Quantum advantage using high-dimensional twisted photons as quantum finite automata

Stephen Z. D. Plachta1,2, Markus Hiekkamäki1, Abuzer Yakaryılmaz3,4, and Robert Fickler1

1Tampere University, Photonics Laboratory, Physics Unit, Tampere, FI-33720, Finland
2Institute for Quantum Optics and Quantum Information (IQOQI) Vienna, Austrian Academy of Sciences, Vienna, Austria
3Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia
4QWorld Association, Tallinn, Estonia, https://qworld.net

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum finite automata (QFA) are basic computational devices that make binary decisions using quantum operations. They are known to be exponentially memory efficient compared to their classical counterparts. Here, we demonstrate an experimental implementation of multi-qubit QFAs using the orbital angular momentum (OAM) of single photons. We implement different high-dimensional QFAs encoded on a single photon, where multiple qubits operate in parallel without the need for complicated multi-partite operations. Using two to eight OAM quantum states to implement up to four parallel qubits, we show that a high-dimensional QFA is able to detect the prime numbers 5 and 11 while outperforming classical finite automata in terms of the required memory. Our work benefits from the ease of encoding, manipulating, and deciphering multi-qubit states encoded in the OAM degree of freedom of single photons, demonstrating the advantages structured photons provide for complex quantum information tasks.

Twisted photons, i.e., single quanta of light with a helically twisted wavefront and orbital angular momentum, have found various applications in quantum information science in addition to being interesting for fundamental studies in optics. Amongst the many benefits such states of light have, a particularly useful one is the encoding of quantum information which is not restricted to a single qubit per carrier, i.e., high-dimensional quantum states. The increased Hilbert space of such states can be used, e.g., to lift the requirement of having multiple qubit systems interacting with each other, a task notoriously hard for photons. Here, we use this feature of twisted photons and realize some quantum finite automata (QFAs) consisting of up to 4 parallel, separate qubits and demonstrate the quantum advantage of such basic computational devices in terms of resource efficiency. As such, our experiment shows the power of high-dimensional quantum states and twisted photons, while also demonstrating the superiority of QFAs over their classical counterparts.

► BibTeX data

► References

[1] M. Al-Amri, D. Andrews, and M. Babiker, editors. Structured Light for Optical Communication. Elsevier, first edition, 2021. 10.1016/​C2019-0-00727-3.

[2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45 (8185), 1992. 10.1103/​PhysRevA.45.8185.

[3] A. Ambainis and R. Freivalds. 1-way quantum finite automata: Strengths, weaknesses and generalizations. In FOCS, pages 332–341. IEEE Computer Society, 1998. 10.1109/​SFCS.1998.743469.

[4] A. Ambainis and N. Nahimovs. Improved constructions of quantum automata. Theoretical Computer Science, 410 (20): 1916–1922, 2009. 10.1016/​j.tcs.2009.01.027.

[5] A. Ambainis and A. Yakaryılmaz. Automata and quantum computing. In Jean Éric Pin, editor, Handbook of Automata Theory, volume 2, chapter 39, pages 1457–1493. European Mathematical Society Publishing House, 2021. 10.48550/​arXiv.1507.01988.

[6] D. L. Andrews and M. Babiker. The angular momentum of light. Cambridge University Press, 2012. 10.1017/​CBO9780511795213.

[7] U. Birkan, Ö. Salehi, V. Olejar, C. Nurlu, and A. Yakaryılmaz. Implementing quantum finite automata algorithms on noisy devices. In International Conference on Computational Science, pages 3–16. Springer, 2021. 10.1007/​978-3-030-77980-1_1.

[8] E. Bolduc, N. Bent, E. Santamato, and R. W. Boyd. Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Optics Letters, 38 (18): 3546–3549, 2013. 10.1364/​OL.38.003546.

[9] F. Bouchard, K. Heshami, D. England, R. Fickler, R. W. Boyd, B.-G. Englert, L. L. Sánchez-Soto, and E. Karimi. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum, 2: 111, 2018a. 10.22331/​q-2018-12-04-111.

[10] F. Bouchard, N. H. Valencia, F. Brandt, R. Fickler, M. Huber, and M. Malik. Measuring azimuthal and radial modes of photons. Optics express, 26 (24): 31925–31941, 2018b. 10.1364/​OE.26.031925.

[11] F. Brandt, M. Hiekkamäki, F. Bouchard, M. Huber, and R. Fickler. High-dimensional quantum gates using full-field spatial modes of photons. Optica, 7 (2): 98–107, 2020. 10.1364/​OPTICA.375875.

[12] A. Candeloro, C. Mereghetti, B. Palano, S. Cialdi, M. G. A. Paris, and S. Olivares. An enhanced photonic quantum finite automaton. Applied Sciences, 11 (18): 8768, 2021. 10.3390/​app11188768.

[13] J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno. Encoding amplitude information onto phase-only filters. Applied optics, 38 (23): 5004–5013, 1999. 10.1364/​AO.38.005004.

[14] M. Erhard, R. Fickler, M. Krenn, et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl, 7 (17146), 2018. 10.1038/​lsa.2017.146.

[15] R. Fickler, G. Campbell, B. Buchler, P. K. Lam, and A. Zeilinger. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proceedings of the National Academy of Sciences, 113 (48): 13642–13647, 2016. 10.1073/​pnas.1616889113.

[16] N. González, G. Molina-Terriza, and J. P. Torres. How a Dove prism transforms the orbital angular momentum of a light beam. Optics express, 14 (20): 9093–9102, 2006. 10.1364/​OE.14.009093.

[17] M. Hiekkamäki, S. Prabhakar, and R. Fickler. Near-perfect measuring of full-field transverse-spatial modes of light. Optics express, 27 (22): 31456–31464, 2019. 10.1364/​OE.27.031456.

[18] C. K. Hong and L. Mandel. Experimental realization of a localized one-photon state. Phys. Rev. Lett., 56: 58–60, 1986. 10.1103/​PhysRevLett.56.58.

[19] M. Kālis. Kvantu algoritmu realizācija fiziskā kvantu datorā. Master's thesis, University of Latvia, 2018.

[20] E. Karimi, R. W. Boyd, P. de la Hoz, H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto. Radial quantum number of laguerre-gauss modes. Physical review A, 89 (6): 063813, 2014. 10.1103/​PhysRevA.89.063813.

[21] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412 (6844): 313–316, 2001. 10.1038/​35085529.

[22] C. Mereghetti, B. Palano, S. Cialdi, V. Vento, M. G. A. Paris, and S. Olivares. Photonic realization of a quantum finite automaton. Phys. Rev. Research, 2 (1): 013089–013103, 2020. 10.1103/​PhysRevResearch.2.013089.

[23] C. Moore and J. P. Crutchfield. Quantum automata and quantum grammars. Theoretical Computer Science, 237 (1-2): 275–306, 2000. ISSN 0304-3975. 10.1016/​S0304-3975(98)00191-1.

[24] M. J. Padgett and J. Courtial. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Optics letters, 24 (7): 430–432, 1999. 10.1364/​OL.24.000430.

[25] M. J. Padgett and J. P. Lesso. Dove prisms and polarized light. Journal of Modern Optics, 46 (2): 175–179, 1999. 10.1080/​09500349908231263.

[26] C. Perumangatt, S. G. Reddy, A. Anwar, and R. P. Singh. Generalized orbital angular momentum Poincaré sphere. Proc. of SPIE, 9654 (965421–1), 2015. 10.1117/​12.2182651.

[27] A. R. C. Pinheiro, C. E. R. Souza, D. P. Caetano, J. A. O. Huguenin, A. G. M. Schmidt, and A. Z. Khoury. Vector vortex implementation of a quantum game. JOSA B, 30 (12): 3210–3214, 2013. 10.1364/​JOSAB.30.003210.

[28] M. O. Rabin. Probabilistic automata. Information and Control, 6: 230–243, 1963. 10.1016/​S0019-9958(63)90290-0.

[29] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3: 114–125, 1959. 10.1147/​rd.32.0114.

[30] S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, et al. Highly efficient heralding of entangled single photons. Optics express, 21 (6): 6707–6717, 2013. 10.1364/​OE.21.006707.

[31] Ö. Salehi and A. Yakaryılmaz. State-efficient QFA algorithm for quantum computers. CoRR, arXiv:2107.02262, 2021. 10.48550/​arXiv.2107.02262.

[32] R. Schmied. Quantum state tomography of a single qubit: Comparison of methods. Journal of Modern Optics, 63 (18): 1744–1758, 2016. 10.1080/​09500340.2016.1142018.

[33] M. Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third edition, 2013. ISBN 978-1133187790.

[34] Y. Tian, T. Feng, M. Luo, S. Zheng, and X. Zhou. Experimental demonstration of quantum finite automaton. npj Quantum Information, 5 (1): 1–5, 2019. 10.1038/​s41534-019-0163-x.

[35] J. Watrous. Quantum computational complexity. In Encyclopedia of Complexity and Systems Science, pages 7174–7201. Springer, 2009. 10.1007/​978-0-387-30440-3_428.

[36] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, et al. Optical communications using orbital angular momentum beams. Advances in optics and photonics, 7 (1): 66–106, 2015. 10.1364/​AOP.7.000066.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-12-09 14:45:50). On SAO/NASA ADS no data on citing works was found (last attempt 2022-12-09 14:45:51).