open-source-framework. html.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 27

https://dx.doi.org/10.1103/PhysRevX.7.021050
https://dx.doi.org/10.1103/PhysRevX.8.031027
http://arxiv.org/abs/2005.10189
http://arxiv.org/abs/2011.01157
https://dx.doi.org/10.1103/PhysRevA.72.062303
https://dx.doi.org/10.1103/PhysRevLett.94.060502
https://dx.doi.org/10.1103/PhysRevLett.121.220502
https://dx.doi.org/10.1103/PhysRevA.94.052325
https://dx.doi.org/10.1038/s41467-020-14341-w
https://dx.doi.org/10.1038/s41467-020-14341-w
https://dx.doi.org/10.1038/s41586-019-1040-7
https://dx.doi.org/10.1109/QCE49297.2020.00045
https://dx.doi.org/10.1109/QCE49297.2020.00045
https://dx.doi.org/10.1103/PhysRevA.102.022427
https://dx.doi.org/10.1103/PhysRevA.102.022427
https://dx.doi.org/10.26421/qic18.11-12
https://dx.doi.org/10.26421/qic18.11-12
https://dx.doi.org/10.1126/science.abb9811
https://dx.doi.org/10.1126/sciadv.aaw5686
https://dx.doi.org/10.1126/sciadv.aaw5686
https://dx.doi.org/10.1038/s41467-020-14376-z
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html

[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

28]

[29]
[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

Héctor Abraham et al. “Qiskit: An open-source framework for quantum comput-
ing” (2019).

Robert S. Smith, Michael J. Curtis, and William J. Zeng. “A practical quantum
instruction set architecture” (2016). arXiv:1608.03355.

Braket. “https://github.com/aws/amazon-braket-sdk-python” (2021).

Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in
Python”. Nature Meth. 17, 261-272 (2020).

P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends,
J. Kelly, P. Roushan, A. Tranter, N. Ding, and et al. “Scalable quantum simulation
of molecular energies”. Physical Review X6 (2016).

Alejandro Sopena, Max Hunter Gordon, German Sierra, and Esperanza Lopez. “Sim-
ulating quench dynamics on a digital quantum computer with data-driven error miti-
gation” (2021). arXiv:2103.12680.

Zhenyu Cai. “Multi-exponential error extrapolation and combining error mitigation
techniques for nisq applications”. npj Quantum Inf. 7, 80 (2021).

Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C. Benjamin, and
Suguru Endo. “Mitigating realistic noise in practical noisy intermediate-scale quantum
devices”. Phys. Rev. Applied 15, 034026 (2021).

Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A.
de Jong. “Hybrid quantum-classical hierarchy for mitigation of decoherence and de-
termination of excited states”. Phys. Rev. A 95, 042308 (2017).

X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien. “Low-cost error
mitigation by symmetry verification”. Phys. Rev. A 98, 062339 (2018).

Sam McArdle, Xiao Yuan, and Simon Benjamin. “Error-mitigated digital quantum
simulation”. Phys. Rev. Lett. 122, 180501 (2019).

R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H.
Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider,
T. E. O'Brien, and L. DiCarlo. “Experimental error mitigation via symmetry verifica-
tion in a variational quantum eigensolver”. Phys. Rev. A 100, 010302 (2019).

Balint Koczor. “Exponential error suppression for near-term quantum devices” (2021).
arXiv:2011.05942.

William J. Huggins, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C.
Rubin, Sergio Boixo, K. Birgitta Whaley, Ryan Babbush, and Jarrod R. McClean.
“Virtual distillation for quantum error mitigation” (2021). arXiv:2011.07064.

Zhenyu Cai. “Quantum error mitigation using symmetry expansion” (2021).
arXiv:2101.03151.

Carlo Cafaro and Peter van Loock. “Approximate quantum error correction for gen-
eralized amplitude-damping errors”. Phys. Rev. A 89, 022316 (2014).

Matthew Otten and Stephen K. Gray. “Recovering noise-free quantum observables”.
Phys. Rev. A 99, 012338 (2019).

Sisi Zhou and Liang Jiang. “Optimal approximate quantum error correction for quan-
tum metrology”. Phys. Rev. Research 2, 013235 (2020).

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 28

http://arxiv.org/abs/1608.03355
https://dx.doi.org/10.1038/s41592-019-0686-2
https://dx.doi.org/10.1103/PhysRevX.6.031007
http://arxiv.org/abs/2103.12680
https://dx.doi.org/10.1038/s41534-021-00404-3
https://dx.doi.org/10.1103/PhysRevApplied.15.034026
https://dx.doi.org/10.1103/PhysRevA.95.042308
https://dx.doi.org/10.1103/PhysRevA.98.062339
https://dx.doi.org/10.1103/PhysRevLett.122.180501
https://dx.doi.org/10.1103/PhysRevA.100.010302
http://arxiv.org/abs/2011.05942
http://arxiv.org/abs/2011.07064
http://arxiv.org/abs/2101.03151
https://dx.doi.org/10.1103/PhysRevA.89.022316
https://dx.doi.org/10.1103/PhysRevA.99.012338
https://dx.doi.org/10.1103/PhysRevResearch.2.013235

[38]

[39]
[40]
[41]
[42]

[43]

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Ming Gong, Xiao Yuan, Shiyu Wang, Yulin Wu, Youwei Zhao, Chen Zha, Shaowei
Li, Zhen Zhang, Qi Zhao, Yunchao Liu, Futian Liang, Jin Lin, Yu Xu, Hui Deng,
Hao Rong, He Lu, Simon C Benjamin, Cheng-Zhi Peng, Xiongfeng Ma, Yu-Ao Chen,
Xiaobo Zhu, and Jian-Wei Pan. “Experimental exploration of five-qubit quantum
error-correcting code with superconducting qubits”. National Science Review9 (2021).

Philipp Schindler, Julio T. Barreiro, Thomas Monz, Volckmar Nebendahl, Daniel
Nigg, Michael Chwalla, Markus Hennrich, and Rainer Blatt. “Experimental repetitive
quantum error correction”. Science 332, 1059 (2011).

E. Knill. “Quantum computing with realistically noisy devices”. Nature 434, 39 (2005).

Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. “Control of quantum phenom-
ena: past, present and future”. New J. Phys. 12, 075008 (2010).

Lorenza Viola, Emanuel Knill, and Seth Lloyd. “Dynamical decoupling of open quan-
tum systems”. Phys. Rev. Lett. 82, 2417 (1999).

Harrison Ball, Michael J Biercuk, Andre R R Carvalho, Jiayin Chen, Michael Hush,
Leonardo A De Castro, Li Li, Per J Liebermann, Harry J Slatyer, Claire Edmunds,
Virginia Frey, Cornelius Hempel, and Alistair Milne. “Software tools for quantum con-

trol: improving quantum computer performance through noise and error suppression”.
Quantum Science and Technology 6, 044011 (2021).

Howard J. Carmichael. “Statistical methods in quantum optics 1: Master equations
and fokker-planck equations”. Springer-Verlag. (1999).

H.J. Carmichael. “Statistical methods in quantum optics 2: Non-classical fields”.
Springer Berlin Heidelberg. (2007).

H.P. Breuer and F. Petruccione. “The theory of open quantum systems”. OUP Oxford.
(2007).

Prakash Murali, David C. Mckay, Margaret Martonosi, and Ali Javadi-Abhari. “Soft-
ware mitigation of crosstalk on noisy intermediate-scale quantum computers”. Proc.
Twenty-Fifth Int. Conf. on Architect. Supp. for Progr. Lang. Operat. Syst. (2020).

Tulia Buluta, Sahel Ashhab, and Franco Nori. “Natural and artificial atoms for quan-
tum computation”. Rep. Progr. Phys. 74, 104401 (2011).

Henrique Silvério, Sebastian Grijalva, Constantin Dalyac, Lucas Leclerc, Peter J. Kar-
alekas, Nathan Shammah, Mourad Beji, Louis-Paul Henry, and Loic Henriet. “Pulser:
An open-source package for the design of pulse sequences in programmable neutral-
atom arrays” (2021). arXiv:2104.15044.

Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexan-
der Pitchford, and Nathan Shammah. ‘“Pulse-level noisy quantum circuits with
QuTiP” (2021). arXiv:2105.09902.

Daniel Gottesman, Alexei Kitaev, and John Preskill. “Encoding a qubit in an oscilla-
tor”. Phys. Rev. A 64, 012310 (2001).

Mazyar Mirrahimi, Zaki Leghtas, Victor V Albert, Steven Touzard, Robert J
Schoelkopf, Liang Jiang, and Michel H Devoret. “Dynamically protected cat-qubits: a
new paradigm for universal quantum computation”. New J. Phys. 16, 045014 (2014).

Marios H. Michael, Matti Silveri, R. T. Brierley, Victor V. Albert, Juha Salmilehto,
Liang Jiang, and S. M. Girvin. “New class of quantum error-correcting codes for a
bosonic mode”. Phys. Rev. X 6, 031006 (2016).

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 29

https://dx.doi.org/10.1093/nsr/nwab011
https://dx.doi.org/10.1126/science.1203329
https://dx.doi.org/10.1038/nature03350
https://dx.doi.org/10.1088/1367-2630/12/7/075008
https://dx.doi.org/10.1103/physrevlett.82.2417
https://dx.doi.org/10.1088/2058-9565/abdca6
https://dx.doi.org/https://doi.org/10.1007/978-3-662-03875-8
https://dx.doi.org/https://doi.org/10.1007/978-3-540-71320-3
https://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://dx.doi.org/10.1145/3373376.3378477
https://dx.doi.org/10.1145/3373376.3378477
https://dx.doi.org/10.1088/0034-4885/74/10/104401
http://arxiv.org/abs/2104.15044
http://arxiv.org/abs/2105.09902
https://dx.doi.org/10.1103/PhysRevA.64.012310
https://dx.doi.org/10.1088/1367-2630/16/4/045014
https://dx.doi.org/10.1103/PhysRevX.6.031006

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

A

Victor V. Albert, Jacob P. Covey, and John Preskill. “Robust encoding of a qubit in
a molecule”. Physical Review X10 (2020).

Jeffrey M. Gertler, Brian Baker, Juliang Li, Shruti Shirol, Jens Koch, and Chen Wang.
“Protecting a bosonic qubit with autonomous quantum error correction”. Nature 590,
243 (2021).

D. A. Lidar, I. L. Chuang, and K. B. Whaley. “Decoherence-free subspaces for quantum
computation”. Phys. Rev. Lett. 81, 2594 (1998).

Emanuel Knill, Raymond Laflamme, and Lorenza Viola. “Theory of quantum error
correction for general noise”. Phys. Rev. Lett. 84, 25252528 (2000).

Anton Frisk Kockum, Goran Johansson, and Franco Nori. “Decoherence-free interac-
tion between giant atoms in waveguide quantum electrodynamics”. Phys. Rev. Lett.
120, 140404 (2018).

Simon Lieu, Ron Belyansky, Jeremy T. Young, Rex Lundgren, Victor V. Albert, and
Alexey V. Gorshkov. “Symmetry breaking and error correction in open quantum
systems”. Phys. Rev. Lett. 125, 240405 (2020).

Thomas A Alexander, Naoki Kanazawa, Daniel Josef Egger, Lauren Capelluto,
Christopher James Wood, Ali Javadi-Abhari, and David McKay. “Qiskit-Pulse: pro-
gramming quantum computers through the cloud with pulses”. Quantum Sci. Tech.
5, 044006 (2020).

Peter J Karalekas, Nikolas A Tezak, Eric C Peterson, Colm A Ryan, Marcus P da Silva,
and Robert S Smith. “A quantum-classical cloud platform optimized for variational
hybrid algorithms”. Quantum Sci. Tech. 5, 024003 (2020).

Executor examples

For concreteness, in this appendix we include explicit examples of executor functions which
were introduced in section 2.2. As mentioned, an executor always accepts a quantum
program, sometimes accepts other arguments, and returns an expectation value as a float.

A.l

Executors based on real hardware

Our first executor is the one used in creating fig. 3(a). This executor runs a two-qubit
circuit on an IBMQ quantum processor and returns the probability of the ground state.

import qiskit

3 provider = qiskit.IBMQ.load_account ()

def

executor (

circuit: qiskit.QuantumCircuit,
backend_name: str = "ibmg_santiago",
shots: int = 1024,

) -> float:

Execute the circuit

job = qiskit.execute(
experiments=circuit,
backend=provider.get_backend (backend_name),
optimization_level=0,
shots=shots,

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 30

https://dx.doi.org/10.1103/physrevx.10.031050
https://dx.doi.org/10.1038/s41586-021-03257-0
https://dx.doi.org/10.1038/s41586-021-03257-0
https://dx.doi.org/10.1103/PhysRevLett.81.2594
https://dx.doi.org/10.1103/PhysRevLett.84.2525
https://dx.doi.org/10.1103/PhysRevLett.120.140404
https://dx.doi.org/10.1103/PhysRevLett.120.140404
https://dx.doi.org/10.1103/physrevlett.125.240405
https://dx.doi.org/10.1088/2058-9565/aba404
https://dx.doi.org/10.1088/2058-9565/aba404
https://dx.doi.org/10.1088/2058-9565/ab7559

3

NN NN N NN NN N
B % it

Get the measurement data
counts = job.result().get_counts ()

Return the observable
return counts["00"] / shots

Codeblock 30: Defining an executor to run on IBMQ and return the probability of the ground state for

a two-qubit circuit. Line 2 requires a valid IBMQ account with saved credentials. We assume that the
input circuit contains terminal measurements on both qubits.

We also include the same executor function as above but this time running on Rigetti
Aspen-8 and used in creating fig. 3(b). Note that this executor requires additional steps
compared to the same executor in Qiskit — namely the declaration of classical memory and
the addition of measurement operations, as Rigetti QCS handles classical memory different
than other platforms. Additionally, it is important to note the use of basic_compile from
Mitiq which preserves folded gates when mapping to the native gate set of Aspen-8.
import pyquil
from mitiq.mitiq_pyquil.compiler import basic_compile

aspen8 = pyquil.get_qc("Aspen-8", as_qvm=False)

def executor (
program: pyquil.Program,
active_reset: bool = True,
shots: int = 1024,

) -> float:
prog = Program()

Force qubits into the ground state
if active_reset:
prog += pyquil.gates.RESET ()

Add the original program
prog += program.copy ()

Get list of qubits used in the program
qubits = prog.get_qubits ()

Add classical memory declaration
ro = prog.declare("ro", "BIT", len(qubits))

Add measurement operations
for idx, q in enumerate (qubits):
prog += MEASURE(q, ro[idx])

Add number of shots
prog.wrap_in_numshots_loop (shots)

Compile the program, keeping folded gates
prog = basic_compile (prog)

Convert to an executable and run
executable = aspen8.compiler.native_quil_to_executable (prog)
results = aspen8.run(executable)

Return the observable
all_zeros = [sum(b) == 0 for b in results]

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 31

N

return sum(all_zeros) / shots

Codeblock 31: Defining an executor to run on Rigetti Aspen-8 and return the probability of the ground
state. Line 3 requires a Rigetti Quantum Cloud Services (QCS) [61] account and reservation. We
assume that the input program has no measurements, resets, or classical memory declarations.

In these examples, we see how the executor function abstracts away details about
running on a back-end. This abstraction makes Mitiq compatible with multiple quantum
processors using the same interface.

A.2 Executors based on a classical simulator

The executor function does not have to use a real quantum processor but instead can
use a classical simulator.In this case, the executor is also responsible for adding noise to
the circuit. The manner in which noise is added depends on the quantum programming
library being used. We show below an example of an executor which adds depolarizing noise
to a Cirq circuit and uses density matrix simulation. This executor inputs an arbitrary
observable defined by a cirq.PauliString and returns its expectation value by sampling.

import cirq
dsim = cirq.DensityMatrixSimulator ()

def executor (
circ: Circuit,
obs: cirq.PauliString,
noise: float = 0.01,
shots: int = 1024,
) -> float:
Add depolarizing noise to the circuit
noisy = circ.with_noise(cirq.depolarize (p=noise))

Do the sampling

psum = cirq.PauliSumCollector (
noisy,
obs,
samples_per_term=shots,

)

psum.collect (sampler=dsim)

Return the expectation value
return psum.estimated_energy ()

Codeblock 32: Cirq executor function based on a density matrix simulation with depolarizing noise and
sampling. The observable is defined via cirq.PauliString.

Other noise models can be easily substituted into this executor by changing the channel
in Line 13 from cirq.depolarize to a different channel, e.g. cirq.amplitude_damp. Ex-
ecutors using classical simulators in other quantum programming frameworks (e.g., Qiskit
or pyQuil) can be defined in an analogous way, although each handles noise in different
manners.

Finally, we note that executor functions provided to execute_with_zne must have
only a single argument: the quantum program. The examples above include additional
arguments, and it is often convenient to write executors this way. To make an executor
with multiple arguments a function of one argument, we can use functools.partial as
shown below.

from functools import partial

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 32

3 def executor (gprogram, argl, arg2) -> float:
|

6 new_executor = partial(
7 executor,
8 argl=arglvalue,

9 arg2=arg2value,

10)
Codeblock 33: Converting a multi-argument executor to a single-argument executor to use with
execute_with_zne. The functools library is a built-in Python library.

The new_executor is now a function of a single argument (the quantum program) and can
be used directly with mitiq.zne.execute_with_zne or mitiq.pec.execute_with_pec.

Accepted in {Yuantum 2022-07-17, click title to verify. Published under CC-BY 4.0. 33

	1 Introduction
	2 Getting started with Mitiq
	2.1 Requirements and installation
	2.2 Main usage

	3 Benchmarks with Mitiq
	3.1 Randomized benchmarking circuits
	3.2 Potential energy surface of H_2
	3.3 Probabilistic error cancellation example

	4 Zero-noise extrapolation module
	4.1 Noise scaling
	4.1.1 Unitary Folding
	4.1.2 Parameter-noise scaling
	4.1.3 Using noise scaling methods in execute_with_zne

	4.2 Classical inference: Factory objects
	4.2.1 Using factories in execute_with_zne to perform different extrapolation methods
	4.2.2 Using custom fitting techniques

	5 Probabilistic error cancellation module
	5.1 Noisy Operations
	5.2 OperationRepresentation Objects
	5.3 How to determine the quasi-probability representations?
	5.4 Sampling Functions

	6 Clifford data regression module
	6.1 Clifford data regression (CDR)
	6.2 Variable noise Clifford data regression (vnCDR)
	6.3 Applying CDR and vnCDR with Mitiq

	7 Additional library information
	7.1 Alternative ways of using Mitiq
	7.2 Mitiq documentation
	7.3 Contribution guidelines

	8 Discussion
	8.1 Limitations of zero-noise extrapolation
	8.2 Limitations of probabilistic error cancellation
	8.3 Limitations of Clifford data regression
	8.4 Overview of error mitigation techniques
	8.5 Differences and relations to neighbouring fields
	8.5.1 Quantum error correction
	8.5.2 Quantum optimal control
	8.5.3 Environment-induced error protection

	9 Conclusion
	A Executor examples
	A.1 Executors based on real hardware
	A.2 Executors based on a classical simulator

