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It is well-known that in a Bell experiment, the observed correlation between mea-
surement outcomes—as predicted by quantum theory—can be stronger than that al-
lowed by local causality, yet not fully constrained by the principle of relativistic causal-
ity. In practice, the characterization of the set Q of quantum correlations is carried
out, often, through a converging hierarchy of outer approximations. On the other hand,
some subsets of Q arising from additional constraints [e.g., originating from quantum
states having positive-partial-transposition (PPT) or being finite-dimensional maxi-
mally entangled (MES)] turn out to be also amenable to similar numerical character-
izations. How, then, at a quantitative level, are all these naturally restricted subsets
of nonsignaling correlations different? Here, we consider several bipartite Bell scenar-
ios and numerically estimate their volume relative to that of the set of nonsignaling
correlations. Within the number of cases investigated, we have observed that (1) for a
given number of inputs ns (outputs no), the relative volume of both the Bell-local set
and the quantum set increases (decreases) rapidly with increasing no (ns) (2) although
the so-called macroscopically local set Q1 may approximate Q well in the two-input
scenarios, it can be a very poor approximation of the quantum set when ns > no (3)
the almost-quantum set Q̃1 is an exceptionally-good approximation to the quantum set
(4) the difference between Q and the set of correlations originating from MES is most
significant when no = 2, whereas (5) the difference between the Bell-local set and the
PPT set generally becomes more significant with increasing no. This last comparison,
in particular, allows us to identify Bell scenarios where there is little hope of realizing
the Bell violation by PPT states and those that deserve further exploration.

1 Introduction
The fact that Bell inequalities [11]—constraints derived from the assumption of Bell-locality [17]—
can be violated by quantum theory indicates that the set of quantum correlations Q is intrinsically
different from the set of correlations L allowed by a locally-causal theory [12]. However, it is also
known—from the pioneering work of Popescu and Rohrlich [56]—that quantum theory is not the
most Bell-nonlocal (hereafter abbreviated as nonlocal) among all physical theories that respect the
principle of relativistic causality. In bipartite Bell scenarios, this principle gives rise to the so-called
nonsignaling (NS) conditions [10], and hence a superset of Q known as the nonsignaling polytope
NS.

Since then, a lot of effort (see, e.g., [16, 32, 34, 42, 46, 49, 50]) has been devoted to understand if
additional physical, or information-theoretic principles can be supplemented to recover fromNS the
set of quantum correlations. In fact, the so-called almost-quantum set of correlations [49]—known
to be a strict superset to Q—apparently satisfies all information-theoretic principles proposed to
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date. Nonetheless, the extent to which this set, hereafter denoted by Q̃1, differs from Q itself
is not well understood. Indeed, [63] seems to be the only work to date reporting a systematic
investigation of the difference in Bell values achievable by these sets.

So far, the only known means that we have in characterizing Q is via a hierarchy of outer
approximations, such as that proposed by Navascués, Pironio, and Acín (NPA) [47]. The NPA
hierarchy is known to converge [48] (see also [29])—in the asymptotic limit—to the set of corre-
lations Q[·,·] achievable assuming quantum theory and with the measurements between spatially
separated parties modeled by commuting operators, rather than tensor products. Note that the two
different formulations of spatially separated measurements generally lead to different [25, 61, 62]
sets of correlations, i.e., Q 6= Q[·,·], thereby manifesting the complication of the geometry of these
sets [33]. Moreover, very little is known [36] regarding the rate of convergence of this hierarchy
towards Q[·,·].

On the other hand, a few other subsets of Q are naturally also of interest. For example, a
somewhat different formulation [45] of the NPA hierarchy has made it possible to characterize—
also via a converging hierarchy of outer approximations—the set of correlations P arising from
quantum states having positive partial transposition [52] (PPT). The interest in this stems from a
conjecture of Peres [53]—disproved in [65]—concerning the impossibility of bound entangled [37]
states violating Bell inequalities. Known counterexamples to Peres’ conjecture are, however, too
fragile to be demonstrated in any experiment, thus making it desirable to understand how P, being
a restricted subset of Q, differs from the set of Bell-local correlations L.

Besides, the fact that certain nonlocal features only seem to exist for partially entangled states
is also intriguing. One of the first hints along this line is the Hardy paradox [35]. Later, the
existence of such correlations was explicitly shown, independently, in [38, 40, 66] (see also [24]),
under the name of more nonlocality with less entanglement. Interestingly, the set of correlations
M arising from finite-dimensional maximally entangled states, or more precisely its convex hull—
as with Q and P—can also be characterized [39] via a hierarchy of outer approximations, each
corresponds to the feasible set of a semidefinite program [15]. To achieve a better understanding
of the precise relationship between entanglement and nonlocality, any quantitative estimate of the
difference betweenM and Q is surely welcome.

Apart from fundamental interests, nonlocal correlations also play an indispensable role in the
context of device-independent quantum information [17, 58]. For instance, from the observation
of a Bell violation itself, one can certify the generation of unpredictable random bits [26, 54],
guarantee the sharing of truly unconditional secured keys [3], certify various desired features of the
underlying systems (see, e.g., [4, 6, 20, 21, 41, 45]), measurements (see, e.g., [7, 20, 23, 57]) or even
other more general types of operations [59, 68]. In its strongest form, one could achieve so-called
self-testing [44], where the underlying system and measurements are identified uniquely, modulo
unimportant local degrees of freedom. For a comprehensive review on this last topic, see [67].

To this end, it is worth noting that the quantitative differences between the “size" of the Bell-
local set L, the quantum set Q, and the nonsignaling set NS has been investigated in [19, 30, 75].
Specifically, in the simplest Bell scenario involving two parties, each performing two binary-outcome
measurements, the volume of L and that of Q, relative to NS, in the subspace of “full" correlation
functions [70] was first determined in [19]. Then, for the same Bell scenario, the analysis has
been generalized [75] to include also the subspace spanned by marginal correlations. Beyond this,
numerical estimation of the relative volume of L to NS was carried out in [30] for a few Bell
scenarios with either only two measurement settings or outcomes; some analytic results were also
presented therein when restricted to the subspace of full correlations.

Here, we generalize the analysis of [19, 30, 75] in two directions. Firstly, we consider a more
extensive list of Bell scenarios, including a few with multiple measurement settings and outcomes,
which allows us to make observations that were not possible in prior works. Secondly, we consider
not only L, Q (approximated by relevant outer approximations), and NS, but also the set of corre-
lations P achievable by PPT quantum states, the (convex hull of the) set of correlations achievable
by locally measuring finite-dimensional maximally entangled states with projective measurements
MP, the set Q1 associated with the principle of macroscopic locality [46], the almost-quantum set
Q̃1, and more generally the first few levels of the outer approximations of Q given by the NPA
hierarchy [47] as well as the hierarchy of Moroder et al. [45]. This last consideration, in particular,
allows us to learn the fraction of points in NS that can be further excluded from Q as we consider
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increasingly tighter outer approximations to Q. Clearly, such information is highly relevant for
device-independent analyses that rely on the above hierarchies to outer-approximate Q.

The rest of this paper is structured as follows. In Section 2, we introduce the notations used
throughout the paper and the different Bell scenarios considered. Then, we present in Section 3
our main results on the relative volume for the different sets of correlations mentioned above. In
Section 4, we give further discussions and comment on some possible directions for future research.

2 Preliminaries
2.1 Notations and Naturally Restricted Subsets of NS
Consider a bipartite Bell experiment where each spatially separated party has a choice over ns
measurement settings where each measurement results in no possible outcomes. We shall de-
note such a Bell scenario by (ns, no). Correlation between the observed outcomes for given mea-
surement settings of the two parties (conventionally called Alice and Bob) may be described by
~P = {P (a, b|x, y)}a,b,x,y where we label the measurement settings and outcomes for Alice (Bob),
respectively, as x (y) and a (b). Throughout, we consider only Bell scenarios where x, y, a, and b
take a finite number of values.

Our starting point is the set of nonsignaling correlations [10, 56], NS, which are all those ~P
that satisfy the so-called nonsignaling conditions [10]:∑

a

P (a, b|x, y) NS=
∑
a

P (a, b|x′, y) ∀ b, y, x, x′,∑
b

P (a, b|x, y) NS=
∑
b

P (a, b|x, y′) ∀ a, x, y, y′.
(1)

Physically, these conditions were initially [56] proposed to exclude the possibility of communica-
tion by making different local choices of x, y. Since NS is the intersection of a finite number
of hyperplanes defined by Eq. (1) and the direct sum of n2

s probability simplices, it is a convex
polytope.

An important subset of NS is the Bell-local [17] set L. For any ~P ∈ L, it can be shown [31, 55]
(see also Ref. [73]) that there exists normalized weights q(λ) ≥ 0 for all λ and

∑
λ q(λ) = 1 such

that

P (a, b|x, y) L=
∑
λ

q(λ)δa,fA(x,λ)δb,fB(y,λ), (2)

for some choice of local response functions fA(x, λ) and fB(y, λ). Clearly, L is convex. Since there
are only finite possibilities of x, y, a, and b, the set L forms [55] a convex polytope, with its extreme
points correspond to local deterministic strategies given by the Kronecker deltas: δa,fA(x,λ) and
δb,fB(y,λ).

Suppose now that the two parties share a quantum state ρ, then quantum theory dictates that
the observed correlation follows Born’s rule:

P (a, b|x, y) Q= tr
[
ρM

(A)
a|x ⊗M

(B)
b|y

]
, (3)

where {M (A)
a|x }a

(
{M (B)

b|y }b
)
are positive-operator-valued measures (POVMs) associated with Al-

ice’s (Bob’s) x-th (y-th) measurement. We denote the set of such correlations by Q. Importantly,
in the definition of Q, there is no constraint imposed on the (local) Hilbert space dimension. This,
in turn, guarantees the convexity [55] of Q and the sufficiency of projective measurements (via
Naimark’s extension [51]) on pure state ρ = ρ2 in the membership test of Q. Even then, the
characterization of Q is by no means computationally easy.

To this end, NPA [47] first pointed out that Q, or more precisely, Q[·,·] can be characterized [48]
asymptotically (see also [29]) by solving a hierarchy of semidefinite programs (SDPs). The feasible
sets corresponding to these SDPs then define a series of outer approximations Q1 ⊇ Q2 ⊇ · · · ⊇
Q∞ = Q[·,·] ⊃ Q, where Qk is referred conventionally as NPA level k with k signifying the highest
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Figure 1: Schematic illustration of the relationships among the various subsets T ⊂ NS considered here.
Starting from NS and moving inwards, we have in solid lines, respectively, the boundary of the quantum set of
correlations Q [Eq. (3), blue], the convex hullMP (red) of the set of correlations attainable by finite-dimensional
maximally entangled states in conjunction with projective measurements, the set of correlations attainable by
PPT entangled state P (green), and the Bell-local polytope L (skyblue). Dashed (pink) and dotted (brown)
lines lying between the boundary ofQ and that ofNS mark the boundary of the lowest-level outer approximation
of Q, respectively, due to NPA [47] (Q1) and Moroder et al. [45] (Q̃1).

degree of the operator used in defining some matrix of moments (see [47, 48] for details). Q1,
incidentally, is exactly the set of correlations that respects the principle of macroscopic locality [46].
Intermediate levels can also be considered and a prominent example is the so-called NPA level 1 +
AB, which happens to be the lowest level of another converging hierarchy of outer approximations
Q̃1 ⊇ Q̃2 ⊇ · · · ⊇ Q̃∞ = Q[·,·] ⊃ Q due to Moroder et al. [45]. The specific outer approximation
Q1+AB = Q̃1 is known in the literature as the almost quantum [49] set of correlations, as it seems
to satisfy all principles that have been proposed to date to distinguish Q from NS. In the bipartite
scenario, the sets associated with the two hierarchies are known [45] to satisfy the inclusion relations
Q1 ⊃ Q̃1 and Q̃k ⊃ Q2k for all integers k ≥ 1.

As Bell showed in his seminal work [11], there exist quantum correlations arising from entangled
quantum states that do not admit a convex decomposition in the form of Eq. (2). At the same
time, by considering trivial POVMs consisting only of the identity operator and the null operator,
it is straightforward to see that all ~P ∈ L can always be cast in the form of Eq. (3). Similarly, all
~P ∈ Q are easily seen to satisfy Eq. (1), while Popescu and Rohrlich [56] showed that there exists
~P ∈ NS \ Q. Together, one arrives at the strict inclusion relations L ( Q ( Q̃1 ( Q1 ( NS.

Even if we restrict our attention to Q itself, its relationship with the set of quantum states
has not been fully understood. For example, although entanglement is necessary [71] for Bell-
nonlocality, some entangled states (see, e.g., [9, 71]) are known to produce only ~P ∈ L. In fact,
even if Alice and Bob are allowed to share an arbitrary finite-dimensional maximally entangled state
|Ψd〉 = 1√

d

∑d
i=1 |i〉|i〉, it is impossible for them to reproduce all ~P ∈ Q [24, 38, 40, 66]. To facilitate

subsequent discussions, we denote byMP the convex hull of the set of correlations attainable by
performing projective measurements on |Ψd〉, with d finite. On the contrary, even the weakest
form of entanglement given by PPT entangled states may generate nonlocal correlations [64, 65].
Hereafter, we denote by P the subset of Q which arises from ρ being a PPT state, i.e., ρTA � 0
where TA stands for the partial transposition operation on Alice’s Hilbert space.

A schematic diagram explaining the relationships among the various naturally restricted subsets
T of NS considered in this work is provided in Fig. 1.

2.2 Membership Tests
Our goal is to estimate the relative volume of various subsets T ∈ {L,P,MP,Q, Q̃1,Q1} of NS.
To this end, we perform the membership test ~P

?
∈ T for each sampled ~P ∈ NS by solving the
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following optimization problem:

sup v (4a)

s.t. v ~P + (1−v)~Pw ∈ T , (4b)

where ~Pw is the uniform probability distribution, i.e., Pw(a, b|x, y) = 1/n2
o ∀ x, y. As ~Pw lies

strictly in L, it must also lie in all sets T that are of our interest. Hence, the above optimization
problem, which we solve using the optimization software MOSEK implemented in MATLAB, is
always feasible by setting v = 0. Also, if ~P ∈ T then all mixtures with v ∈ [0, 1] are inside T , i.e.,
the optimum v (denoted by v∗) would be greater than or equal to 1. Hence, v∗ < 1 indicates that
~P 6∈ T . Notice that v∗, often called the white-noise visibility, can be understood as the “maximal"
weight that can be assigned to ~P when it is admixed with white noise while ensuring that the
mixture lies within T . A smaller value of v∗, which corresponds to a larger value of 1 − v∗, then
indicates that the correlation is more robust (in terms of preserving its nonlocal nature) against
the mixing with ~Pw.

Among the different sets of interest, L is a convex polytope, and thus its membership test,
cf. Eq. (4) is an instance of a linear program [15]. For relatively simple Bell scenarios, this op-
timization problem can be efficiently solved on a computer. In contrast, for the other sets of
interest, including T ∈ {P,MP,Q}, we rely on a hierarchy of outer approximations, each of which
is amenable to semidefinite programming characterizations. In the case of Q, we use both the NPA
hierarchy [47, 48] and its variant due to Moroder et al. [45] for membership tests. For definiteness,
we denote by Qk and Q̃`, respectively, the level k and the level ` outer approximation of Q based
on the NPA hierarchy and the hierarchy of Moroder et al. (a summary of both hierarchies can be
found in Table V, Appendix B of Ref. [22]). By further requiring the moment matrix Q̃` to be PPT,
one immediately obtains a characterization of P`, i.e., the level ` outer approximation of P. Notice
that all these SDPs can be implemented using the Ncpol2sdpa toolbox developed by Wittek [74].
For the set of correlationsMP associated with local projective measurements on finite-dimensional
maximally entangled states, we make use of a hierarchy adapted from that presented in Ref. [39],
the details of which are given in Appendix A. We refer to the level h outer approximation ofMP

obtained thereof asMP
h.

2.3 Metrics and Relative Volume
The notion of volume for any given region in a space P is metric-dependent. In our case, P is
the set of conditional probability distributions ~P = {P (a, b|x, y)}a,b,x,y where a, b ∈ {1, . . . , no}
and x, y ∈ {1, 2, . . . , ns}. The normalization requirement

∑
a,b P (a, b|x, y) = 1 for all x and y

implies that P is (n2
s)(n2

o− 1)-dimensional. Moreover, we are only interested in ~P that satisfy the
nonsignaling constraints of Eq. (1). The nonsignaling polytope NS and hence the various subsets
of interest all lie in a d-dimensional subspace PNS of P where [27] d = (no− 1)2n2

s + 2ns(no− 1).
A convenient, minimal parametrization of any ~P ∈ NS is given by [27]:

~P = {P (a|x), P (b|y), P (a, b|x, y)}a,b,x,y (5)

where P (a|x) =
∑
b P (a, b|x, y) and P (b|y) =

∑
a P (a, b|x, y) are, respectively, the marginal condi-

tional probability distributions of Alice and Bob. Note that in this parameterization, the labels a, b
in Eq. (5) take only values from {1, . . . , no − 1}. Indeed, the conditional probability distributions
for the omitted outcome corresponding to a and/or b = no can be determined easily from the com-
ponents Pi of ~P in Eq. (5) via the normalization of probabilities and the nonsignaling conditions
of Eq. (1).

Like in previous works [19, 30, 75], we adopt the Euclidean metric in our computation of the
relative volumes (though other options may also be considered, see our remark in Section 4). In
this metric ds2

E, all components of ~P in Eq. (5) are treated on equal footing. Explicitly, ds2
E and

the corresponding volume element dVE are given, respectively, by:

ds2
E =

∑
i

dP 2
i and dVE =

∏
i

dPi. (6)
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When there is no risk of confusion, the subscript E is omitted to simplify the presentation.
We then define the relative volume (RV) for each set T ⊂ NS as:

RV(T ) ≡ V (T )
V (NS) (7)

where V (S) is the volume of a set S in accordance to the (Euclidean) metric. To numerically
estimate these RVs, it suffices to sample points ~P ∈ NS uniformly according to the metric, and
determine the fraction of such points that lie in T via the method explained in Section 2.2. For
this purpose, we make use of the MATLAB function cprnd developed by Benham [13], and in
particular its Gibbs sampler algorithm to perform uniform sampling of ~P in NS. In Appendix B,
we give further details on how we generate uniform samples in NS using the cprnd function. Note
that each membership test with respect to T is exactly a Bernoulli trial with a success probability
given by RV(T ).

For each Bell scenario considered, we estimate the RV of L, Ql, Q̃k, Pk andMP
h. In Table 1, we

list all the bipartite Bell scenarios considered in this work, the number of samples used in estimating
the RV of each target set, the highest level of each type of hierarchies considered, as well as the
corresponding RVs. In Appendix C, we further provide the relevant parameters characterizing the
size of the optimization problem. In the next section, we present our main results across 23 Bell
scenarios.

For all but two of these Bell scenarios, we use Ntot = 106 sampled correlations in our estimation
of the relative volumes. The only exceptions are the (5,4) and the (6,3) Bell scenario where we
employ, instead, 3.05 × 105 and 7.85 × 105 samples, respectively. Even in these latter cases, the
estimates have converged well with the employed samples (see Fig. 8 in Appendix D for details).
Importantly, as we can see in these plots, the number of samples required to reach a good precision
does not seem to depend on the complexity of the Bell scenario, but rather more on the success
probability itself.

3 Numerical Estimates of Relative Volumes
In Table 1, we provide a summary of RV(T ) for T ∈ {Q1, Q̃1,L} and certain approximations to
Q, P, andMP for the various Bell scenarios considered. Note that for 6 of the 23 Bell scenarios,
we compute only RV(L) as it becomes too time consuming to compute the other RV(T ) with a
statistically significant number of trials. Throughout, we use Q∗∗, MP

∗ , and P∗, respectively, to
denote the tightest approximation that we are able to compute for Q,MP, and P. In the following
subsections, we describe in details how the RV of these sets changes in different Bell scenarios. To
best illustrate these trends, we make use of line plots showing how each of these relative volumes
varies with respect to the relevant parameters.

3.1 L vs NS
Quantitative estimate of RV(L) in the 8-dimensional space of PNS for the (2,2) Bell scenario was
first determined in Ref. [75]. This analysis was then generalized in Ref. [30] to include the (3,2),
(4,2), (5,2), (2,3), and the (2,4) Bell scenarios. Among their findings is the observation that for
no = 2, RV(L) rapidly decreases as ns increases from 2 to 5. Our findings, as can be seen in Fig. 2,
show that this trend holds also for Bell scenarios with no = 3, 4 (and possibly no = 5).

Observation 1. For Bell scenarios with fixed outputs, RV(L) decreases monotonically with in-
creasing ns (see Fig. 2).

Hence, Observation 1 generalizes the observation from [30] for no = 2. For example, in the no = 3
case, we observe that RV(L) decreases from 93.84% (for ns = 2) to 0.01% (for ns = 6), likewise
for the no = 4 case, which decreases from 97.41% (for ns = 2) to 6.31% (for ns = 5), etc.

Before discussing this observed trend, note that our estimate for RV(L) in the (2,2) and the
(3,2) Bell scenario is consistent with that obtained analytically from the software lrs [5], which
gives RV(L) = 16

17 ≈ 94.12% and RV(L) = 18 176
29 205 ≈ 62.24% respectively. Similarly, our estimate of
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(ns, no) Ntot (×105) Q1 Q̃1 Q∗ Q̃∗ P∗ MP
∗ ∩Q∗∗ L

(2,2) 10 99.80% 99.25% 99.17% (Q4) 99.17% (Q̃4) 94.15% (P4) 98.68% (MP
4 ∩ Q̃4) 94.15%

(2,3) 10 99.98% 99.80% 99.74% (Q3) 99.74% (Q̃2) 93.84% (P2) 99.50% (MP
2 ∩ Q̃2) 93.84%

(2,4) 10 100.00∗% 99.99% 99.99% (Q2) 99.99% (Q̃1) 97.41% (P2) 99.95% (MP
2 ∩Q2) 97.41%

(2,5) 10 100.00∗∗% 100.00∗% 100.00∗% (Q2) 100.00∗% (Q̃1) 99.41% (P1.5) 100.00∗% (MP
2 ∩Q2) 99.41%

(2,6) 10 100.00∗∗% 100.00∗∗% 100.00∗∗ (Q2) 100.00∗∗% (Q̃1) 99.90% (P1.5) 100.00∗∗% (MP
1 ∩Q2) 99.90%

(2,7) 10 100.00∗∗% 100.00∗∗% 100.00∗∗ (Q2) 100.00∗∗% (Q̃1) 99.98% (P1) 100.00∗∗% (MP
1 ∩Q2) 99.98%

(2,8) 10 - - - - - - 100.00∗%
(2,9) 10 - - - - - - 100.00∗%

(3,2) 10 97.23% 92.11% 91.19% (Q3) 91.19% (Q̃2) 62.18% (P2) 88.13% (MP
3 ∩ Q̃2) 62.18%

(3,3) 10 99.78% 97.90% 97.52% (Q2) 97.90% (Q̃1) 59.88% (P2) 95.16% (MP
2 ∩Q2) 59.88%

(3,4) 10 100.00∗% 99.93% 99.91% (Q2) 99.93% (Q̃1) 81.27% (P1.25) 99.65% (MP
1.5 ∩Q2) 79.79%

(3,5) 10 - - - - - - 94.93%
(3,6) 10 - - - - - - 99.16%
(3,7) 10 - - - - - - 99.89%

(4,2) 10 84.62% 69.45% 67.80% (Q2) 69.45% (Q̃1) 21.14% (P2) 61.75% (MP
2 ∩Q2) 21.14%

(4,3) 10 98.39% 88.69% 98.39% (Q1) 88.69% (Q̃1) 20.22% (P1.2) 88.69% (MP
1 ∩ Q̃1) 16.58%

(4,4) 10 99.99% 99.59% 99.99% (Q1) 99.59% (Q̃1) 50.16% (P1) 99.59% (MP
1 ∩ Q̃1) 41.07%

(4,5) 10 - - - - - - 80.34%

(5,2) 10 53.47% 34.49% 32.35% (Q2) 34.49% (Q̃1) 3.09% (P1.5) 27.12% (MP
2 ∩Q2) 2.96%

(5,3) 10 89.91% 59.29% 89.91% (Q1) 59.29% (Q̃1) 3.16% (P1) 59.29% (MP
1 ∩ Q̃1) 1.22%

(5,4) 3.05 99.94% 97.03% 99.94% (Q1) 97.03% (Q̃1) 18.28% (P1) 97.03% (MP
1 ∩ Q̃1) 6.31%

(6,2) 10 18.11% 8.80% 7.73% (Q2) 8.80% (Q̃1) 0.22% (P1) 5.93% (MP
2 ∩ Q2) 0.15%

(6,3) 7.85 56.67% 17.20% 56.67% (Q1) 17.20% (Q̃1) 0.12% (P1) 17.20% (MP
1 ∩ Q̃1) 0.01%

Table 1: Summary of the numerically estimated relative volume RV(T ) for various naturally restricted subsets
T of the set of nonsignaling correlations NS. The second column gives the number of ~P uniformly sampled
from NS using cprnd. From the third column to the rightmost column, we have the estimated relative volume
(RV) for, respectively, the macroscopically local set Q1, the almost quantum set Q̃1, our tightest approximation
to Q based on outer approximations of NPA [47] (denoted by Q∗), our tightest approximation to Q based
on outer approximations of Moroder et al. [45] (denoted byQ̃∗), our tightest approximation to P (denoted by
P∗), our tightest approximation to MP intersecting with Q∗∗ (denoted by MP

∗ ∩ Q∗∗), and the Bell-local set
L. In the fifth to the eighth column, we include also in bracket the highest level of the SDP hierarchy used
in the computation (for an explanation of the various levels and the complexity involved in the computation,
see Appendix C). In particular, our best approximation to RV(Q), given either in the fifth or the sixth column,
is highlighted in yellow. For example, in our characterization of Q in the (2, 3) Bell scenario, we are not able
to go beyond Q3 nor Q̃2, neither of which is, a priori, a subset of the other. However, since Q̃2 gives a smaller
RV (see Table 2), we use it as our Q∗∗ in this Bell scenario. We use 100.00∗% and 100.00∗∗% to denote
entries where the estimated RV(T ) satisfies, respectively, RV(T ) > 99.995% and RV(T ) > 100%

(
1− 1

Ntot

)
.

Similarly, all other estimates reported here have a fundamental imprecision of 100
Ntot

%. Here and below, entries
marked with “-" means the corresponding computation has been left out.

RV(L) in the (2, 3) Bell scenario (see Table 1) is consistent with that determined from the software
vinci [18], giving RV(L) ≈ 93.82%.

How do we understand the observed decreasing trend? Let us remind that for any Bell scenario
(n′s, no) with n′s > ns, any sub-correlation ~P extracted from ~P ′ by considering only ns out of the
n′s measurement settings (for both Alice and Bob) is a legitimate correlation for the simpler Bell

scenario (ns, no). Moreover, for ~P ′ to be in L, all these
(
n′s
ns

)2
sub-correlations ~P extractable from

~P ′ must also be Bell-local.
Let RV(L) = p be the success probability of a Bernoulli trial in the (ns, no) Bell scenario. If

all such ~P that may be extracted from ~P ′ could be thought of as being sampled independently and
uniformly from the NS polytope in the (ns, no) Bell scenario, the success probability of a Bernoulli
trial in the (n′s, no) Bell scenario would scale as

p(
n′s
ns

)2

= p
(n′s!)2

(ns!)2[(n′s−ns)!]2 . (8)
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Figure 2: Plots of estimated RV(L) vs no ∈ {2, 3, . . . , 9} for ns ∈ {2, 3, . . . , 6}. RV(L) for scenarios
(2, 5), (2, 6), . . . , (2, 9), (3, 6) and (3, 7) is very close to 100% but not exactly 100%.

Applying this naïve reasoning to the (2,2) and the (3,2) Bell scenario would suggest a decrease
of RV(L) from 16

17 ≈ 94.12% to 57.95%, which is not too far off from our exact finding that
RV(L) = 18 176

29 205 ≈ 62.24% in the (3,2) case. Clearly, part of this discrepancy stems from the fact
the sub-correlations ~P extractable from ~P ′ are not entirely independent from one another – all these
different ~P share a common input with the other ~P . Moreover, even if all these sub-correlations
~P are Bell-local, ~P ′ may still be Bell-nonlocal.

On the other hand, Fig. 2 shows an opposite trend for Bell scenarios with fixed ns.

Observation 2. For Bell scenarios with fixed inputs, RV(L) first decreases when no varies from
2 to 3, but increases monotonically thereafter with increasing no (see Fig. 2).

This observation generalizes the observation from [30] for ns = 2. Since the way RV(L) changes
with increasing no is opposite to that with increasing ns, it is natural to wonder how RV(L) changes
when ns = no = k increases. To this end, we have the following observation.

Observation 3. As ns = no = k increases, RV(L) decreases steadily with increasing k. That is,
the effect of increasing ns on RV(L) dominates over that of increasing no.

3.2 Q vs NS and L
3.2.1 Convergence of outer approximations towards Q[·,·]

Before discussing how RV(Q) changes across different Bell scenarios, let us first make a digression
to investigate how well the various Qk and Q̃` outer-approximate Q in each Bell scenario. Again,
their relative volume is a useful figure of merit in this context. From here, we can learn how RV(T )
converges to Q when we consider approximations T of Q with increasing complexity. For definite-
ness, we make use of the number of real moment variables involved in the SDP characterization of
T to serve as our measure of complexity.

Recall from our discussion in Section 3.1 that L makes up a substantial fraction of NS for
many of the Bell scenarios considered. Thus, to better manifest the convergence graphically, we
focus on the nonlocal region of NS, i.e., NS\L. In other words, for any given outer approximation
T = Qk or Q̃`, we are interested in the volume of T \ L relative to that of NS \ L, i.e.,

f(T ) = RV(T \ L)
RV(NS \ L) = RV(T \ L)

1− RV(L) . (9)

Evidently, for each given Bell scenario, there is some Qk or Q̃` considered that gives the smallest
f(T ). Denoting them, respectively, by Q∗ and Q̃∗, then our tightest approximation to Q is
simply Q∗∗ := argminT ∈{Q∗,Q̃∗}RV(T ). The actual Q∗∗ in each case can be read off from the
corresponding highlighted entry in Table 1. We show in Fig. 3 how f(T ) changes with T for all
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those Bell scenarios where we have computed at least two different approximations T ’s to Q. For
these scenarios, we thus have Q∗∗ ( Q1.

(ns, no) NS \ Q1 Q1 \ Q̃1 Q̃1 \ Q2 Q2 \ Q3 Q̃1 \ Q̃2 Q∗∗ \ L
(2,2) 2 001 5 458 581 305 886 50 116
(2,3) 187 1781 271 359 631 59 000
(2,4) 1 85 12 - - 25 808
(2,5) 0 1 0 - - 5 887
(2,6) 0 0 0 - - 994
(2,7) 0 0 0 - - 151

(3,2) 27 711 51 209 5 364 3 818 9 185 290 053
(3,3) 2 190 18 766 3 889 - - 376 374
(3,4) 10 672 259 - - 201 161

(4,2) 153 800 151 686 16 481 - - 466 675
(4,3) 16 131 96 990 - - - 721 076
(4,4) 96 3 982 - - - 585 222

(5,2) 465 263 189 827 21 394 - - 293 933
(5,3) 100 943 306 120 - - - 580 700
(5,4) 186 8 883 - - - 276 676

(6,2) 818 872 93 083 10 792 - - 75 773
(6,3) 340 105 309 851 - - - 134 960

Table 2: Summary of the number of correlations ~P excluded from one approximation of Q[·,·] to a tighter one.
The leftmost column gives the Bell scenario. Except for the Bell scenario (5,4) and (6,3), the total number
Ntot of correlations sampled from NS is 106 (see Table 1). Further to the right, we have, respectively, the
number of ~P ∈ NS excluded from Q1, the number of ~P ∈ Q1 excluded from Q̃1, the number of ~P ∈ Q̃1
excluded from Q2, the number of ~P ∈ Q2 excluded from Q3, the number of ~P ∈ Q̃1 excluded from Q̃2, and the
number of nonlocal ~P that lie in our tightest approximation Q∗∗ (see Table 1). For the Bell scenario (2,2), we
have also performed the membership test for Q̃3, Q4 and Q̃4. However, no ~P was further excluded from these
higher-level relaxations to Q[·,·]. For a graphical representation focussing on the nonlocal region, see Fig. 3.

As is evident from the plots (see also Table 2 and Table 3), the first level of the NPA hierarchy
Q1 (corresponding to the first filled symbol on each line) generally does not serve as a very good
approximation to Q. In fact, it largely overestimates RV(Q) for several Bell scenarios.

Observation 4. For two-input Bell scenarios, Q1 approximates Q∗∗ well but for ns > 3 ≥ no,
RV(Q1) overestimates RV(Q) by at least 9.69%. This overestimation even exceeds 30% in both the
(5.3) and (6,4) Bell scenario, see Table 3.

From Fig. 3 as well as Table 2 and Table 3, we also see that the almost quantum set Q̃1
(corresponding to the first hollow symbol on each line) generally offers a much better approximation
to Q than Q1 does. For instance, in all the no = 2 scenarios considered, Q1 occupies between 9
to 20% more of the nonlocal region compared to Q̃1, whereas in general, f(Q̃1) − f(Q∗∗) < 5%.
Even if we measure according to RV(T ), the difference between Q̃1 and Q∗∗ remains small for all
the 12 Bell scenarios explored beyond Q̃1.

Observation 5. For all the Bell scenarios investigated, RV(Q̃1)−RV(Q∗∗) is larger than 1% only
for the (4,2), (5,2), and the (6,2) Bell scenario. The largest difference is found in the (5,2) Bell
scenario, giving ≈ 2.14%, see Table 3.

3.2.2 Q∗∗ vs NS

Next, we focus on determining how RV(Q∗∗) varies across the different Bell scenarios. The trend of
how RV(Q∗∗) changes, with L included, is similar to that of L shown in Fig. 2. In a close parallel
to Observation 1, we have the following observation for Q∗∗ from Fig. 4.
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Figure 3: Numerical estimate of f(T ) = RV(T \L)
1−RV(L) for various outer approximations T of Q, where T is any

member of {Qk}k or {Q̃`}`. In each plot, we use filled (hollow) markers to represent Qk (Q̃`). The leftmost
filled (hollow) marker corresponds to the first level of the NPA [47] (Moroder et al. [45]) hierarchy Q1 (Q̃1).
When an increasingly higher level of either hierarchy is considered, the respective SDP characterization involves
an increasingly larger number of real (optimization) moment variables (see Appendix C), thus giving rise to
markers that are placed more and more to the right of the plot. Plots for the (2,6) and (2,7) Bell scenario have
been omitted as f(T ) = 100% for all approximations considered for these Bell scenarios. As guide for the eye,
we have also included a fitting curve (dashed line) in each case. For Bell scenarios with more than three data
points, we use the pchip (piecewise cubic Hermite interpolating polynomial) function in MATLAB to generate
the respective fitting curve whereas for the other scenarios, we simply use a straight line to join the two data
points.
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(ns, no) Q1 \ Q∗∗ Q̃1 \ Q∗∗ Q∗∗ \ (MP
∗ ∩Q∗∗) P∗ \ L

(2,2) 0.6344% 0.0886% 0.4817% 0%
(2,3) 0.2412% 0.0631% 0.2429% 0.0012%
(2,4) 0.0097% 0.0012% 0.0364% 0.0012%
(2,5) 0.0001% 0% 0.0016% 0.0017%
(2,6) 0% 0% 0% 0.0003%
(2,7) 0% 0% 0% 0%

(3,2) 6.0394% 0.9185% 3.06% 0%
(3,3) 2.2655% 0.3889% 2.3560% 0.0002%
(3,4) 0.0931% 0.0259% 0.2601% 1.4790%

(4,2) 16.8167% 1.6481% 6.0515% 0.0001%
(4,3) 9.6990% - 0% 3.6441%
(4,4) 0.3982% - 0% 9.0878%

(5,2) 21.1221% 2.1394% 5.2313% 0.1267%
(5,3) 30.6120% - 0% 1.9341%
(5,4) 2.9124% - 0% 11.968%

(6,2) 10.3875% 1.0792% 1.7932% 0.0679%
(6,3) 39.4714% - 0% 0.1088%

Table 3: Summary of the difference between the relative volume (RV) of several sets of interest. The leftmost
column gives the Bell scenario considered. From the second to the rightmost column, we have, respectively,
the difference in the RV between the set associated with the principle of macroscopic locality Q1 and our
tightest approximation to the quantum set Q∗∗, the difference in the RV between the almost quantum set
Q̃1 and Q∗∗, the difference in the RV between Q∗∗ and our tightest approximation of the set producible by
maximally entangled states with projective measurementsMP

∗, and the difference in the RV between our tightest
approximation to the set P∗ producible by PPT quantum states and the Bell-local set L.

Observation 6. For Bell scenarios with the same output no, RV(Q∗∗) decreases monotonically
with increasing ns.

Moreover, since L is a strict subset ofQ ⊂ Q∗∗, the following observation may have been anticipated
from Observation 2.

Observation 7. For Bell scenarios with the same input ns, RV(Q∗∗) increases monotonically with
increasing no.
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Figure 4: Plots of estimated RV(Q∗∗) vs no ∈ {2, 3, . . . , 5} for ns ∈ {2, 3, . . . , 6}. The plots for the (2,6) and
(2,7) Bell scenarios are omitted as RV(Q∗∗) = 100% in both cases.
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Despite these similarities, there are also subtle differences. For example, even though for fixed
ns, RV(L) generally increases with no, it does so after a dip when no increases from 2 to 3. More
importantly, for Bell scenarios with ns = no = k, while RV(L) appears to decrease monotonically
with increasing k, RV(Q∗∗) never seems to get far away from 1. This suggests that for any given ns,
if no ≥ ns is large enough, a generic ~P ∈ NS is also likely to be a member of Q, i.e., RV(NS \Q)
may become vanishingly small.

3.2.3 Q∗∗ vs L

What about the the Bell-nonlocal part of the quantum set, i.e., Q\L? As can be seen from Fig. 5,
for all ns investigated, RV(Q∗∗ \ L) = RV(Q∗∗)− RV(L) first increases when no increases from 2
to 3. However, for ns ≤ 4, this difference in RVs decreases for subsequent values of no. Since this
is in agreement with the trend of RV(L) shown in Fig. 2, the current observation suggests that
the trend of RV(Q∗∗ \ L) for fixed ns ≤ 4 is dominated by the trend of RV(L). In contrast, the
behavior of RV(Q∗∗ \L) for varying ns does not seem to follow immediately from that of RV(Q∗∗)
nor RV(L). In particular, for both the no = 2 and the no = 3 case, we see that RV(Q∗∗ \ L) first
increases with ns (from 2 to 4) but decreases monotonically after that, which differs from the trend
found for the no = 4 scenarios.

Observation 8. RV(Q∗∗ \ L) increases monotonically with ns for the (ns,4) Bell scenarios and
reaches > 90% for the (5,4) Bell scenario.

A large value of RV(Q∗∗ \ L) is, a priori, unexpected as it requires RV(Q∗∗) to be large and
RV(L) to be small at the same time. However, both requirements happen to hold for the (5,4) Bell
scenario.
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Figure 5: Plots of estimated RV(Q∗∗ \ L) vs no ∈ {2, 3, . . . , 7} for ns ∈ {2, 3, . . . , 6}. Here Q∗∗ = Q̃1 for the
(4,3), (4,4), (5,3), (5,4), and (6,3) Bell scenario whereas Q∗∗ ( Q̃1 for all the other Bell scenarios considered.

Let us further remark that when comparing different Bell scenarios, the value of RV(Q∗∗ \ L)
need not correlate with the nonlocality of the correlations contained therein. For example, one
might expect that the larger RV(Q∗∗ \ L), the stronger is the average resistance of the associated
nonlocal correlations to white noise ~Pw. If so, then one might expect the correlations in Q∗∗ \L for
the (5,4) scenario to display the smallest average white-noise visibility [cf. Eq. (4)] but the results
summarized in Table 4 show otherwise.

An illustration of how various supersets T of L contribute towards NS \ L, as measured
according to f(T \ L) = f(T ) − f(L), can be found in the stacked bar chart displayed in Fig. 6
and Fig. 7.

3.3 Other Naturally Restricted Subsets of Q
Next, let us considerMP and P, two naturally restricted subsets of Q. Again, our tightest outer
approximation to these sets are denoted, respectively, byMP

∗ and P∗.
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Scenario Q∗∗ Max Min Mean σ Within 1 σ

(2,2) Q̃4 1.0000 0.7300 0.9265 0.0538 64.75%
(2,3) Q̃2 1.0000 0.7429 0.9411 0.0461 67.40%
(2,4) Q2 1.0000 0.7529 0.9540 0.0393 72.42%
(2,5) Q2 1.0000 0.7964 0.9653 0.0308 75.37%
(2,6) Q2 1.0000 0.8265 0.9720 0.0261 78.17%
(2,7) Q2 0.9999 0.8742 0.9789 0.0226 87.42%

(3,2) Q̃2 1.0000 0.7214 0.9144 0.0563 62.69%
(3,3) Q2 1.0000 0.7303 0.9318 0.0482 64.49%
(3,4) Q2 1.0000 0.7286 0.9519 0.0394 70.67%

(4,2) Q2 1.0000 0.7179 0.8979 0.0572 62.47%
(4,3) Q̃1 1.0000 0.7241 0.9136 0.0489 63.33%
(4,4) Q̃1 1.0000 0.7267 0.9439 0.0411 67.29%

(5,2) Q2 1.0000 0.7195 0.8810 0.0538 65.02%
(5,3) Q̃1 1.0000 0.7336 0.8936 0.0416 67.83%
(5,4) Q̃1 1.0000 0.7468 0.9265 0.0403 66.17%

(6,2) Q2 1.0000 0.7252 0.8672 0.0471 68.18%
(6,3) Q̃1 0.9998 0.7464 0.8833 0.0301 71.60%

Table 4: Summary of sample statistics associated with the distribution of v∗ to L for all those ~P found to lie
in Q∗∗ \ L.

3.3.1 Q∗∗ vs MP
∗

Formally, as introduced in Section 2, MP is the convex hull of the set of correlations attainable
using finite-dimensional maximally entangled states in conjunction with projective measurements.
As was first noted in [39], a hierarchy of (increasingly tighter) outer approximations to M (the
analog ofMP without the assumption of measurements being projective) can be obtained via SDPs.
In Appendix A, we explain our simplified formulation when the measurement are further assumed
to be projective.

Note that the hierarchy of SDPs used for the computation of Q∗∗ and that of MP
∗ are in-

dependent. Consequently, the two sets MP
∗ and Q∗∗ are generally incomparable, i.e., neither of

them is necessarily included in the other, despite the fact thatMP ⊆ M ( Q. To quantitatively
understand the difference between Q and MP, we thus focus on the difference between Q∗∗ and
MP
∗ ∩ Q∗∗, i.e., the membership test of any given ~P with respect toMP

∗ is carried out only when
it passes the membership test with respect to Q∗∗. For a summary of Q∗∗, MP

∗ involved in the
calculation and the sample statistics associated with the distribution of v∗ toMP

∗ , see Table 5.
Our findings (see Table 1 and Table 3) reveal that the difference between the relative volume

of these sets, i.e., RV(Q∗)− RV(MP
∗ ∩Q∗) is rather small.

Observation 9. For all the 17 Bell scenarios considered, the largest value of RV(Q∗)−RV(MP
∗ ∩

Q∗) (≈ 6.1%) is found for the Bell scenario (4,2). The Bell scenario (5,2) gives a comparable
difference ≈ 5.2% whereas for 12 other Bell scenarios, this difference is less than 0.27%. In
general, the difference decreases with increasing no, see Table 3.

However, if we restrict our attention to only the nonlocal region of NS, then the difference as
quantified by f(Q∗)− f(MP

∗ ∩Q∗) is most pronounced (≈8.2%) in the (2, 2) Bell scenario, where
the original Hardy paradox [35] was proposed, see Fig. 6.

3.4 P∗ vs L
Finally, let us focus on the difference between the set of Bell-local correlations L and that attainable
by locally measuring a PPT (entangled) state P. For a long time, it was believed [53] that no
bound entangled state can violate a Bell inequality. Since all PPT entangled states are bound
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Figure 6: Stacked bar charts showing contributions of various subsets T ⊆ NS towards T \ L where T is
either MP

∗ or any of the subsets listed in the chain of inclusion relations P∗ ( Q̃∗ ⊆ Q̃1 ( Q1 ( NS. The
RV of a given T in the nonlocal region, and hence f(T ), is the sum over that due to the other sets contained
within it. For example, in the (2,2) Bell scenario, f(Q1) corresponds to the orange bar as well as all the
other bars (turqoise and blue) stacked below it. As MP

∗ and Q∗∗ are not directly comparable to some of the
aforementioned sets, we use, respectively, dashed and dotted line to represent them separately. Note also that
we have only performed computation for higher levels from the hierarchy of Moroder et al. for the (2,2), (2,3),
and (3,2) Bell scenarios.
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Figure 7: The stacked bar charts of Fig. 6 sorted first in increasing ns, then followed by increasing no.
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Scenario Q∗∗ MP
∗ Max Min Mean σ Within 1 σ

(2,2) Q̃4 MP
4 1.3268 0.9405 1.0434 0.0459 77.26%

(2,3) Q̃2 MP
2 1.2230 0.9419 1.0247 0.0262 82.44%

(2,4) Q2 MP
2 1.1437 0.9470 1.0145 0.0151 85.03%

(2,5) Q2 MP
2 1.0942 0.9574 1.0094 0.0096 86.34%

(2,6) Q2 MP
1 1.0462 1.0000 1.0064 0.0066 85.81%

(2,7) Q2 MP
1 1.0353 1.0000 1.0054 0.0055 87.42%

(3,2) Q̃2 MP
3 1.3526 0.9312 1.0364 0.0403 77.87%

(3,3) Q2 MP
2 1.2109 0.9343 1.0155 0.018 81.52%

(3,4) Q2 MP
1.5 1.1167 0.9298 1.0084 0.009 85.50%

(4,2) Q2 MP
2 1.3296 0.9348 1.0283 0.0339 78.20%

(4,3) Q̃1 MP
1 1.1658 1.0000 1.0125 0.0124 85.33%

(4,4) Q̃1 MP
1 1.0741 1.0000 1.0056 0.0056 86.45%

(5,2) Q2 MP
2 1.2661 0.9368 1.0204 0.0275 78.34%

(5,3) Q̃1 MP
1 1.1157 1.0000 1.0093 0.0092 84.77%

(5,4) Q̃1 MP
1 1.0480 1.0000 1.0039 0.0039 86.18%

(6,2) Q2 MP
2 1.2116 0.9412 1.0141 0.0218 78.53%

(6,3) Q̃1 MP
1 1.0815 1.0000 1.0075 0.0073 83.98%

Table 5: Summary of sample statistics associated with the distribution of v∗ to MP
∗ of all those ~P found to

lie in Q∗∗. The tightest approximations Q∗∗ and MP
∗ are included, respectively, in the second and the third

column for ease of reference. The notation forMP
h is further explained in Appendix C.

entangled [37], this so-called Peres conjecture would imply that P = L. Indeed, in the simplest
(2,2) Bell scenario, it was shown by Werner and Wolf [69] that these sets do coincide. Even for the
(3,2) Bell scenario, numerical results from [45] again indicate that P = L.

That this conjecture does not hold in full generality was first shown [64] in a tripartite Bell
scenario using a three-qubit bound entangled state. Later, the conjecture was also disproved [65]
in a bipartite setting by considering a two-qutrit PPT entangled state and an asymmetric Bell
scenario {[2 2 2] [3 2]}, where the number of entries in each square bracket denotes the number
of settings for each party and the actual numbers listed are the number of measurement outcomes
for each setting.1 Consequently, for any symmetric Bell scenario with ns, no ≥ 3, we must have
L ( P. Moreover, it can be shown from the results of Ref. [65] and Eq. (4) that the corresponding
~P ∈ P has a visibility v∗ to L that is approximately 0.9996.

Here, we make use of the outer approximations proposed in [45] to quantitatively survey the
difference between P and L. Interestingly, even though P∗ only outer approximates P, we see
from Table 6 that for the (2,2) and the (3,2) Bell scenario, these approximations work extremely
well: among all the 106 samples generated for each of these Bell scenarios, there is not even a single
~P 6∈ P∗ that lies outside L. This is, of course, consistent with the known results given, respectively,
in Ref. [69] and Ref. [45]. In fact, for the (2,2) scenario, even the lowest-level approximation given
by P1 does not give rise to any ~P 6∈ L from 106 samples.

In contrast, except the (2,7) Bell scenario, we do find instances of ~P ∈ P∗ \ L for all other Bell
scenarios investigated, see Table 6. For this exceptional case, we note from Table 1 that L almost
spans the entire non-signaling set, thus leaving very little room for NS \ L, let alone P \ L. For
most of the other Bell scenarios, even though we know from Table 6 that P∗ 6= L, the difference
between RV(P∗) and RV(L) is tiny, if not vanishingly small.

Observation 10. For all the 17 Bell scenarios considered, the largest value of RV(P∗ \ L) (≈
12%) is found for the Bell scenario (5,4). The Bell scenario (4,4) shows a comparable difference
of ≈ 9.1% whereas for 12 other Bell scenarios, this difference is less than 0.15%. Except the ns = 2
Bell scenarios, RV(P∗ \ L) increases with increasing no, see Table 3.

1The notation adopted here for this asymmetric Bell scenario follows that introduced in Ref. [8].
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Zooming into the behavior of the individual correlation, we see from Table 6 that within these
approximations, one can find ~P ∈ (P∗ \ L) that are far more robust with respect to the mixing
with white noise in more complex Bell scenarios. For example, in the (4,4) Bell scenario, the most
robust ~P ∈ P∗ was found to give a visibility of 0.9037, as compared with a visibility of 0.9996
found [65] in the (3,3) Bell scenario.

Scenario P∗ Max Min Mean σ Within 1 σ

(2,3) P2 0.9998 0.9963 0.9983 0.0010 66.67%
(2,4) P2 0.9999 0.9972 0.9986 0.0008 66.67%
(2,5) P1.5 1.0000 0.9908 0.9970 0.0034 76.47%
(2,6) P1.5 0.9999 0.9985 0.9993 0.0008 66.67%

(3,3) P2 1.0000 0.9994 0.9997 0.0004 100%
(3,4) P1.25 1.0000 0.9326 0.9883 0.0094 70.18%

(4,2) P2 1.0000 0.9999 1.0000 0.0001 66.67%
(4,3) P1.2 1.0000 0.9194 0.9856 0.0109 69.05%
(4,4) P1 1.0000 0.9037 0.9819 0.0141 67.90%

(5,2) P1.5 1.0000 0.9536 0.9918 0.0081 83.50%
(5,3) P1 1.0000 0.9088 0.9751 0.0157 64.64%
(5,4) P1 1.0000 0.9041 0.9772 0.014 62.32%

(6,2) P1 0.9999 0.9087 0.9752 0.0179 65.39%
(6,3) P1 0.9996 0.9213 0.9691 0.0139 66.86%

Table 6: Summary of sample statistics associated with the distribution of v∗ to L of all those ~P found to
lie in P∗ \ L. For the Bell scenarios (2,2), (2,7) and (3,2), we do not find any correlation ~P ∈ P∗ \ L, thus
the respective rows are omitted. The tightest approximation P∗ is included in the second column for ease of
reference. The notation for Pz is further explained in Appendix C.

4 Discussions
In the studies of Bell-nonlocality [17] and its applications in device-independent quantum informa-
tion [58] (DIQI), one often exploits the geometrical features associated with the correlation ~P or
the set(s) in which they belong to draw conclusions. For example, the convexity of L, Q, and NS
and the possibility to describe L and NS using a finite number of extreme points are often invoked
to simplify the analyses in DIQI. Nonetheless, despite the numerous efforts devoted to these lines
of research, much about the geometry of these sets remain to be understood, see, e.g., Ref. [33].

In fact, even though the inclusion relations L (MP ( Q ( Q̃1 ( Q1 ( NS and L ⊆ P ( Q
are long known, we do not have any quantitative understanding of their difference beyond the
extremely limited exploration carried out in Refs. [19, 30, 75] for L, Q, and NS. In this work, by
determining the relative volume (RV) of these sets or their outer approximations, we aim to fill this
gap by putting some of the intuitions that the community has developed over the years on more
quantitative grounds. As RV(T ) can be interpreted as the success probability of a Bernoulli trial,
if RV(T ) ≥ 100% − ε for some T ⊆ NS, the operational task of finding a correlation in NS \ T
by a uniform sampling in NS can only succeed with probability at most ε. En route to the above
goal, several intriguing observations are noted.

Firstly, our results suggest that, the fraction of L in NS becomes vanishingly small (Obser-
vation 1) as we fix the number of outputs no but increases the number of inputs ns. A similar
monotonic behavior is also observed for the macroscopically-local set Q1, the almost-quantum set
Q̃1 (see Table 1), as well as our tightest approximation to the quantum set Q∗∗ (Observation 6).
Although the two-output case of Observation 1 was already noted in Ref. [30], our results provide
further evidence this trend could well be generic, i.e., independent of the actual value of no. More-
over, we demonstrate how a combinatoric argument can be used to understand this decreasing
trend.
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Interestingly, apart from a dip at the beginning, an essentially opposite trend for RV(L) is
found when we fix the number of inputs ns but increases the number of outputs no (Observation 2).
This increasing trend is even found to be monotonic for several supersets of L, including Q1, Q̃1
(see Table 1), and Q∗∗ (Observation 7). Again, this suggests that the trend—already noted in
Ref. [30] for the special case of ns = 2—could well be generic and independent of the specific value
of ns. If so, then for any given ns, the quantum set Q and its superset NS may become essentially
indistinguishable when no is sufficiently large. While we do not have an intuitive explanation for
this observation, it seems plausible that it can lead to interesting consequences on the power of
nonlocal quantum resources.

What about the quality of various outer approximations of Q, which is especially relevant
for a variety of tasks in DIQI? Our results suggest that for two-input Bell scenarios, Q1 already
provides a superb outer approximation, with RV(Q1)−RV(Q∗∗) < 0.7%, but for Bell scenarios with
ns > 3 ≥ no, the reliability of Q1 as an outer approximation becomes questionable (Observation 4).
In these cases, the difference RV(Q1)−RV(Q∗∗) can even get as large as ≈ 39.5%. In contrast, the
almost-quantum set Q̃1, as its name suggests, gives consistently a tiny deviations, if at all, from
our tightest quantum approximation (Observation 5). Still, our results (see Table 3) suggest that
a more noticeable difference may be found in a Bell scenario with two outputs but a larger number
of inputs, say, ns = 5.

Moving on to naturally restricted subsets of Q, it is known from the work of Ref. [40] and
Ref. [66] that MP ⊆ M ( Q, respectively, in the (2,2) and the (3,2) Bell scenario. Our results
indicate that for fixed ns, the difference betweenMP and Q may diminish following the increase
in no (Observation 9). If so, in a Bell scenario where ns � no, it may be sufficient to consider
only finite-dimensional maximally entangled states in conjunction with projective measurements
for various tasks in DIQI. However, our observation should not be taken to imply thatMP → Q
for any Bell scenario with large enough no, see, e.g., Ref. [38].

In contrast, our results do suggest that the difference between P and L may become noticeable
only when the Bell scenario involved is sufficiently complex (Observation 10). In particular, for
the (ns, 2) and (2, no) Bell scenarios that we have investigated, the respective RV(P∗)− RV(L) is
always found to be tiny (< 0.17%). For all but two of the remaining Bell scenarios, this difference is
also never more than 3.7%. That leaves us only with the (4,4) and the (5,4) Bell scenario—among
all those computed—as the most promising candidate for an experimental demonstration of the
Peres conjecture violation. Still, even though we get, respectively, RV(P∗ \ L) ≈ 9% and ≈ 12%,
and a minimum visibility of ≈ 0.90 for both Bell scenarios, further investigation is clearly needed
to confirm its experimental viability.

Apart from this, a few other closely-related research directions may be worth pursuing. For
example, even though both P andMP are known to be subsets of Q, their precise relationship is
not known. Intuitively, one would expect P to be a strict subset of MP, which is supported by
our observation that RV(Q∗∗) − RV(MP

∗) and RV(P∗) − RV(L) are typically small, but proving
this does not seem to be trivial. Evidently, a comprehensive estimation of the relative volume of
various naturally restricted subsets in the multipartite setting is also desirable. Due to the rich
structure in multipartite entanglement [43] and multipartite nonlocality [28], there will be many
more natural subsets of NS to consider in those cases.

Another direction that deserves further investigation is that related to the choice of metric in
our sampling. In this work, we have opted for the Euclidean metric defined in the space of PNS .
However, since the space of interest P is a probability space, an arguably more natural [2] metric
is the so-called Fisher (information) metric ds2

F. For a set of unconditional probability distributions
qi such that qi ≥ 0 and

∑
i qi = 1, the Fisher metric and hence the corresponding volume element

are given, respectively, by [1]:

ds2
F =

∑
i

dq2
i

qi
and dVF =

∏
i

(
dqi√
qi

)
. (10)

Recall from Section 2 that we are interested in conditional distributions lying in the non-signaling
subspace, cf. Eq. (1). These requirements, together with a nontrivial dependence of the metric on
the coordinate in P, however, make it unclear how we can perform a uniform sampling according
to this metric (e.g., using an existing software package like cprnd). Similarly, a careful reader would
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have noticed that if we work in the space of P, the uniform distribution ~Pw has the same Euclidean
distance to all extreme points of L (see Appendix E) but if we make use of the parametrization given
in Eq. (5), then this invariance is lost. As such, it would be interesting to find a parameterization
of PNS where this invariance is preserved and repeat the calculation performed here.

Finally, recall that in our studies of convergence of the outer approximations of Q (see Sec-
tion 3.2.1), we use the hierarchies of SDPs defined by NPA [47] as well as those given in Moroder et
al. [45]. These are, however, not the only outer approximations ofQ that discussed in the literature.
For example, the SDPs defined by Berta et al. [14] are also known to define a converging hierarchy
of outer approximations. Moreover, in comparison with the NPA hierarchy, the approximations of
Berta et al. are known to be (possibly) tighter as they include further non-negativity requirement
of certain elements of the moment matrix (see also Ref. [60]). It could thus also be interesting to
investigate, how this, and other hierarchies of outer approximations (e.g., those discussed in [22])
appear to converge.
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A Approximation to the MP

In this section, we explain how our approximations to the convex hull of the set of correlations
attainable by finite-dimensional maximally entangled quantum states M are defined. As was
pointed out in Ref. [39],M can be outer approximated by a hierarchy of correlations, each amenable
to an SDP characterization. Here, we focus on a subsetMP ofM, where the local POVM elements
are further assumed to projectors.

To appreciate how the hierarchy works, let us first remind that for any local POVM element
Ea|x Eb|y acting on a bipartite d-dimensional maximally entangled state |Ψd〉 = 1√

d

∑d
i=1 |i〉|i〉, we

have:

P (a, b|x, y) = 〈Ψd|Ea|x ⊗ Eb|y|Ψd〉 = tr(Ea|xE
T
b|y)

d , (11)

where (·)T denotes transposition.
The essence of the characterization of M, and hence of our characterization of MP, is an

approximation of the trace function in Eq. (11) by a linear function acting on the POVM elements.
To this end, let us define M0 = {Id}, which is the set consisting of only the d-dimensional identity
operator, and its union with a set of projective POVM elements

M1 = {Id} ∪ {Ẽa|x}a,x ∪ {Ẽb|y}b,y (12)

where a, b = 1, 2, . . . , no−1, x, y = 1, 2, . . . , ns. Here, the projective nature of the POVM elements
implies

Ẽa|xẼa′|x = Ẽa|xδa,a′ , Ẽb|yẼb′|y = Ẽb|yδb,b′ . (13)

More generally, for any positive integer k > 1, let us define the set of operators with degree k or
less as

Mk = ∪i
{

Πi(Ẽ1 . . . Ẽk)
}
, (14)

where the union is over all possible permutations Πi of k-fold product of operators chosen fromM1.
Notice that as both Ẽa|x and Ẽb|y act on the same Hilbert space, they generally do not commute.
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Now, in analogy to the work of Ref. [39], we define a bipartite correlation ~P to be a member
ofMP

k, k ≥ 1, if there exists an integer d ≥ 2 and a linear functional L : Mk ×Mk → PNS such
that the following properties hold:

1. L(Id) = 1.

2. L(ff†) ≥ 0 for any f ∈Mk.

3. L(fẼa|xf†), L(fẼb|yf†) ≥ 0 for any f ∈Mk−1.

4. L(fẼa|xf†Ẽa′|x′), L(fẼb|yf†Ẽb′|y′) ≥ 0 and
L(fẼa|xf†Ẽb|y), L(fẼb|yf†Ẽa|x) ≥ 0 for any f ∈Mk−1.

5. L(ST ) = L(TS) where ST ∈M2k.

6. L(Ẽa|xẼb|y) = P (a, b|x, y) for all a, b, x, y.

Clearly, if ~P ∈ MP, then by Eq. (11), a linear functional satisfying all the above properties
is guaranteed to exist by taking L(·) = 1

d tr(·) and setting Ẽa|x = Ea|x and Ẽb|y = ET
b|y. In

other words, ~P ∈ MP =⇒ ~P ∈ MP
k for all k ≥ 1. Importantly, for any given integer k ≥ 1, the

membership of any given ~P
?
∈MP

k can be determined by solving an SDP that amounts to requiring
the existence of a positive semidefinite moment matrix Γ with its entries given by Γij = L(fif†j )
where fi, fj ∈ Mk and where all these entries are required to satisfy the linear constraints listed
above.

A few remarks are now in order. Firstly, as oppose to the NPA hierarchy where the convexity
of Q[·,·] (and hence of Qk) is promised by not restricting the underlying Hilbert space dimension,
convexity has to be assumed in the formulation of M or MP by considering the convex hull of
the set of correlations attainable from |Ψd〉. Secondly, in the formulation of M, the projective
nature of the POVM elements cannot be taken for granted, since a naïve application of Naimark’s
extension [51] does not guarantee that the state to which the extended projective POVM elements
are applied is maximally entangled.

Consequently, our characterization differs from that given in Ref. [39] in two aspects: (1)
our formulation assumes that Ẽa|x and Ẽb|y are projective while that of Ref. [39] does not (2) the
formulation given in Ref. [39] actually imposes in property 3. above the more stringent requirement
that f can be any linear combination of elements in Mk−1. Since one of these differences is more
constraining while the other is less constraining, our hierarchyMP

k is neither a subset nor a superset
of the corresponding set Qk+ defined in Ref. [39]. Empirically, we have also found that if we keep
difference (2) and drop the assumption of Ẽa|x, Ẽb|y being projective, then the resulting relaxation
of Qk+ appears to be hardly constraining. Finally, notice that except for some additional positivity
requirement due to property 4 above, the SDP forMP

1 is the same as that for NPA level 1.

B Sampling methods
To obtain uniformly sampled correlations in NS using the cprnd function, we make use of the
minimal parametrization given in Eq. (5). For this purpose, it suffices to input to cprnd (1) the
total number of samples Ntot required (2) the sampling algorithm to be employed,2 and (3) a
complete description of the nonsignaling polytope NS in terms of its positivity (facet) constraints.

Explicitly, these positivity constraints are

P (a|x) ≥ 0, P (b|y) ≥ 0, P (a, b|x, y) ≥ 0, (15)

in addition to

P (a = no|x) = 1−
no−1∑
a′=1

P (a′|x) ≥ 0, P (b = no|y) = 1−
no−1∑
b′=1

P (b′|y) ≥ 0, (16)

2In our work, we use “Gibbs" sampler that gives, empirically, better convergence properties than the default
“hit-and-run" sampler.
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and

P (a, b = no|x, y) = P (a|x)−
no−1∑
b′=1

P (a, b′|x, y) ≥ 0,

P (a = no, b|x, y) = P (b|y)−
no−1∑
a′=1

P (a′, b|x, y) ≥ 0,

P (a = no, b = no|x, y) = 1−
no−1∑
a′=1

P (a′|x)−
no−1∑
b′=1

P (b′|y) +
no−1∑
a′,b′=1

P (a′, b′|x, y) ≥ 0

(17)

for all a, b ∈ {1, . . . , no − 1} and x, y ∈ {1, 2, . . . , ns}.

C Bell scenarios considered and the complexity involved in the charac-
terization of various sets

We consider bipartite Bell scenarios where each party has ns measurement settings and where each
measurement gives no outcomes. Bearing in mind that the generating POVM elements may be
chosen to be projectors, the size of the Moroder [45] level ` moment matrix, denoted by DQ̃`

, can
be shown to be:

DQ̃`
=

1 +
∑̀
j=1

ns(ns − 1)j−1(no − 1)j
2

. (18)

Similarly, the size of the NPA level k moment matrix, denoted by DQk
can be shown to be:

DQk
= 1 + 2ns

k∑
j=1

(ns − 1)j−1(no − 1)j + n2
s

k∑
j=2

(j − 1)(ns − 1)j−2(no − 1)j , (19)

where the first sum consists of only contributions of k-fold products of operators from the same
party, the last sum consists of k-fold products of operators originating from both parties, and the
factor (j − 1) in the last sum accounts for different possibilities in terms of the number of Alice’s
and Bob’s operators.

Finally, the size of the moment matrix corresponding to the characterization of level h ofMP,
denoted by DMP

h
is:

DMP
h

= 1 + 2ns
h∑
j=1

(2ns − 1)j−1(no − 1)j . (20)

From the expressions given above, it is clear that for all these hierarchies, the size of the SDP
moment matrix increases exponentially with the level of the hierarchy. As such, due to limitation
in computational resources, it is also expedient to consider intermediate, non-integer level of these
hierarchies in order to obtain a tighter approximation.

For both hierarchies of SDPs due to Moroder et al., let

Dlocal,` = 1 +
∑̀
j=1

ns(ns − 1)j−1(no − 1)j . (21)

Furthermore, let us denote by bqc be the integer part of a positive number q ≥ 1. Then, we say
that an outer approximation is of level q if the considered moment matrix Γq contains Γbqc as a
submatrix while Γq itself is a submatrix of Γbqc+1. Moreover, the moment matrix of Γq is formed
by considering only (approximately) the first (q−bqc)(Dlocal,bqc+1−Dlocal,bqc) level-(bqc+ 1) local
operators in addition to all the level-bqc local operators.3

In a similar manner, for the hierarchy defined in Appendix A, we say that an outer approxi-
mation forMP is of an intermediate level q if the considered moment matrix Γq contains Γbqc as a

3Note that our level-` local operators Aa1|x1 Aa2|x2 · · ·Aa`|x`
are ordered by first increasing the index of a1,

followed by x1, followed by a2, etc.
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Bell Scenario k (DQk , NQk ) l (DQ̃l
, NQ̃l

) z (DPz , NPz ) h (DMP
h

, NMP
h

, N≥0

MP
h

) (DL, NL
ext)

(2,2) 4 (41, 101) 4 (81, 185) 4 (81, 185) 4 (161, 806, 239) (8, 16)
(2,3) 3 (137, 1 449) 2 (169, 1 945) 2 (169, 1 945) 2 (57, 311, 177) (24, 81)
(2,4) 2 (85, 1 003) 1 (49, 337) 2 (625, 29 353) 2 (121, 1 282, 553) (48, 256)
(2,5) 2 (145, 2 833) 1 (81, 881) 1.5 (256, 9 106) 2 (209, 3 657, 1 265) (80, 625)
(2,6) 2 (221, 6 471) 1 (121, 19 21) 1.5 (1 296, 17 946) 1 (21, 171, 171) (120, 1 296)
(2,7) 2 (313, 12 841) 1 (169, 3 697) 1 (169, 3 697) 1 (25, 241, 241) (168, 2 401)
(2,8) 1 (29, 323) 1 (225, 6 497) 1 (225, 6 497) 1 (29, 323, 323) (224, 4 096)
(2,9) 1 (33, 417) 1 (289, 10 657) 1 (289, 10 657) 1 (33, 417, 417) (288, 6 561)

(3,2) 3 (88, 868) 2 (100, 1 108) 2 (100, 1 108) 3 (187, 1 979, 472) (15, 64)
(3,3) 2 (97, 1 729) 1 (49, 505) 2 (961, 131 041) 2 (133, 1 808, 673) (48, 729)
(3,4) 2 (208, 7 822) 1 (100, 2 098) 1.25 (576, 12 456) 1.5 (154, 6 643, 1567) (99, 4 096)
(3,5) 1 (25, 265) 1 (169, 6 025) 1 (169, 6 025) 1 (25, 265, 265) (168, 15 625)
(3,6) 1 (31, 406) 1 (256, 13 906) 1 (256, 13 906) 1 (31, 406, 406) (255, 46 656)
(3,7) 1 (37, 577) 1 (361, 27 793) 1 (361, 27 793) 1 (37, 577, 577) (360, 117 649)

(4,2) 2 (49, 505) 1 (25, 157) 2 (289, 13 105) 2 (65, 499, 233) (24, 256))
(4,3) 1 (17, 129) 1 (81, 1 665) 1.2 (361, 7 993) 1 (17, 129, 129) (80, 6 561)
(4,4) 1 (25, 277) 1 (169, 74 05) 1 (169, 7 405) 1 (25, 277, 277) (168, 65 536)

(5,2) 2 (76, 1 276) 1 (36, 356) 1.5 (256, 9 106) 2 (101, 1 211, 461) (35, 1 024)
(5,3) 1 (21, 201) 1 (121, 4 201) 1 (121, 4 201) 1 (21, 201, 201) (120, 59 049)
(5,4) 1 (31, 436) 1 (256, 19 336) 1 (256, 19 336) 1 (31, 436, 436) (255, 1 048 576)

(6,2) 2 (109, 2 719) 1 (49, 709) 1 (49, 709) 2 (145, 2 510, 805) (48, 4 096)
(6,3) 1 (25, 289) 1 (169, 8 929) 1 (169, 8 929) 1 (25, 289, 289) (168, 531 441)

Table 7: Summary of the Bell scenarios considered in this work (leftmost column), the highest level of the
SDP relaxation considered (second, fourth, sixth, and the eighth column), and the corresponding parameters
characterizing the complexity of the computation (third, fifth, seventh, and the ninth column). In particular, for
the NPA hierarchy (the second and third column), the Moroder hierarchy for Q (the fourth and fifth column),
the Moroder hierarchy for P (the eighth and ninth column), we provide in bracket the size of the respective
moment matrix D and the number of (real) moment variables involved in the corresponding optimization.
Similarly, for the hierarchy of SDPs characterizing MP (the fifth and sixth column), we provide in bracket
the size of the respective moment matrix DT , the number of (real) moment variables NT involved in the
corresponding optimization, and the number of moments that are further required to be non-negative N≥0

MP
h

.
In the last column, we list, accordingly, the key parameters characterizing the complexity of the linear program
involved in solving the membership problem ~P

?
∈ L, i.e., the size DL of ~P , which equals to the dimension d

of NS and the number of extreme points NLext of the respective local polytope L. For completeness, we also
include in gray the parameters characterizing the complexity of the various level-1 SDPs for the (2,8), (2,9),
(3,5), (3,6), (3,7) Bell scenarios that we did not compute.

submatrix while Γq itself is a submatrix of Γbqc+1. Moreover, the moment matrix of Γq is formed by
taking the upper-left submatrix of Γbqc+1 with (approximately)DMP

bqc
+(q−bqc)(DMP

bqc+1
−DMP

bqc
)

rows and columns.4
Of course, the size of the moment matrix DT for a set T is not only the parameter that

determines the computational resource required to solve each of these SDPs. In particular, for
the membership test corresponding to T ∈ {Qk, Q̃`,MP

h,Pz}, the number NT of real variables
(independent moments) involved in the corresponding moment matrix also plays a crucial role. In
the case ofMP

h, the number N≥0
MP

h

of moments that are further required to be non-negative also play

4Here, our level-h operators Aa1|x1 · · ·Aah−1|xh−1 Aah|xh
are ordered by first increasing the index of ah, followed

by xh, followed by ah−1, etc. Moreover, we adopt the convention that Aai|xi
= Bai|xi−ns

for xi > ns where
Aa|x ↔ Ẽa|x, Bb|y ↔ Ẽb|y , see Appendix A.
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Figure 8: Plots showing how the estimated relative volume RV(L) converges to the reported value as the
number of samples N used in the estimation increases towards Ntot. More precisely, in each subfigure, we
plot RVN (L) − RV(L) as a function of log10 N , where RVN (L) is the value of RV(L) estimated using the
first N correlations ~P sampled uniformly from NS. As a reference, note that RV(L) lies, respectively, within
[93%, 100%], [59%, 100%], [16%, 81%], [1%, 7%], and [0.01%, 0.15%] for ns = 2, 3, 4, 5, and 6. For these
two latter cases, an inset showing the plots from log10 N ∈ [5, 6] is included to show that RV(L) has converged
to within 10% of its value. As an alternative way to see that our estimated RVs have converged well, one can
also employ, e.g., the Wilson score interval [72] to verify that our estimate fits well within the 99% confidence
interval of the corresponding estimate.

a part in the complexity of the problem. In Table 7, we provide a summary of the Bell scenarios
considered in this work as well as these key parameters relevant to solving the corresponding
optimization problems.

D Convergence analysis
In Fig. 8, we provide details showing how our estimates of the relative volume converge as a function
of Ntot, i.e., the number of sampled correlations.

E Distance from ~Pw to extreme points of NS
In the probability space P parametrized by all the full conditional distributions {P (a, b|x, y)}a,b,x,y,
the Euclidean distance between two correlations ~P1 and ~P2 is given by:

DE(~P1|~P2) =
√ ∑
a,b,x,y

[P1(a, b|x, y)− P2(a, b|x, y)]2. (22)

In any Bell scenario, any Bell-local extreme point of NS, which is also an extreme point of L, can
be obtained from

PL(a, b|x, y) = δa,1δb,1 (23)
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via a relabeling of measurement settings, outcomes, and/or parties. Since the uniform distribution
Pw(a, b|x, y) = 1

n2
o
is always invariant under such a relabeling, we see that their Euclidean distance

is invariant under relabeling, and is easily shown to be DE(~PL|~Pw) = ns
√

1− 1
n2

o
.

Similarly, in the (2, no) Bell scenarios, all nonlocal extreme points of NS can be obtained from
one of the followings [10]:

P kNS(a, b|x, y) = 1
k
δ(b−a) mod k, xy, k ∈ 2, . . . , no (24)

via a relabeling. It then follows from Eq. (22) that DE(~P kNS |~Pw) = 2
√

1
k −

1
n2

o
. Comparing with

DE(~PL|~Pw), we thus see that all nonlocal extreme points in the (2, no) Bell scenario are actually
nearer to Pw than the local ones.
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