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Does causal dynamics imply local interactions?
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We consider quantum systems with causal dynamics in discrete spacetimes, also known as quan-
tum cellular automata (QCA). Due to time-discreteness this type of dynamics is not characterized
by a Hamiltonian but by a one-time-step unitary. This can be written as the exponential of a
Hamiltonian but in a highly non-unique way. We ask if any of the Hamiltonians generating a QCA
unitary is local in some sense, and we obtain two very different answers. On one hand, we present
an example of QCA for which all generating Hamiltonians are fully non-local, in the sense that
interactions do not decay with the distance. We expect this result to have relevant consequences
for the classification of topological phases in Floquet systems, given that this relies on the effective
Hamiltonian. On the other hand, we show that all one-dimensional quasi-free fermionic QCAs have
quasi-local generating Hamiltonians, with interactions decaying exponentially in the massive case
and algebraically in the critical case. We also prove that some integrable systems do not have local,
quasi-local nor low-weight constants of motion; a result that challenges the standard definition of
integrability.

I. INTRODUCTION

Quantum cellular automata (QCAs) originally arose in
the context of quantum computation as the generaliza-
tion of classical cellular automata [14] and were proven
to be universal quantum computers [34]. QCAs can also
be understood as the many-body generalization or “sec-
ond quantization” of quantum walks [12]. From a physics
perspective, QCAs are quantum field theories in discrete
spacetimes obeying strict causality [3, 4, 7, 10, 12, 18, 31].
This means that after one time-step information only
propagates a finite distance. Hence, QCAs provide a rig-
orous regularization of (continuous) quantum field theo-
ries which simultaneous preserve causality and unitarity,
something impossible in Hamiltonian lattice field theory
[12]. In Lagrangian lattice field theory, the path integral
is equivalent to a QCA for some field theories [11]. On
a more speculative level, some arguments suggest that
spacetime might be discrete at the Planck scale, and
that all of the more familiar continuous spacetime physics
emerges as an effective description at larger scales. This
opens the possibility of considering QCAs as Planck-scale
theories.

The mathematical formulation of discrete-time quan-
tum dynamics is different from that of continuous time.
In the discrete case, dynamics is represented by a one-
time-step unitary evolution operator W and in the con-
tinuous case by a Hamiltonian H . The eigenstates of a
Hamiltonian H can be ordered with increasing energies,
but the eigenstates of a unitary W cannot be ordered be-
cause the corresponding quasi-energies are defined mod-
ulo 2π. This also makes unclear what should be the Gibbs

states associated to W . An exception to this are the uni-
taries that are close to the identity W ≈ 1− iǫH , which
arise when continuous-time dynamics is Trotterized for
simulations [26]. But despite the above-mentioned dif-
ferences, it is reasonable to expect that, at large time
scales, discrete-time models converge to continuous-time
models. The results presented in this work suggest that
this convergence is not straightforward.

In this work we address the following question. If W is
the evolution operator of a QCA, we consider all Hamil-
tonians H which generate it via W = e−iH , and ask
whether one of these Hamiltonians is in some sense local.
In general, the Hamiltonian H cannot have finite-range
interactions, because the exponential of a finite-range H
is only approximately causal, as constrained by the Lieb-
Robinson bound [25]. But H can be local in the weaker
sense of having interactions that decay with the distance.
In this work we present two extreme examples of QCAs in
one spatial dimension, with opposite decaying behaviour.

The first model that we analyse (Section II) is a so
called “fractal QCA” introduced in [18]. We prove that
any of its generating Hamiltonians has interactions which
do not decay with the distance, and that the weight
(number of qubits acted on) of the interaction terms is
unbounded. The implications of this are intriguing, as
the effective Hamiltonian plays a key role in understand-
ing topological phases of matter in Floquet systems. But
here, in contrast to our expectations, we see that the ef-
fective Hamiltonian can be extremely non-local. This
leads to exciting questions, e.g., how does such non-
locality impact our understanding of dynamical phases?

The evolution operator W of the fractal QCA is a Clif-
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ford unitary [31], and these share some features with
quasi-free bosonic unitaries, like the fact that dynam-
ics can be represented in a symplectic phase space of
dimension linear in the number of modes (qubits), which
allows for efficiently simulating the dynamics with a clas-
sical computer. But despite sharing these features with
integrable systems, we prove in Section II B that all con-
served quantities of the fractal QCA (i.e. operators that
commute with W ) are non-local and have unbounded
weight (like the Hamiltonians). This is a very interesting
fact because it challenges one of the standard character-
izations of integrable systems in terms of local (or low-
weight) conserved quantities [15]. And suggest that, in
the discrete-time scenario, integrability should be char-
acterized differently.
The second family of QCAs that we analyze (Section

III) have general quasi-free fermion dynamics in one spa-
tial dimension. In this case we show that there always
exists a Hamiltonian with decaying interactions. This
decay is exponential in the gapped case and inversely
proportional to the distance in the critical case. How-
ever, we need to define what do we mean by gapped and
critical when (quasi-)energy is defined modulo 2π. We
prove that the whole algebra of operators corresponding
to a type of quasi-particle drifts to the right at a constant
speed equal to the winding number of the quasi-energy
band associated to this quasi-particle. Hence, when this
winding number is not zero, the quasi-particle behaves
like massless particles in quantum field theory. For this
reason we say that a quasi-free fermionic QCA is criti-
cal when some quasi-energy bands have non-zero winding
number. In contrast, when all winding numbers are zero,
we say that the QCA is gapped.

II. THE FRACTAL QCA

A. Description of the model

Clifford QCAs [18–20, 30] are QCAs on lattices of
qubits with the property that products of Pauli opera-
tors are mapped to products of Pauli operators. In Ref.
[18] one-dimensional Clifford QCAs were dived in two
classes depending on the spacetime graph of the evolu-
tion of a single-site Pauli operator: those with a peri-
odic structure (periodic Clifford QCAs) and those with a
spacetime graph that is self-similar over long timescales
(fractal Clifford QCAs). This classification has since
then been turned out to have importance in schemes of
measurement-based quantum computation built on Clif-
ford QCAs [32] and the fractal property of various QCAs
(Clifford and non-Clifford) has been studied intensely re-
cently [17, 21, 35]. In what follows we define a particular
fractal Clifford QCA that was studied in [18].
Consider a spin chain with L qubits labelled by r ∈

{0, 1, . . . , L − 1} and periodic boundary conditions. We
denote by σr

x, σ
r
y, σ

r
z the Pauli sigma matrices acting on

qubit r. The evolution operator W is determined by

conditions

W †σr
zW = σr

x ,

W †σr
xW = σr−1

x σr
yσ

r+1
x ,

(1)

for all r. To see this, recall that σr
y = iσr

xσ
r
z and use

W †σr
yW = iW †σr

xWW †σr
zW .

To keep track of the evolution of a general n-qubit
Pauli operator it is more convenient to use the phase-
space description. Then each n-qubit Pauli opera-
tor σu is represented by a phase-space vector u =
(q0, p0, . . . , qL−1, pL−1) ∈ {0, 1}2L so that

σu =

L−1
⊗

r=0

(σr
x)

qr (σr
z)

pr . (2)

With this notation we have that σuσu′ ∝ σu+u′ where
addition in phase space is defined modulo 2. We can
write the phase space of the system as

V =

L−1
⊕

r=0

Vr , (3)

where subspace Vr
∼= {0, 1}2 is associated to qubit r. For

each region of the lattice R ⊆ {0, . . . , L − 1} we define
the corresponding subspace of Pauli operators

VR =
⊕

r∈R

Vr . (4)

Since Paulis form an operator basis we can express any
of the Hamiltonians of the fractal QCA W = e−iH as

H =
∑

u∈V

hu σu , (5)

where hu are the real coefficients. We say that a Hamil-
tonian is local if the coefficients hu decay with the size
of the support of u. That is, there is a monotonically
decreasing function f : N → R+ such that

|hu| ≤ f(D(u)) , (6)

where the diameter of u is

D(u) = min{d(r2, r1) : u ∈ V[r1,r2]} , (7)

with

d(r2, r1) =

{

r2 − r1 if r2 − r1 ≥ 0

r2 − r1 + L otherwise.
(8)

B. No local Hamiltonians

The following lemma tells us that, for the fractal QCA
defined in equation (1), none of the Hamiltonians satis-
fying W = e−iH is local in the sense of (6).
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Lemma 1. Let W be the QCA defined in equation (1),
and let [r1, r2] ⊆ {0, . . . , L−1} be any interval of the spin
chain. For each Pauli operator in the interval u ∈ V[r1,r2]

there is another Pauli operator in the larger interval u′ ∈
V[r1−1,r2+1] which is not in any smaller interval and has
the same coefficient hu′ = hu in any of the Hamiltonians
H satisfying W = e−iH , .

Proof. Take any Hamiltonian H , such that W = e−iH .
Then, H satisfies W †nHWn = H for any n ∈ Z. We
can expand the Hamiltonian in terms of Pauli operators,
rewriting equation (5), as

H =
∑

u∈O

hu

m(u)−1
∑

n=0

W †nσuW
n, (9)

where now O ⊂ V is a set of labels of Pauli strings with
one vector for each closed orbit under applying W up to
m(u) times. As a convention, we can choose the u ∈ O
that labels each orbit to be the label corresponding to the
Pauli string with the smallest support in the orbit (i.e.,
the Pauli string with the smallest D(u)). Here m(u) is
the length of the orbit, meaning that m(u) is the smallest
positive integer such that

W †m(u)σuW
m(u) = σu. (10)

Note that m(u) must exist for each orbit because we
have a finite quantum system, and there are only a finite
number of Pauli strings, so the orbits must be closed.
The next step is to show that terms like W †nσvW

n

will generally spread over larger and larger regions for
fractal QCAs. Note that the region σv is supported on
is not guaranteed to grow for only a single application of
W . Take, for example, σv = σr

z ⊗ σr+1
y ⊗ σr+2

y ⊗ σr+3
z .

Then we have W †σvW = σr+1
y ⊗ σr+2

y .
We first note the fact that this QCA W has no gliders,

which is proved in appendix A. A glider is an operator
σv with the property that W †σvW = S†kσvS

k, for some
k ∈ Z, where S is just the unitary that shifts qubits one
step to the left. Next, we use lemma II.15 in [18]. This
shows that, if a Clifford QCA W has no gliders then Wn

has no gliders for any n ∈ Z.
Consider σv with support on an interval with l sites

with l < L− 2. If we consider how σv evolves over time,
it follows that W †nσvW

n must eventually spread over
an interval larger than l sites. To see this, we can argue
by contradiction: suppose that that W †nσvW

n always
remains localised on at most l sites (the region may shift
left or right but the range of sites is at most l). Now
there are only a finite number of Pauli strings on l sites
(4l many). So at some value of n 6= 0 we must have

W †nσvW
n = S†kσvS

k, (11)

for some k ∈ Z. But this means that Wn has a glider,
which is impossible because W has no gliders.
Then we can apply this logic to the orbits in the sum

in equation (9). Therefore, we see that H contains in-
teractions between arbitrarily far regions with no decay

of interaction strength with distance. More precisely, for
any Pauli operator σu in the interval u ∈ V[r1,r2], there is
another operator in the larger interval u′ ∈ V[r1−1,r2+1]

(and not in any smaller interval), which has the same
coefficient hu′ = hu in any Hamiltonians H satisfying
W = e−iH .

C. No local constants of motion

The proof of the above lemma not only applies to oper-
ators H such that W = e−iH but to any operator which
commutes with W . This shows that any constant of mo-
tion of the fractal QCA is non-local in the same sense
that the Hamiltonians.
We finish this section by commenting about the

continuous-time dynamics of any Hamiltonian H that
generates the fractal QCA W = e−iH . As the lemma
tells us, the continuous-time dynamics e−iHt for t ∈ R is
fully non-local but it has a particular type of destructive
interference that cancels out all non-causal effects every
time that t reaches an integer value t ∈ Z.

III. QUASI-FREE FERMIONIC QCAS

A. Fermionic systems

In this section we introduce some formalism for work-
ing with general quasi-free fermionic systems. Consider
N fermionic modes with associated Majorana operators
ai with i ∈ {1, 2, . . . , 2N}. These operators are Hermi-

tian a†i = ai and satisfy the canonical anti-commutation
relations

{ai, aj} = 21δij , (12)

where 1 is the identity and δij the Kronecker-delta func-
tion. Instead of Majorana operators we could use the
creation and annihilation ones

f †
r =

1√
2
(a2r − i a2r+1) ,

fr =
1√
2
(a2r + i a2r+1) , (13)

for r = 1, . . . , N , but Majoranas simplify our expressions
with no loss of generality.
A unitary operator W is quasi-free if it maps each Ma-

jorana operator onto a linear combinations of them

W †aiW =
∑

j

Oij aj . (14)

The Hermiticity of ai together with the anti-
commutation relations (12) imply that the matrixO is or-
thogonal. Imposing that W commutes with the fermionic
parity operator

Q =
⊗

r

(2f †
r fr − 1) , (15)
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implies (Lemma 4 in appendix C) that O has unit de-
terminant O ∈ SO(2N). Note that particle-number con-
serving models (where W commutes with

∑

r f
†
r fr) are

a small subset of the quasi-free models.
A system of N fermion modes can be mapped to N

qubits via the Jordan-Wigner transformation [22]

a2r = (
∏r−1

s=1σ
s
z)σ

r
x ,

a2r+1 = (
∏r−1

s=1σ
s
z)σ

r
y , (16)

where σr
x,y,z denote the Pauli sigma matrices acting

on qubit r. Although this representation is not lo-
cal, the product of an even number of operators from

{fr, f †
r , fr+1, f

†
r+1} only acts on qubits r and r + 1 for

systems on an infinite line.
For each O ∈ SO(2N) there is a (non-unique) real

antisymmetric matrix Z such that O = eZ . For any anti-
symmetric matrix A we define α(A) = 1

4

∑

ij Aijaiaj .

From the anti-commutation relations (12) it follows that
[α(A), ai] = −

∑

j Aijaj . Then using the identity

eABe−A = e[A, · ]B

= B + [A,B] +
1

2
[A, [A,B]] + · · · (17)

we arrive at

e−α(Z)ai e
α(Z) =

∑

j

(eZ)ij aj . (18)

Therefore, up to a phase, any quasi-free unitary W can
be written as

W = eα(Z) . (19)

The Hamiltonian H = iα(Z) is a possible generator for
W .

B. QCAs

Consider a spin chain with L sites labelled by r ∈ ZL =
{0, 1, . . . , L−1} and periodic boundary conditions. Each
site r contains n fermionic modes represented by 2n Ma-
jorana operators alr with l ∈ {1, . . . , 2n}. Complex linear
combination of Majorana operators can be represented
by vectors in CL ⊗ C2n, where we separate the spatial r
and internal l degrees of freedom. The orthogonal matrix
O associated to the QCA’s evolution operatorW via (14)
acts on the space CL ⊗ C2n.
Let |r〉 be the orthonormal basis for CL corresponding

to the position. Define the translation (or shift) operator
S acting on CL via S |r〉 = |r+1 mod L〉. The properties
of translation invariance and causality imply that O can
be understood as the dynamics of a discrete-time quan-
tum walk with coin space C2n. It is well known (see, e.g.,
[13]) that translation-invariance implies the structure

O =
∑

q

Sq ⊗Aq , (20)

where q ∈ ZL and the operators Aq act on the coin space
C2n. In particular, the operator Aq specifies how the in-
formation that is translated q sites (to the right) is pro-
cessed. Additionally, causality enforces the existence of
a neighborhood radius (also known as interaction range)
R beyond which information does not flow after only one
timestep:

Aq = 0 for all q /∈ [−R,R] . (21)

C. The Hamiltonian

Next we obtain the spectral decomposition of (20).
The eigenvectors of the translation operator

Sq|k〉 = e−iqk|k〉 , (22)

are the quasi-momentum states

|k〉 = 1√
L

L
∑

r=1

eikr |r〉, (23)

with k ∈ 2π
L
{0, . . . , L − 1}. If we consider the ansatz

|k〉 ⊗ |v〉 as an eigenvector of (20) then we obtain

O |k〉⊗|v〉 = |k〉⊗Mk|v〉 , (24)

where we define

Mk =
∑

q

Aq e
−iqk . (25)

The ansatz |k〉 ⊗ |v〉 is an eigenvector of O if |v〉 is an
eigenvector of Mk.
The orthogonality of (20) implies the unitarity of Mk

for all k. Hence, the spectral decomposition

Mk =
∑

s

θsk P
s
k , (26)

has complex-phase eigenvectors θsk and orthogonal spec-
tral projectors P s

k labelled by s.
In all what follows on fermionic QCAs we work in the

thermodynamic limit L → ∞ to maximize the clarity of
the results. For finite L the results are essentially the
same but more cumbersome to express. We recall that in
the thermodynamic limit locations are labelled by r ∈ Z

and the momentum becomes continuous k ∈ [0, 2π).
In this limit, the spectral decomposition of (20) can be

written as

O =

∫ 2π

0

dk

2π

∑

s

θsk |k〉〈k| ⊗ P s
k . (27)

Causality (21) implies that the matrix (25) is holomor-
phic in k (as a complex variable k ∈ C). Therefore we
can choose the eigenvalues θsk and spectral projections P s

k

to be holomorphic in k too (see theorem 1.10 in chapter
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2 of [23] and also [1, 2]). Of course, we are primarily
interested in the range k ∈ [0, 2π) as opposed to k ∈ C.
The matrix Mk is periodic in k ∈ [0, 2π), but this may

not be true for an individual eigenvalue band θsk. How-
ever, we can group bands together to form continuous
and periodic energy bands in the following way. Suppose
the n bands s1, s2, . . . , sn form a closed curve

lim
k→2π

θs1k = θs20 , (28)

lim
k→2π

θs2k = θs30 , (29)

...

lim
k→2π

θsnk = θs10 . (30)

Then we can define the periodic holomorphic function
Θ : [0, 2πn) → C as

Θ(k) =























θs1
k

for k ∈ [0, 2π)

θs2
k−2π for k ∈ [2π, 4π)
...

...

θsn
k−2π(n−1) for k ∈ [2π(n− 1), 2πn)

, (31)

and the periodic holomorphic projector

Π(k) =























P s1
k

for k ∈ [0, 2π)

P s2
k−2π for k ∈ [2π, 4π)
...

...

P sn
k−2π(n−1) for k ∈ [2π(n− 1), 2πn)

. (32)

Each closed curve is associated to a type of quasi-particle
labelled by ν. Quasi-particle ν is characterized by the
objects nν ,Θν(k),Πν(k), which also carry the label ν.
This allows to write (27) as

O =
∑

ν

∫ 2πnν

0

dk

2π
Θν(k) |k〉〈k| ⊗Πν(k) . (33)

The periodicity of the momentum eigenstates |k+2π〉 =
|k〉 allows to label them with the extended momentum
k ∈ [0, 2πnν). The physical interpretation of the ex-
tended momentum is the following. Conditions (28)-(30)
for quasi-particle ν suggest that each lattice site r ∈ Z

contains nν internal sites and that the dynamics W en-
joys a finer translational symmetry (for quasi-particle
ν) involving translations of fractional length 1/nν which
take into account the extra internal sites. If the number
nν is the same for all ν then we could fine-grain the lat-
tice so that the new system has nν = 1 for all ν, and the
local number of modes is equal to the different types of
quasi-particle (and no more).
Let wν denote the winding number of the periodic

function Θν : [0, 2πnν) → C. This integer is the number
of net loops around the unit circle in C that the func-
tion does across the interval [0, 2πnν). Because Θν(k)

is a holomorphic function, there is another holomorphic
function Eν(k) such that

Θν(k) = exp

(

−iEν(k) + i
wν

nν
k

)

. (34)

Furthermore, in the range k ∈ [0, 2πnν) the function
Eν(k) is periodic and takes real values. Note that these
real values are not restricted to [0, 2π) due to the conti-
nuity imposed in definition (31).
Let us construct a Hamiltonian whose single-particle

energy bands are the functions Eν(k). Our choice of
matrix Z satisfying O = eZ is

iZ =
∑

ν

∫ 2πnν

0

dk

2π

(

Eν(k)− wν

nν
k

)

|k〉〈k| ⊗Πν(k) .

The reason for writing the quasi-energies as the sum of
two terms (Eν(k)− wν

nν k) will be clear below.

Our choice of Hamiltonian H satisfying W = e−iH is
H = iα(Z), which can be written as

H =
∑

ν,r,r′,l,l′

∫ 2πnν

0

dk

2π

(

Eν(k) − wν

nν
k

)

×

× ei(r−r′)k 〈l|Πν(k)|l′〉 alr al
′

r′ . (35)

In the next section we analyze the locality of this Hamil-
tonian.

D. Zero winding implies locality

In this section we consider the case where all energy
bands have zero winding number wν = 0.
In this case the coupling between lattice sites r, r′ ∈ Z

specified by Hamiltonian (35) is

〈r, l|Z|r′, l′〉

=− i
∑

ν

∫ 2πnν

0

dk

2π
Eν(k) ei(r−r′)k 〈l|Πν(k)|l′〉 , (36)

for any pair l, l′. Recall that the functions Eν(k) and
〈l|Πν(k)|l′〉 are analytic and periodic in the integration
range k ∈ [0, 2πnν). Therefore, expression (36) is the
Fourier transform of a periodic analytic function. This
is the premise of Lemma 2 from Appendix B, which tells
us that

|〈r, l|Z|r′, l′〉| ≤ C1 e
−β1|r−r′| , (37)

for some constants C1, β1 > 0. That is, in the non-critical
(gapped H) case interactions decay exponentially with
the distance.

E. Non-zero winding implies weak locality

Suppose the band ν has non-zero winding number
wν 6= 0. In the next subsection we see that this can
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be interpreted as the critical case, because any quasi-
particle of type ν moves at constant speed irrespectively
of its initial state. Mimicking the behavior of massless
particles in quantum field theory.
The contribution of quasi-particle ν to the interaction

between sites r, r′ ∈ Z in Hamiltonian (35) is

∫ 2πnν

0

dk

2π

(

Eν(k) − wν

nν
k

)

ei(r−r′)k 〈l|Πν(k)|l′〉 . (38)

The part proportional to Eν(k) gives an exponential
decay as in (37). The part proportional to wν is the
Fourier transform of the product of the analytic func-
tion 〈l|Πν(k)|l′〉 times the discontinuous (on the [0, 2πnν)
torus) function k. The Fourier transform of a product of
two functions is the convolution of their Fourier trans-
forms. The Fourier transform of the analytic part can be
upper-bounded as
∣

∣

∣

∣

∣

∫ 2πnν

0

dk

2π
ei(r−r′)k 〈l|Πν(k)|l′〉

∣

∣

∣

∣

∣

≤ C2 e
−β2|r−r′| . (39)

And the Fourier transform of the discontinuous part is

∫ 2πnν

0

dk

2π

k

nν
ei(r−r′)k =

{

i
r′−r

if r 6= r′

πnν if r = r′
. (40)

Hence, their convolution can be upper-bounded by
bounding the absolute value of each term

∣

∣

∣

∣

∣

∫ 2πnν

0

dk

2π

wν

nν
kei(r−r′)k 〈l|Πν(k)|l′〉

∣

∣

∣

∣

∣

≤ C3

∑

q 6=0

1

|q| e
−β2|r−r′−q| + C4 e

−β2|r−r′|

≤ C5

|r − r′| , (41)

where β2, C3, C4, C5 are some constants. Hence, we con-
clude that when at least one of the functions Θν(k) has
non-zero winding number, the Hamiltonian H involves
interactions that decay no slower than the inverse of the
distance. This is a much weaker form of locality than
the exponential decay (37). As an example, the massless
Dirac QCA [8, 9] has non-zero winding numbers and its
Hamiltonian decays as 1/|r − r′| exactly.
For (single-particle) quantum walks with gapped spec-

tra, effective quasi-local Hamiltonians were constructed
in [28]. In contrast, we get bounds on the locality of
quantum walk Hamiltonians with or without a gap. Note,
however, that [28] had no assumption of translational in-
variance.

F. Criticality as drift dynamics

Let us consider a quasi-particle ν with non-zero wind-
ing number wν 6= 0. The corresponding sub-algebra of

operators is generated by

∑

r,l

eikr 〈l|Πν(k)|v〉 alr , (42)

for all |v〉 ∈ C2n. If the projector has rank one Πν(k) =
|vν(k)〉〈vν (k)| then we can write the simpler expression

bν(k) =
∑

r,l

eikr 〈l|vν(k)〉 alr , (43)

for the generators of the sub-algebra of quasi-particle ν.
By construction, the time evolution of these generators
is

W †bν(k)W = e−iEν(k) ei
w

ν

nν k bν(k) . (44)

The first phase e−iEν(k) corresponds the dynamics gen-
erated by an (exponentially) local Hamiltonian. The

second term ei
w

ν

nν k corresponds to a spatial translation
r 7→ r − wν

nν for all the algebra of operators of quasi-
particle ν. This implies that, irrespective of its initial
state, the quasi-particle ν drifts at a constant speed wν

nν .
Mimicking the behavior of massless particles in quantum
field theory.

G. Remarks on free-fermion QCAs

One approach to obtain quasi-free fermion QCAs is to
take a quantum walk and apply fermionic second quan-
tization [12], resulting on a QCA that preserves particle
number. The family of quasi-free fermion QCAs that we
consider is more general and includes QCAs which do not
preserve particle number.
On another topic, the sum of all winding numbers is

the index of the corresponding quantum walk

I =
∑

ν

wν , (45)

defined in [16]. This can be interpreted as the net amount
of information flow along the chain. It is has been proven
[6, 33] that a quantum walk with non-zero index has gap-
less spectrum.

IV. QCAS GENERATED BY

TIME-DEPENDENT HAMILTONIANS

In [29] it is proven that when a QCA W has zero in-
dex (defined in [16]) there always exists a time-dependent
HailtonianH(t) with exponentially-decaying interactions
which generates W in a finite time τ , that is

W = T e−i
∫

τ

0
H(t)dt , (46)

where T is the time-ordering operator. This holds even
if W is an approximate QCA [29]. This implies that the
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fractal QCA (Section II), despite not having a quasi-local
time-independent generator H , it has a quasi-local time-
dependent generator H(t). However, in this work, we are
concerned with time-independent Hamiltonians, because
we want to relate QCAs to quantum field theories in high-
energy and condensed matter physics.
It is worth mentioning that the definition of “quasi-

local Hamiltonian” in [29] is different than ours. In [29]
a quasi-local Hamiltonian has exponentially-decaying in-
teractions. Therefore, the fermionic QCAs with non-zero
winding number (i.e. non-zero index) have non-quasi-
local Hamiltonians. In our work, a quasi-local Hamilto-
nian has interactions that decay with the distance in any
way, no matter how slow. Therefore, the fact that the
fractal QCA does not have a quasi-local Hamiltonian is
a very strong result.

V. OUTLOOK

This work gives rise to the following important open
questions. Do QCAs have a continuous-time limit? How
should we describe this limit? One possible approach
is to work in the Hamiltonian picture, but our results
suggest that this not always possible. On another topic,
how should we define integrable dynamics (as opposed to
chaotic dynamics) in QCAs? In the Hamiltonian picture

integrability is defined in terms of the existence of local
or low-weight constants of motion. In this work we have
presented a QCA which should be considered integrable,
because its dynamics can be described in phase space,
but it does not enjoy local or low-weight constants of
motion. This suggests that the integrability criterion for
Hamiltonians is not applicable to QCAs.

Acknowledgment

The authors would like to thank Tobias J. Osborne
for useful discussions. LM acknowledges financial sup-
port by the UK’s Engineering and Physical Sciences Re-
search Council (grant number EP/R012393/1). TF was
supported by the ERC grants QFTCMPS and SIQS,
the cluster of excellence EXC201 Quantum Engineer-
ing and Space-Time Research, the DFG through SFB
1227 (DQ-mat), and the Australian Research Coun-
cil Centres of Excellence for Engineered Quantum Sys-
tems (EQUS, CE170100009). ZZ acknowledges support
from the János Bolyai Research Scholarship, the UKNP
Bolyai+ Grant, and the NKFIH Grants No. K124152,
K124176 KH129601, K120569, and from the Hungar-
ian Quantum Technology National Excellence Program,
Project No. 2017-1.2.1-NKP-2017-00001.

[1] A. Agaltsov. Eigenvalues of ana-
lytic families of operators, 2018. URL
https://www2.mps.mpg.de/homes/agaltsov/notes/holomkato76.html .

[2] A. Ahlbrecht. Asymptotic behavior of decoher-

ent and interacting quantum walks. PhD the-
sis, Leibniz Universität Hannover, 2012. URL
https://doi.org/10.1007/s11128-012-0389-4.

[3] P. Arrighi. An overview of quantum cel-
lular automata. Natural Computing, 2019.
doi:https://doi.org/10.48550/arXiv.1904.12956.
https://doi.org/10.1007/s11047-019-09762-6.

[4] A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini.
Weyl, Dirac and Maxwell Quantum Cellular Automata:
Analytical Solutions and Phenomenological Predictions
of the Quantum Cellular Automata Theory of Free
Field. Found. Phys., 45(10):1203–1221, 2015. doi:
https://doi.org/10.1007/s10701-015-9927-0.

[5] H. Brezis and L. Nirenberg. Degree theory and BMO;
part I: Compact manifolds without boundaries. Selecta

Mathematica, 1(2):197–263, 1995. ISSN 1022-1824. doi:
http://dx.doi.org/10.1007/BF01671566.

[6] C. Cedzich, T. Geib, F. A. Grünbaum, C. Stahl,
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Appendix A: The fractal QCA has no gliders

To simplify notations, we shall visualize the action of
W on monomials of Pauli-matrices as follows. The ma-
trices σx, σy , and σz themselves will be denoted by x,
y, and z, respectively. Monomials of the Pauli matrices
obtained by successive applications of W will be written
under each other. For example, the action of W on the
sigma matrices can be written schematically as

x
x y x

y
x z x

z
x,

and the inverse of W is

y
z x z

z
z y z

x
z.

Since they are inessential for the argument, signs are ig-
nored by our notations, so a monomial is denoted by the
same string as minus the same monomial.
Our proof for the absence of gliders consists of three

steps. First we show that if there were gliders, their
length could not change under the time evolution. Then
we demonstrate that this property makes it possible to
define even simpler gliders, which we will call rigid glid-
ers. Finally, a case by case study rules out the existence
of rigid gliders.

(1) The neighborhood of the left end of a string evolves
in the following way:

z • • • • •
z • • • •
z • • •
y • •

x • • •
x • • • •

x • • • • •

• • • • • •
• • • • •
• • • •
x • •

x • • •
x • • • •

x • • • • •

z • • • • •
z • • • •
z • • •
z • • ⇐=

• • • •
• • • • •

• • • • • •
The arrow indicates the time at which we specify the
leftmost operator, and the three patterns correspond to
the three possible choices. The bullets (•) indicates that
any of the operators x, y, or z may be assigned to the
particular position, but it is also possible that the identity
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is assigned to it. So where the frontier consists of bullets,
we actually do not know exactly where the frontier lies.
Similarly, the neighborhood of the right frontier looks like
this:

• • • • • z
• • • • z
• • • z
• • y
• • • x
• • • • x
• • • • • x

• • • • • •
• • • • •
• • • •
• • x
• • • x
• • • • x
• • • • • x

• • • • • z
• • • • z
• • • z
• • z ⇐=
• • • •
• • • • •
• • • • • •

We would like to match the left and right frontiers so
that they enclose the evolution of a glider. For example,
take a glider whose left frontier contains a z. The past of
this site is represented by a z-sequence extending indef-
initely in the left upward direction. On the right hand
side, this has to be matched with a parallel x-sequence,
which in turn implies that the z-sequence on the left hand
side has to extend ad infinitum in the future as well. This
way we obtain a right-moving glider. Assuming that the
left frontier contains an x, we get a left-moving glider.
Clearly, no glider can have a y in the frontier. So the
only possible gliders evolve as

x S1 z z S1 x
x S2 z z S2 x
x S3 z z S3 x,

where S1, S2, . . . are potentially different strings of equal
length.

(2) Suppose that there is a glider for which S1 6= S2.
Then there is also a shorter glider. Consider for example
a left-moving glider. Evolve it by one time step, translate
it by one lattice site to the right, and multiply the result
by the original operator. If ∗ denotes the product of
the corresponding operators, so that x∗x, y∗y, and z∗z
are the empty strings, then the new glider evolves in the
following way:

(x∗x) (S1∗S2) (z∗z) (S1∗S2)
(x∗x) (S2∗S3) (z∗z) = (S2∗S3)
(x∗x) (S3∗S4) (z∗z) (S3∗S4).

So the new glider is shorter at least by two than the orig-
inal one. Since the evolution of this glider must follow
the previously derived pattern, the left and right fron-
tiers are again x and z, respectively. We can redefine
Si as the strings representing the inner part of the new
glider. If these strings change in time, we can repeat the
procedure, thereby obtaining an even shorter glider. Af-
ter some iterations, we eventually get a rigid glider, for
which S1 = S2, so it is simply translated by the time
evolution.

(3) To rule out rigid gliders, it is enough to look at the
operator to the right of the frontier and see what we get
after one time step:

x x •
x z • •

x y •
x z • •

x z •
x y • •

x •
x y • •

None of these are rigid. An argument analogous to (2)
and (3) shows that there are no right-moving gliders ei-
ther. (This already follows from the non-existence of left-
moving gliders because the time evolution is invariant
under reflection.)

Appendix B: Fourier lemmas

The following two lemmas are proved in References [24,
27] and [5] respectively.

Lemma 2. Let f : T → T be an analytic function on
the torus with Fourier decomposition

f(k) =
∑

r∈Z

f̂(r) eirk . (B1)

Then there exist two positive constants C, β > 0 such
that

|f̂(r)| < C e−β|r| . (B2)

Lemma 3. If f : T → T is an analytic function with
winding number w then

∑

r∈Z

r |f̂(r)|2 = w . (B3)

Appendix C: Determinant of O

Lemma 4. A quasi-free fermionic unitary commutes
with the parity operator (15) if and only if the corre-
sponding orthogonal matrix (14) has unity determinant.

Proof. First, note that the parity operator (15) can be
written as

Q = a1a2 · · · a2N . (C1)

Second, note that

W †a1 · · · a2NW =
∑

i1,...,i2N

O1,i1 · · ·O2N,i2N ai1 · · · ai2N .

Using the anti-commutation relations we can write

ai1 · · · ai2N = εi1...i2N a1 · · · a2N , (C2)

where εi1...i2N is the Levi-Civita symbol. Combining all
of the above we obtain

1 =
∑

i1,...,i2N

O1,i1 · · ·O2N,i2N εi1...i2N = det(O) . (C3)


