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4Département de Physique Appliquée, Université de Genève, 1205 Genève, Switzerland
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We study the problem of estimating the
temperature of Gaussian systems with feasible
measurements, namely Gaussian and photo-
detection-like measurements. For Gaussian
measurements, we develop a general method
to identify the optimal measurement numer-
ically, and derive the analytical solutions in
some relevant cases. For a class of single-mode
states that includes thermal ones, the opti-
mal Gaussian measurement is either Hetero-
dyne or Homodyne, depending on the temper-
ature regime. This is in contrast to the general
setting, in which a projective measurement
in the eigenbasis of the Hamiltonian is opti-
mal regardless of temperature. In the general
multi-mode case, and unlike the general unre-
stricted scenario where joint measurements are
not helpful for thermometry (nor for any pa-
rameter estimation task), it is open whether
joint Gaussian measurements provide an ad-
vantage over local ones. We conjecture that
they are not useful for thermal systems, sup-
ported by partial analytical and numerical ev-
idence. We further show that Gaussian mea-
surements become optimal in the limit of large
temperatures, while on/off photo-detection-
like measurements do it for when the tempera-
ture tends to zero. Our results therefore pave
the way for effective thermometry of Gaussian
quantum systems using experimentally realiz-
able measurements.
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1 Introduction and motivation

The high precision required for the operation of quan-
tum devices demands for the estimation of their pa-
rameters with minimum possible error. In particu-
lar, estimating temperature is a problem that has at-
tained substantial popularity in recent years [1, 2],
since it is a parameter that highly impacts the tech-
nological usage of quantum systems. Thermometry
process, like any other parameter estimation problem,
can be seen as different stages of (i) preparation of a
probe or thermometer, (ii) interaction of the probe
with the sample, and (iii) measurement of the probe
and data analysis [3–5], see also Fig. 1. When there
are no restrictions on any of these stages, one finds
the ultimate limits on thermometry precision [1, 2].
These limits have deeply increased our understanding
of fundamental restrictions/possibilities in any ther-
mometry procedure [6]. Nonetheless, one also needs
to address frameworks that are experimentally feasi-
ble, hence revisit the fundamental limits subject to ex-
perimental restrictions on the different stages above.
In this work, we are in particular concerned with re-
strictions on the performed measurements, stage (iii)
above. To our knowledge, there have been so far
few works addressing measurement restrictions, such
as limited resolution [7] or coarse grained measure-
ments [8], in thermometry applications.

Our main goal is to study the use of experi-
mentally feasible measurements in thermometry pro-
cesses using continuous variable (CV) Gaussian sys-
tems. CV Gaussian models are very successful at de-
scribing various physical systems of relevance, such
as Bosonic gases, electromagnetic fields, mechani-
cal oscillators and Josephson junctions, to name a
few. This makes them versatile candidates for sev-
eral quantum information processing as well as quan-
tum simulation tasks [9–14]. When there is no limi-
tation on the performed measurements, thermometry
(and more generally metrology) of Gaussian CV sys-
tems is characterized readily, in particular the opti-
mal measurement and the ultimate precision can be
found analytically [15–17]. Nonetheless, a rigorous
analysis of quantum metrology with realistic mea-
surements, namely Gaussian as well as two-outcome
photo-detection measurements, is missing. Our work
addresses this question in the context of temperature
estimation.

Several previous theoretical works have already fo-
cused on thermometry via Gaussian probes, e.g., ex-
ploiting Bosonic impurities embedded in cold gases, or
light modes that interact with an external field [18–
23]. Unfortunately, in these systems the optimal mea-
surement for thermometry can be experimentally very
demanding and effectively out of reach. For exam-
ple, consider a scenario where a light mode is used as
thermometer. After interacting with a sample with
an unknown temperature T , the light mode can relax

Measurement
Outcome ( )aTest(a)

Sample 
T=?ρ(0) ρ(T)

(i) Preparation (ii) Parametrisation

(iii) Measurement and data analysis

Figure 1: Thermometry protocols can be broken into three
parts of (i) preparation of a probe, (ii) interaction with the
sample and parametrisation, and (iii) measurement and data
analysis. The focus of this work is on the last part of the
protocol (iii). In particular, we explore the precision bounds
restricted to experimentally feasible measurements, namely
Gaussian or on/off photo-detection measurements.

to a thermal state with the same temperature. By
performing measurements on the light mode one aims
to estimate the temperature. The maximally infor-
mative measurement in this case is an energy mea-
surement. This corresponds to ideal photon-counting,
which is extremely difficult. It is thus advisable to
investigate experimentally realisable measurements,
such as realistic on/off photo-detection or Gaussian
measurements and benchmark their performance by
comparing them with the known optimal measure-
ment. In this work, we follow this approach and first
consider single-mode systems. We analytically prove
that the optimal Gaussian measurement corresponds
to a homodyne or heterodyne measurement, depend-
ing on the temperature. We investigate the condi-
tions under which the ultimate bound on thermom-
etry precision is attained. The appendix is there for
self-containedness.... We find that at high temper-
atures Gaussian measurements are almost optimal,
while they perform poorly in the low-temperature
regime, where, in turn, on/off photo-detection is close
to optimal. We then move to the multi-mode sce-
nario. While in the case where measurements are
not restricted the additivity of the Fisher information
implies that the optimal measurement consist of the
independent application of the optimal measurement
for single modes, whether the same holds true when
restricting the measurements to be Gaussian is open.
We conjecture—supported by numerical evidence—
that this is indeed the case, and analytically prove it
for special cases.

2 Preliminaries: The Phase-space for-
malism
We start by setting up the notation and introduc-
ing the necessary tools from the phase-space formal-
ism, such as Gaussian systems and Gaussian measure-
ments. For additional details, we refer the interested
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reader to the more complete references [12, 24, 25].
The basics of parameter estimation in Gaussian sys-
tems is discussed in the next section, where we also
present some of our results.

2.1 Gaussian States and Measurements
Every trace class1 operator defined in a Hilbert
space has an equivalent representation in terms of S-
ordered Phase-space Quasi-probability Distributions
[(S)-PQDs], which are distributions defined over a
real symplectic space that is referred to as phase-
space. In order to characterize this representation,
we first define the frame operators. These oper-
ators are denoted by ∆(z) and are often used to
define the S-ordered quasi-probability distributions
W (O,z) ..= tr[O∆(z)] corresponding to the operator
O, that can either be an observable or a density op-
erator in the Hilbert space2.

First we note that, for a given quantum state ρ and
any set of POVM operators {Ma|s}—with s label-
ing the specific choice of POVM and a the different
outcomes for that given choice—the outcome proba-
bilities for the measurements are given by the Born
rule,

P (a|ρ; s) = tr[ρMa|s]. (1)

To show how any m-mode operator like ρ can be rep-
resented by (S)-PQDs in phase-space, we start by
expanding ρ in terms of the canonical displacement
operators,

ρ = 1
(2π)m

∫
d2my tr[ρD(y)]D(−y) (2)

where D(y) ..= exp(−iyᵀΩR) is the displacement (or
Weyl) operator, Rᵀ = (q1, p1, . . . , qm, pm) is the vec-
tor of canonical quadrature operators, [qj , pk] = iδj,k,
and y, z ∈ R2m, and Ω =

⊕m
j=1

( 0 1
−1 0

)
is the sym-

plectic form enforcing the uncertainty relations in
phase-space.

The ∆(z) operators are defined as the Fourier
transforms of the displacement operator

∆(z) ..=
∫

d 2my

(2π)2m D(y) e−iz
ᵀΩy, (3)

1A linear bounded operator T : H → H acting on a separa-
ble Hilbert space H is said to be of trace class if Tr |T | < ∞,
where |T | ..=

√
T †T , and for a positive semidefinite A > 0 the

formal trace TrA ..=
∑

i
〈i|A|i〉 can be shown not to depend on

the chosen orthonormal basis {|i〉}i of H.
2Throughout this paper we use a notation in which phase

space related quantities are in bold font, e.g., σ and d represent
the covariance matrix and displacement vector. On the con-
trary, we write the operators in the Hilbert space of the system
in normal font, e.g., ρ represents the density matrix. For the
positive operator-valued measure (POVM) elements like Ma|s
the operator itself is in the Hilbert space and represented with
normal font, but the outcome is often a phase-space vector like
a thus we use the bold font.

where the integral is intended to converge in the weak
operator topology. The Wigner function for the den-
sity operator ρ is then given by

W (z|ρ) = tr
[
ρ∆(z)

]
=
∫

d 2my

(2π)2m tr[ρD(y)] e−iz
ᵀΩy.

(4)

Since tr[D(y)] = (2π)mδ2m(y), the operator ∆(z)
satisfies the following relations:

tr[∆(z)] =
∫

d 2my

(2π)2m tr[D(y)] e−iz
ᵀΩy = 1

(2π)m ,

(5)
and∫

d2mz∆(z)=
∫

d 2my

(2π)2m D(y)
∫
d2mze−iz

ᵀΩy = I,

(6)
where we have used that∫

d2mze−iz
ᵀΩy = (2π)2mδ2m(y). (7)

By taking the inverse Fourier transform of Eq. (4)
and using Eq. (7), one obtains∫

d2mzW (z|ρ)eiz
ᵀΩy = tr[ρD(y)]. (8)

Substituting Eq. (8) into Eq. (2) gives

ρ = 1
(2π)m

∫
d2mzW (z|ρ)

∫
d2myD(−y) eiy

ᵀΩy

= (2π)2m
∫
d2mzW (z|ρ)∆(z).

(9)

Finally, by using these results in Eq. (1), we obtain

P (a|ρ; s) = tr[ρMa|s]

= (2π)M
∫
d 2mzW (z|ρ)W (a|s, z), (10)

where W (a|s, z) = tr
[
Ma|s∆(z)

]
is the Wigner func-

tion associated to the POVM measurement opera-
tors.3 From this relation, we see that the informa-
tion contained in the probabilities given by Eq. (1) is
equivalently contained in the integral overlap of the
corresponding Wigner functions.

2.1.1 The overlap of two systems

For any two quantum states ρ1 and ρ2 we can use (2)
to compute their overlap

tr[ρ1ρ2] = 1
(2π)m

∫
d2my tr[ρ1D(y)] tr[ρ2D(−y)],

(11)

3The only measurement operators we will encounter will be
of trace class.

Accepted in Quantum 2022-05-30, click title to verify 3



Now, the term tr[D(y)ρi] is nothing but the charac-
teristic function of the ith system. That is, by defini-
tion,

χ(y|ρi) ..= tr[D(y)ρi]. (12)

For Gaussian systems ρi with covariance matrices
σi and displacement operators di, the characteristic
function is given by the Gaussian distribution

χ(y|ρi) = e
1
2y

ᵀΩσiΩy+idᵀ
i
Ωy, (13)

with the displacement vector and the covariance ma-
trix (CM) defined as di|k = 〈Rk〉ρi

, and σi|kl =
〈{Rk, Rl}+〉ρi

/2 − 〈Rk〉ρi
〈Rl〉ρi

, where 〈A〉ρi

..=
tr[Aρi] and {, }+ represents the anti-commutator.
Having this form for the Gaussian characteristic func-
tion, we can write

tr[ρ1ρ2] = 1
(2π)m

∫
d2my tr[ρ1D(y)] tr[ρ2D(−y)]

= 1
(2π)m

∫
d2mye

1
2y

ᵀΩ(σ1+σ2)Ωy

× ei(d1−d2)ᵀΩy

= 1
(2π)m

∫
d2mye

1
2y

ᵀσ̃y+id̃ᵀy, (14)

where we define σ̃ ..= Ω(σ1 + σ2)Ω, and d̃ᵀ ..=
(d1 − d2)ᵀΩ. In order to solve this last integral, we
need to find the orthogonal basis of σ̃, such that the
integration variables decouple. Performing this ele-
mentary transformation yields

tr[ρ1ρ2] = 1
(2π)m

∫
d2mye

1
2y

ᵀσ̃y+id̃ᵀy

= 1
(2π)m

√
(2π)2m

detσ̃ e
1
2 d̃

ᵀσ̃−1d̃

= e−
1
2 (d1−d2)ᵀ(σ1+σ2)−1(d1−d2)√

det(σ1 + σ2)
. (15)

The Gaussian measurement operators of interest here
can be written as displaced Gaussian states ρMs , with
the displacement vector and the covariance matrix
given by dMs and σMs , respectively.4 We can write

Ma|s = D(a)ρMs D†(a)/(2π)m. (16)

Our aim is then to find the characteristic func-
tion of this Gaussian POVM element. By using
the cyclic property of the trace, and the prop-
erties of the displacement operator D(y)D(a) =
exp[−iyᵀΩa/2]D(y + a), and D†(y) = D(−y), we
have that

χ(y|Ma|s) = tr[D(a)ρMs D†(a)D(y)]/(2π)m

= eia
ᵀΩy

(2π)m χ(y|ρMs ), (17)

4When necessary we use the superscript M to refer to mea-
surement operators, displacement vectors, and covariance ma-
trices, to prevent confusion with those of the system.

which means that—up to a 1/(2π)m constant—Ma|s
has a Gaussian characteristic function with the same
covariance matrix as ρMs , but with displacement vec-
tor increased by the amount a referring to the mea-
surement outcome. By putting the pieces together,
we have that, for a Gaussian measurement performed
on a Gaussian state ρ with displacement vector d and
CM σ, the outcome probability distribution takes the
(also Gaussian) form

P (a|ρ; s) = tr[ρMa|s]

= e−
1
2 (dM

s +a−d)ᵀ(σM
s +σ)−1(dM

s +a−d)

(2π)m
√

det(σMs + σ)
, (18)

where dMs and σMs are respectively the displacement
vector and the covariance matrix of ρMs , i.e., the Gaus-
sian state of the measurement. The above is the most
general form of the probability distribution of the out-
come of a Gaussian measurement on a Gaussian state;
however, in what follows we shall assume for simplic-
ity that both ρ and ρMs have vanishing displacements,
so that

P (a|ρ; s) = 1
(2π)m

√
det(σMs + σ)

e−
1
2a

ᵀ(σM
s +σ)−1

a.

(19)

The normalisation of this probability can be
checked easily∫

d2maP (a|ρ; s) =
∫
d2mae−

1
2a

ᵀ(σM
s +σ)−1

a

(2π)m
√

det(σMs + σ)

=

√
(2π)2m

det(σM
s +σ)−1

(2π)m
√

det(σMs + σ)
= 1.

(20)

See the appendix for a generalisation of Gaussian
measurements that incorporates noise and auxiliary
modes.

3 Thermometry of Gaussian quantum
systems: Optimal vs feasible measure-
ments
As already advanced, we are interested in the mea-
surement part of thermometry protocols. Let us first
recall some basics of metrology in quantum systems.
Given a quantum system we aim to estimate a pa-
rameter like temperature T imprinted on its den-
sity matrix denoted by ρ(T ). To this end, one per-
forms a POVM measurement with positive elements
{Ma|s}, where s labels the specific measurement and
a the different outcomes for that specific measure-
ment. We have

∫
daMa|s = I for all s, with I

being the identity operator. The outcomes of the
measurement are then mapped into an estimate of
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the true parameter by using an estimator function
Test(a). One can quantify the error on such an es-
timation process by means of the mean square er-
ror δ2Test(ρ; s) ..=

∫
daP (a|ρ; s)(Test(a) − T )2, with

P (a|ρ; s) = tr[Ma|sρ(T )] being the probability of ob-
serving the outcome a conditioned on measuring s.
Notice that the estimation error depends on the per-
formed measurement. It is well known that for any
unbiased estimator, that is, for any estimator satisfy-
ing

∫
daP (a|ρ; s)Test(a) = T , the mean square error

is lower bounded by the Cramér-Rao bound

δ2Test(ρ; s) > 1
mFC(ρ; s) , (21)

with FC(ρ; s) being the (classical) Fisher information
given by

FC(ρ; s) ..=
〈

[∂T logP (a|ρ; s)]2
〉

=
∫
daP (a|ρ; s) [∂T logP (a|ρ; s)]2 . (22)

The Cramér-Rao bound can be saturated in the
asymptotic limit by choosing the maximum likelihood
estimator [26]. A good candidate to quantify the pre-
cision of measurements is therefore given by the Fisher
information; the larger, the more precise the measure-
ment.

It is a natural and fundamental question to ask:
what is the ultimate bound on precision? This is
obtained by finding the measurement that minimises
Eq. (21). The corresponding precision is quantified
by the so-called quantum Fisher information (QFI),
which can be formally defined as

FQ(ρ) ..= max
s
FC(ρ; s) = tr[ρΛ2]. (23)

Here, Λ is the symmetric logarithmic derivative
(SLD), a Hermitian operator defined by

2∂T ρ(T ) = Λρ(T ) + ρ(T )Λ. (24)

The SLD also characterizes the optimal measurement,
which turns out to be projective in the basis of Λ.

3.1 Ultimate bounds on thermometry of Gaus-
sian systems
The problem of finding the ultimate bounds in param-
eter estimation of Gaussian quantum systems was first
addressed in [15, 27], further explored in [16], and ex-
tended to multiple parameter estimation in [17]. It
was shown that the optimal measurement can be al-
ways written as a second order operator in terms of
the quadratures, that is

Λ =
∑
kl

C
(2)
kl RkRl +

∑
k

C
(1)
k Rk +C(0), (25)

where C(2) is a 2N × 2N matrix of real numbers,
C(1) is a 2N dimensional real vector, and C(0) is a

real number. These three quantities are given by the
solution of the following equations:

∂Tσ = 2σC(2)σ + 1
2ΩC(2)Ω, (26)

C(1) = σ−1∂Td− 2C(2)d, (27)

C(0) = −C(1)Td− 1
2 Tr[C(2)σ]− dᵀC(2)d. (28)

In turn, the quantum Fisher information reads

FQ(σ,d) = ∂Td
Tσ−1∂Td

+ 2 Tr[C(2)σC(2)σ + 1
4C

(2)ΩC(2)Ω]. (29)

Despite its elegant and simple form, the optimal mea-
surement (25) is, unfortunately, often an experimen-
tally challenging one to perform. Thus, we will ex-
plore more feasible measurements in the next sections.
It is worth mentioning that the problem of phase esti-
mation by means of Gaussian measurements has been
addressed in [28, 29] for a single mode, while using
Gaussian measurements in the Bayesian approach to
metrology was considered in [30, 31].

3.2 Thermometry using Gaussian measure-
ments
Gaussian measurements are an important family of
experimentally realisable measurements. They have
been defined formally in section 2.1; alternatively,
they can be characterized as all those measurements
that are realizable by appending ancillas in the vac-
uum state, applying arbitrary Gaussian unitaries, and
performing homodyne detections [32]. We can charac-
terize them by means of their covariance matrix σMs .
Our first observation is that the optimal measurement
should have a covariance matrix representing a pure
quantum state.

3.2.1 Observation.—Pure Gaussian measurements are
always better

To prove this claim, we show that any non-pure
Gaussian measurement can be cast as classical post-
processing of another pure Gaussian measurement,
therefore, not increasing its (classical Fisher) infor-
mation.

The POVM elements of a Gaussian measurement
can be written in the form

Ma|s =
∫

d 2my

(2π)2m D
(
y
)
e−y

ᵀσM
s y/2−ia

ᵀΩy. (30)

If the measurement is not pure, then there exists a
pure covariance matrix σMt s.t. σMs − σMt > 0. This
follows directly from Williamson’s theorem [33] (see
also [34, Lemma 5] for a direct proof). The POVM
measurement elements corresponding to this pure CM
are

Mb|t =
∫

d 2my

(2π)2m D
(
y
)
e−y

ᵀσM
t y/2−ib

ᵀΩy. (31)
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If Ma|s can be reproduced by Mb|t, then we should
find the probability measure π(a|b) s.t.,

Ma|s =
∫

d 2mb

(2π)mπ(a|b)Mb|t ∀a. (32)

By combining (31) and (32) we obtain

Ma|s =
∫∫

d 2my

(2π)2m
d 2mb

(2π)mπ(a|b)D
(
y
)

× e−y
ᵀσM

t y/2−ib
ᵀΩy. (33)

If we compare with (30), we should have∫
d 2mb

(2π)mπ(a|b)e−ib
ᵀΩy = e−y

ᵀ(σM
s −σ

M
t )y/2−iaᵀΩy.

(34)

Finally by taking the inverse Fourier transform we
find

π(a|b) = e
1
2 (b−a)ᵀΩ(σM

s −σ
M
t )−1Ωᵀ(b−a)√

det(σMs − σMt )
. (35)

Note that the fact that the Fourier transform exists
owes to the fact that σMs − σMt > 0.

In this manner, we have proven that the optimal
Gaussian measurements should be chosen from the
pool of pure covariance matrices, which can always
be written as σMs = SM (SM )ᵀ, with SM being a
symplectic transformation.

3.2.2 Classical Fisher information of Gaussian measure-
ments

As we saw in section 2.1, when performing a Gaussian
measurement on Gaussian systems the resulting prob-
ability distribution, given by (18), is also Gaussian. It
is charachterized by its displacement vector d − dMs
and covariance matrix V ..= σMs +σ, with (d, σ) and
(dMs , σMs ) being the (displacement vector, covariance
matrix) of the system and the measurement, respec-
tively. The Fisher information of classical Gaussian
distributions is well known and reads

FC(d,σ;σMs ) = ∂Td
T (σ + σMs )−1∂Td

+ 1
2 Tr

[(
(σ + σMs )−1∂Tσ

)2]
, (36)

where we explicitly include in the argument that the
classical Fisher information is obtained for measure-
ment σMs conditioned on the covariance matrix of
the system being σ. In what follows we focus on
systems with zero first-order moments, and use the
convention FC(σ;σMs ) ≡ FC(0,σ;σMs ). This is
motivated by the fact that, at thermal equilibrium,
one can always change the basis with a temperature-
independent transformation to one with zero displace-
ments. Moreover, in most non-thermal scenarios the
quadratic nature of the system-sample Hamiltonian is

such that the displacement vector of the system van-
ishes [18–20, 35, 36]. The proof of Eq. (36) can be
found, e.g., in Refs. [15, 37]; in the appendix we also
present a simple proof for the case with zero displace-
ment.

3.2.3 Homodyne detection and equivalence with the
error propagation

Homodyne detection is a projective measurement in
the basis of one of the quadratures. For example,
consider a single-mode Gaussian system, and assume
that we want to measure it in the position basis.
The measurement covariance matrix can be written
as σMR1

..= limr→∞ diag[1/r, r]. By replacing in (36)
one finds the classical Fisher Information for the po-
sition measurement

FC(σ;σMR1
) = lim

r→∞

1
2 Tr

[(
(σ + diag[1/r, r])−1∂Tσ

)2]
= |∂Tσ11|2

2σ2
11

. (37)

Often times, the inverse of the error propagation is an
alternative way of characterising the precision. The
error propagation characterizes the estimation error
when using some observable O and is defined as

δ2T (ρ;O)EP ..= Var(O)
|∂T 〈O〉 |2

. (38)

Regarding position measurement, if we replace the ob-
servable with the square of the position operator, i.e.,
O → R2

1, then by using Wick’s theorem and Eqs. (37)
and (38) one finds that

δ2T (ρ;R2
1)EP = 1

FC(σ;σMR1
)
. (39)

This equivalence between the error propagation of
the squared quadratures and the inverse of classical
Fisher information holds for any parameter estima-
tion problem. Needless to say that, in case we were
to measure the momentum, we just need to replace
R1 → R2 and σ11 → σ22. Note that this result
holds regardless of the basis, and in particular for
rotated quadrature measurements as well; one just
needs to rewrite the covariance matrix of the sys-
tem σ in the rotated basis. The equivalence between
the error propagation and the inverse of the classi-
cal Fisher information does not necessarily hold in
multimode scenario. Nonetheless, for the trivial case
with a tensor product state in a basis that does not
depend on the parameter—where the classical Fisher
information becomes additive—the same result holds.
That is to say if the system covariance matrix satis-
fies σ = ⊕σk, and ∂Tσ = ⊕k∂Tσk, then any lo-
cal measurement in the form of σMs = ⊕kσMk,HD—

where σMk,HD is an arbitrary Homodyne detection on
the kth mode—has a classical Fisher information that
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is equivalent to the inverse of the error propagation for
O = ⊗k (Rk,HD)2

—where Rk,HD is the local quadra-
ture in the Hilbert space of the kth mode correspond-
ing to σMk,HD.

Before proceeding to the next section, let us point
out that often performing a perfect homodyne detec-
tion requires infinite energy. In Appendix D we briefly
address such a scenario. In particular, we show that
there will be a bias in our temperature estimate, which
vanishes linearly as one increases the energy in the lo-
cal oscillator.

3.2.4 Heterodyne detection

A Heterodyne measurement can be represented—
in the single-mode case—by the covariance matrix
σMHet = diag[1, 1], which remains the same under lo-
cal rotation of the quadratures. One can find the
corresponding classical Fisher information by replac-
ing this in Eq. (36). If the system’s covariance ma-
trix and its derivative can be diagonalised in the
same basis, i.e., σ = diag[σ11,σ22], and ∂Tσ =
diag[∂Tσ11, ∂Tσ22] then the classical Fisher informa-
tion gets a simple form

FC(σ;σMHet) = 1
2

([
∂Tσ11

1 + σ11

]2
+
[
∂Tσ22

1 + σ22

]2
)
. (40)

If the system is at thermal equilibrium, its covariance
matrix is diagonal in a basis that is independent of
temperature, and therefore the above equation is use-
ful. Otherwise, if one deals with non-thermal states
(such as, e.g., steady states that are non-thermal[18–
20, 35, 36] or dynamical non-thermal states [6]), one
should avoid using this, and directly use Eq. (36).

3.2.5 The optimal Gaussian measurement

Given a covariance matrix and its derivative, it is a
natural question to find the Gaussian measurement
with the maximum Fisher information

σMmax
..= arg max

σM
s

1
2 Tr

[(
(σ + σMs )−1∂Tσ

)2]
, (41)

σMmin
..= arg min

σM
s ,pure

1
2 Tr

[(
(σ + σMs )−1∂Tσ

)2]
. (42)

As already advanced, σMmax should represent a pure
state. We also defined σMmin as the covariance matrix
of the pure measurement with minimum Fisher infor-
mation. If the covariance matrix of the system and
its derivative are proportional to identity (e.g., if we
have a thermal state), then it is easy to find the op-
timal Gaussian measurement in the single-mode case.
Let σ = νI2, and ∂Tσ = ν′I2. Then, we also note
that the measurement covariance matrix can be cast
as σMr = OrMOT , with O being an orthogonal trans-
formation, and rM = diag[r, 1/r] with the squeezing

parameter r ∈ [0,∞). The classical Fisher informa-
tion does not depend on the orthogonal rotation O,
and reads

FC(σ;σMr ) = (ν′)2

2

[
1

(ν + r)2 + 1
(ν + 1/r)2

]
. (43)

Note that this does not change by the transformation
r → 1/r, and therefore, we can limit the domain to
r ∈ [1,∞). We can find the value of r correspond-
ing to the minimum and maximum of the Fisher in-
formation by simple algebra, which is summarised in
Table 1. For example, the maximum is given by the
expression

FC(σ;σMmax) = max
r>1
FC(σ;σMr )

= ν′
2 max

{
1

2ν2 ,
1

(ν + 1)2

}
. (44)

It can be seen that the optimal measurement is either
Homodyne or Heterodyne detection. The freedom in
the orthogonal rotation O means that one can per-
form these measurements in an arbitrary basis.

If the state is at thermal equilibrium, then ν =
coth(ω/2T ), with ω being the energy of the Bosonic
mode and T being the temperature. The fact that the
optimal Gaussian measurement depends on tempera-
ture is interesting; on the contrary, the optimal non-
Gaussian measurement is always performed in the ba-
sis of the system Hamiltonian, regardless of the tem-
perature. Furthermore, our result shows not only that
at high temperatures the Heterodyne detection is the
best Gaussian measurement, but also that its perfor-
mance approaches that of the optimal measurement.
To see this, note that the quantum Fisher informa-
tion of a single Bosonic mode (that is a Harmonic
oscillator) at thermal equilibrium is given by [6]

FQ(HO) = ω2

4T 4 sinh2(ω/2T )
, (45)

and thus at T → ∞ the leading order behaves as
FQ(HO) = 1/T 2. Similarly, one can see that at the
same asymptotic limit, the leading order of the Fisher
information of Heterodyne measurement behaves as
FC(σ;σMmax) = FC(σ;σMHet) = 1/T 2.

In Figure 2 the Fisher information of Gaussian mea-
surements is depicted versus temperature. We com-
pare this to the quantum Fisher information. Unlike
in the high-temperature regime, where Gaussian mea-
surements (Heterodyne specifically) are close to opti-
mal, at low temperatures they perform rather poorly.
In Section 3.3 we will see that on/off photo-detection
measurements are a viable alternative in this latter
case, and specifically that they perform close to opti-
mal at low temperatures.

3.2.6 Optimal Gaussian measurements on multimode
systems

When dealing with a multimode scenario, the prob-
lem becomes harder, and we were unable to derive an

Accepted in Quantum 2022-05-30, click title to verify 7



Consideration rmin FC(σ;σMmin) rmax FC(σ;σMmax)
1 6 ν 6 2 1 ν′2

(1+ν)2 ∞ ν′2

2ν2

2 6 ν 6 1 +
√

2 ν(ν2−3)
2

ν′2(ν2−2)
2(ν2−1) ∞ ν′2

2ν2

1 +
√

2 6 ν ν(ν2−3)
2

ν′2(ν2−2)
2(ν2−1) 1 ν′2

(ν+1)2

Table 1: Maximal and minimal values of the CFI FC(σ;σM
s ) for Gaussian measurements in one-mode thermal states

parametrized by ν, and the measurements that achieve them with the squeezing parameter r. Only pure measurements are
considered. The optimal measurement is either Homodyne detection (for the low-temperature regime) or Heterodyne detection
(for high temperatures). This is contrary to the optimal [non-Gaussian] measurement, which is a projective measurement in
the energy basis regardless of the temperature.

Figure 2: Temperature estimation of single-mode thermal systems at thermal equilibrium. We compare the ultimate limit on
thermometry precision posed by the Quantum Fisher Information (dashed black line) and the precision achieved by the optimal
Gaussian measurement (solid red), the worst pure Gaussian measurement (dotted red) and single-mode on/off photo-detection
(blue) versus the temperature T . The shaded area represents the precision achievable by the set of single-mode Gaussian
measurement. We also show the performance of on/off photo-detection including imperfect detectors, characterized by the
parameter PD (dashed and dotted blue lines).

analytical solution. The main difficulty arises from
the fact that the objective function to be optimised,
i.e., the Fisher information, is a nonlinear function
of the measurement covariance matrix. Nonetheless,
one can design an algorithm to find the optimal mea-
surement numerically. To begin with, one can use
the fact that the covariance matrix of the optimal
measurement is always pure and therefore belongs to
the family of symmetric symplectic transformations,
i.e., σMmax ∈ {S̄M ..= SM (SM )ᵀ|SMΩ(SM )ᵀ = Ω},
where S̄M is a symmetric symplectic transformation,
by definition. We can then run an optimisation pro-
gram, e.g., “fmincon” on MATLAB programing lan-
guage, to maximise FC(σ;SM (SM )ᵀ)—alternatively
to minimise -FC(σ;SM (SM )ᵀ)—subject to the con-
straint that SMΩ(SM )ᵀ = Ω. See the appendix for
an example code.

3.2.7 Multimode Gaussian states at thermal equilib-
rium: Local versus global Gaussian measurements

If the system is at thermal equilibrium, one
can always diagonalise its covariance matrix by
means of some temperature-independent symplectic
transformation—i.e., to write it in the normal-mode
basis. The symplectic transformation is a Gaussian
process, and can be considered as part of the Gaussian
measurement which we will optimise anyway. There-
fore, we can focus only on initial thermal states with
an uncorrelated covariance matrix σ = ⊕kνkI2. As
for the measurement, one can first perform a joint
Gaussian symplectic transformation on all modes—
s.t., σ → SMs σ(SMs )ᵀ—and then perform a local
Gaussian measurement σMs = ⊕kσMsk

. The idea is
to find the optimal SMs and σMsk

∀k.

Let us start by a scenario that only allows for lo-
cal Gaussian measurements, i.e., SMs = I2m. In this
case, one can easily check that the classical Fisher
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Figure 3: The role of global measurements when the system is in a product state i.e., the covariance matrix is a direct sum.
(a) The system undergoes an arbitrary [physical] joint operation then each mode is locally measured. We have no restriction
in the performed local measurements. In this case one can show that the optimal scenario is a local one. That is, we do not
need to perform any joint operation; optimisation over arbitrary local measurements is sufficient. This is so because of the
additivity of the quantum Fisher information. (b) Same as (a), but when the joint operation and the local measurements are
all Gaussian. Unlike (a), if we are restricted to perform only Gaussian measurements, it is not clear whether joint Gaussian
operations are beneficial or not. We conjecture that at thermal equilibrium they are not.

information is additive, that is

FC(⊕kσk;⊕kσMsk
) =

∑
k

FC(σk;σMsk
). (46)

Therefore, when we optimise over local Gaussian mea-
surements, we have the optimal Fisher information

FC(⊕kσk;⊕kσMk,max) =
∑
k

FC(σk;σMk,max),

that is the sum of optimal Fisher information of in-
dividual modes. The question that remains to be an-
swered is: can the performance of Gaussian measure-
ments get better if we allow for joint measurements,
i.e., if SMs 6= I2m?

As depicted in Fig. 3, the global Gaussian measure-
ments can be seen as the operation of some joint Gaus-
sian unitary on all modes—namely an m-mode sym-
plectic transformation—followed by local measure-
ments. The question is then whether the joint Gaus-
sian operation can be beneficial. Mathematically, we
know that FC(⊕kσk;σMmax) > FC(⊕kσk;⊕kσMk,max),
since the local measurements are a subset of global
ones. We now wonder whether this inequality is in
fact an equality, i.e., if

FC(⊕kσk;σMmax) ?= FC(⊕kσk;⊕kσMk,max). (47)

Note that, if we were not restricted to Gaussian
measurements and could perform arbitrary measure-
ments, then the equality would always hold. This
is so because in this case the optimal Fisher informa-
tion would reduce to the quantum Fisher information,
which is additive and can be achieved by locally op-

timal measurements, that is

FC(⊕kσk;Mmax) = FC(⊕kσk;⊕kMk,max)

= FQ(⊕kσk) =
∑
k

FQ(σk), (48)

with Mmax being the optimal joint measurement—
that is not necessarily Gaussian—performed on
all modes, while Mk,max is the optimal lo-
cal measurement—again not necessarily Gaussian—
performed on mode k.

Unfortunately, we cannot prove the equivalence
Eq. (47) in the general case. However, in the appendix
we prove it analytically when all modes have iden-
tical covariance matrices—i.e., when σk = σj∀j, k.
Furthermore, our numerical simulations support the
equivalence for arbitrary product states. Based on
these observations we conjecture this is generally true,
however, a rigorous proof is missing currently.

3.3 On/Off Photo-Detection
Another type of measurement that will be shown to be
relevant for thermometry and which can be of inter-
est for experimental implementation is on/off photo-
detection. This is a 2-outcome (detected or not de-
tected) measurement and therefore it is not Gaussian.
However, a link can be made between this type of
photon-detection’s POVM elements and the POVM
elements of a Gaussian measurement, characterized
in Section 2. In what follows we consider realistic
photo-detection, in which we allow for a probability
PD of random counts—see e.g., [38, 39] for the er-
ror sources contributing to the random counts. For a
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single-mode system the POVM elements can then be
written as

M0|rpd = (1− PD)|0〉〈0|,
M0̄|rpd = I −M0|rpd, (49)

where |0〉〈0| is merely the vacuum state, and I is the
identity operator in the Hilbert space of the quan-
tum system (not to be mistaken with I2). The vac-
uum itself is a pure Gaussian state with a CM equal
to identity σMvac = I2 and null displacement vector.
The probability of finding any Gaussian system—with
density matrix ρ, covariance matrix σ and a vanishing
displacement vector—in vacuum is then given by

P (0|σ; rpd) = Tr[ρM0|rpd] = (1− PD) Tr[ρ|0〉〈0|]

= 1− PD√
det(I2 + σ)

, (50)

where we use Eq. (15). Of course we also find the
probablity of detection to be P (0̄|rpd;σ) = 1 −
P (0|rpd;σ). The Classical Fisher Information asso-
ciated to this probability distribution can be simply
found from (22) and reads

FC(σ; rpd) = [∂TP (0|σ; rpd)]2

P (0|σ; rpd)P (0̄|σ; rpd)
, (51)

As an example, we can use on/off photo-detection
for thermometry of a single mode at thermal equi-
librium, with σ = coth(ω/2T )I2. Using (50) one
finds P (0|σ; rpd) = (1 − PD)P0 with P0 ..= (1 −
exp[−ω/T ])−1. Thus the Fisher information is given
by

FC(σ; rpd) = (1− PD)[∂TP0]2

P0 [1− (1− PD)P0] . (52)

In Fig. 2 we plot the classical Fisher information of
realistic on/off photo-detection for various PD, and
benchmark it against the optimal measurement and
the optimal Gaussian measurement. Ideal on/off
photo-detection performs close to optimal specifically
at low temperatures. However, as soon as detection
error is introduced and PD > 0, the optimality at low
temperatures is lost. The intuition behind this type of
measurement being optimal is as follows: Firstly, we
note that at thermal equilibrium the optimal measure-
ment is in the basis of Hamiltonian, i.e., projection in
the number basis. Secondly, at very low T the sys-
tem is basically frozen in its lowest energy eigenstates,
namely it is in the vacuum state with some probability
of populating the first excited state. As such, the pro-
jection in the number basis can be well approximated
by ideal on/off photo-detection. Since the probabil-
ity of observing the system in an excited state is al-
ready very low, then any random count will hugely im-
pact our statistics and therefore realistic on/off photo-
detection will eventually fail to estimate low enough
temperatures. This argument can be made rigorous

mathematically as well. At low temperature, one can
see

FC(σ; rpd) ≈
{
ω2e−ω/T

T 4 , PD = 0
(1−PD)ω2e−2ω/T

PDT 4 , PD 6= 0
(53)

Note that the exponential term in the case PD 6= 0
vanishes more rapidly, which is why realistic on/off
photo-detection performs far from optimal for small
enough T . Moreover, by using Eq. (45) one can con-
firm that the leading order of quantum Fisher infor-
mation at T → 0 has the same value as the ideal-
ized detection, i.e., to the leading order FQ(σ) ≈
ω2 exp[−ω/T ]/T 4.

3.3.1 Multimode photo-detection

For general m-mode systems, we can perform on/off
photo-detection individually on each mode. The 2m
POVM elements can then be written as tensor prod-
uct Ma|rpd = M1

a1|rpd⊗M
2
a2|rpd⊗ ...⊗M

m
aM|rpd where

ai ∈ {0, 0̄}∀i. In what follows, we use 0 to denote the
vector of all zeros, 0k to denote the vector of all ze-
ros except the kth element being 0̄, 0k,l to denote the
vector of all zeros except elements k and l which are 0̄
and so on. Given an m-mode Gaussian system ρ with
the covariance matrix σ, the probability of finding,
for example, all modes in the vacuum state is (recall
that all first moments of the system vanish)

P (0|rpd;σ) = Tr[ρM0|rpd] = Πi(1− P iD)√
det(I2m + σ)

, (54)

where P iD is the probability of random count for mode
i, and I2m is the 2m× 2m identity matrix. Similarly,
by using M0k|rpd = M1

0|rpd · · · ⊗ (I − Mk
0|rpd) · · · ⊗

Mm
0|rpd, the probability of finding the kth mode in

an excited state while all the other modes at vacuum
reads

P (0k|rpd;σ) = Πi 6=k(1− P iD)√
det(trk[I2m + σ])

− P (0|rpd;σ),

(55)

where, for any covariance matrix σ, the operation
trk[σ] is understood as eliminating the 2 rows and
columns associated to the mode k. Following similar
steps one can find the probability of other outcomes
as well. However, one can restrict to a simplified ver-
sion of on/off photo-detection with m+ 2 POVM ele-
ments, MI|rpd

..= M0|rpd, MIIk|rpd
..= M0k|rpd,∀k and

MIII|rpd
..= I −MI|rpd −

∑
kMIIk|rpd. One can con-

sider yet simpler version, in which one does not dis-
tinguish what mode is excited therefore we have only
three POVM elements with MII|rpd =

∑
kMIIk|rpd

while the other two elements remain the same. These
simplified versions should be fairly comparable to
the non-simplified version at low temperatures, be-
cause at these temperatures the other POVM ele-
ments should not play a significant role anyway.
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4 Conclusions

The problem of thermometry of Gaussian states with
experimentally feasible measurements was addressed.
The classical Fisher information of Gaussian measure-
ments was charachterized. Finding the best Gaus-
sian measurement can be expressed as an optimisa-
tion problem in which one looks for a pure covariance
matrix that maximises the classical Fisher informa-
tion (36). This may be done numerically in general.
For thermal states one may find analytical solutions.
In particular, for single-mode states at thermal equi-
librium the optimal Gaussian measurement was found
analytically to be either Homodyne or Heterodyne de-
tection depending on the temperature. This is un-
like the optimal non-Gaussian measurement, which is
always a projection in the eigenbasis of the Hamil-
tonian of the system, regardless of the temperature.
For a multimode scenario at thermal equilibrium we
conjecture that the optimal Gaussian measurement is
composed of a Gaussian unitary that brings the sys-
tem into its normal modes basis, followed by a local
optimal measurement on each of the normal modes.
The proof of this is equivalent to proving Eq. (47),
which remains an open question. Our numerical re-
sults support this conjecture, and we have proven this
analytically for a scenario with all normal modes be-
ing equal.

We further compare the performance of the Gaus-
sian measurements as well as photo-detection-like
measurements with the quantum Fisher information,
for systems at thermal equilibrium. We see that
at low temperatures on/off photo-detection-like mea-
surements perform almost optimally, whereas at high
temperatures Gaussian measurements are close to op-
timal and saturate the quantum Cramér-Rao bound.
We expect that for systems that are out of thermal
equilibrium these results do not hold. For example, it
is shown in [18, 20, 36] that at ultracold temperatures

and for non-equilibrium systems, sometimes position
measurement—which is a Gaussian measurement—is
optimal. A deeper investigation in this direction will
be the be subject of future works.

Lastly, it would be interesting to consider the prob-
lem of thermometry with Gaussian measurements in
the context of the Bayesian formalism, which has been
the subject of few recent works [40–43]. In particu-
lar, since the optimal Gaussian measurement is tem-
perature dependent, this adds an extra challenge into
designing optimal thermometry protocols when initial
uncertainty about the true temperature is non negli-
gible.
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A More about Gaussian measurements

In this Appendix we present some of the details of the toolboxes that were used in the main text. Please note
that these results are only presented for self-containment and are not our original contributions.

A.1 General form of Gaussian measurements

In general, Gaussian measurements can be performed over an output state of any Gaussian map on the system
ρMs , which is in general not a pure state, and will then be represented by more general POVM elements that
read [44–46]

Ma|s =
∫

d 2my

(2π)2m D
(
yTs

)
e−y

ᵀNsy
ᵀ/2−iaΩy, (56)
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where the complete positivity condition Ns − iTsΩT ᵀ
s /2 > 0 must hold. The outcome probabilities of this

Gaussian measurement are then given by

p(a|s, ρ) = tr[ρMa|s] =
∫

d 2my

(2π)2m tr[D
(
yTs

)
ρ]e−y

ᵀNsy/2−iaᵀΩy

=
∫

d 2my

(2π)2m ey
ᵀTsΩσΩT ᵀ

s y/2+idᵀΩT ᵀ
s ye−y

ᵀNsy/2−iaᵀΩy (57)

= 1
(2π)2m

∫
d2mye

1
2y

ᵀσ̃y+id̃ᵀy. (58)

where we have defined σ̃ ..= TsΩσΩT ᵀ
s +Ns and d̃ᵀ ..= dᵀΩT ᵀ

s − aᵀΩ. Integration gives

p(a|s, ρ) = 1
(2π)m

√
det σ̃

e
1
2 d̃

ᵀσ̃−1d̃. (59)

The previous scenario is revived by choosing Ns = ΩσMs Ω and Ts = I2m.

A.2 Local Gaussian measurements, reduced states and covariance matrices
Suppose we have a multi-mode state and we perform a Gaussian measurement on a subsystem. What is the
post measurement state of the remaining modes? In principle, after performing some POVM on the system
and observing an outcome associated with the element Ma|s, the post measurement state is—up to a unitary—
described by the density matrix

ρ(a|s) =
√
Ma|s ρ

√
Ma|s

tr[
√
Ma|s ρ

√
Ma|s ]

=
√
Ma|s ρ

√
Ma|s

P (a|s, ρ) , (60)

Despite the unitary freedom in the post measurement state, the reduced state of the modes over which we did
not perform the measurement is independent of this unitary.

Suppose we have a two-party density operator, ρAB , of n+m modes, where party A has access to the first m
modes and party B has the remaining n modes. A POVM measurement {Mb|s} is performed on part B. That is,
the overall POVM elements are given by {IA⊗Mb|s}. Given that we observe the result b, the post-measurement
[reduced] state of party A reads

ρA(b, s) ..= trB [ρAB(b|s)] =
trB [IA ⊗Mb|s ρAB ]

P (b|s, ρAB) . (61)

We are interested in knowing the covariance matrix of this reduced state. To this aim, we need to find the
characteristic function, from which one can identify the covariance matrix.

Characteristic function of the reduced density matrix
By definition, we have

χ(y|ρA(b, s)) = trA[DA(y)ρA(b, s)] =
tr[DA(y)⊗Mb|s ρAB ]

P (b|s, ρ) . (62)

Let us focus on the numerator since the denominator is only a normalisation factor independent of y. By noting
that DB(0) = IB , this can be written as

tr[DA(y)⊗Mb|s ρAB ] = tr[DA(y)⊗DB(0) IA ⊗Mb|s ρAB ] =: tr[DAB(y,0) %AB ρAB ], (63)

where we denote DAB(y, z) = DA(y) ⊗DB(z), and %AB ..= IA ⊗Mb|s. We can expand both %AB and ρAB in
terms of the displacement operator by using Eq. (2), such that

%ABρAB = 1
(2π)n+m

∫∫
d2(n+m)xd2(n+m)z tr[%ABD(x)] tr[ρABD(z)]D†(x)D†(z)

= 1
(2π)n+m

∫∫
d2(n+m)xd2(n+m)z χ(x|%AB)χ(z|ρAB)D†(x)D†(z), (64)
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where n is the number of modes over which we performed the measurement. Thus we can find the characteristic
function of %ABρAB using the above expression

tr[DAB(y)%ABρAB ] = 1
(2π)n+m

∫∫
d2(n+m)xd2(n+m)z χ(x|%AB)χ(z|ρAB) tr[D(y)D†(x)D†(z)]

= 1
(2π)n+m

∫∫
d2(n+m)xd2(n+m)z χ(x|%AB)χ(z|ρAB)

× e−ix
ᵀΩz/2eiy

ᵀΩ(z+x)/2 tr[D(y − x− z)]

=
∫∫

d2(n+m)xd2(n+m)z χ(x|%AB)χ(z|ρAB)e−ix
ᵀΩz/2 δ2(n+m)(y − x− z)

=
∫
d2(n+m)x χ(x|%AB)χ(y − x|ρAB)e−ix

ᵀΩy/2, (65)

where we used that tr[D(a)] = (2π)n+mδ2(n+m)(a). Let us denote with {σAB ,dAB} and {σMs ,dMs } the covari-
ance matrix and the displacement vectors of ρAB and %AB , respectively. Therefore

tr[DAB(y)%ABρAB ] (66)

=
∫
d2(n+m)xe

1
2x

ᵀΩσM
s Ωx+i(dM

s )ᵀΩxe
1
2 (y−x)ᵀΩσABΩ(y−x)+idᵀ

AB
Ω(y−x)e−ix

ᵀΩy/2

= e
1
2y

ᵀΩσABΩy+idᵀ
AB

Ωy

∫
d2(n+m)xe

1
2x

ᵀΩ(σAB+σM
s )Ωx+(i(dM

s )ᵀ−idᵀ
AB

+iyᵀ/2−yᵀΩσAB)Ωx

= e
1
2y

ᵀΩσABΩy+idᵀ
AB

Ωy

∫
d2(n+m)xe

1
2x

ᵀσ̃xeid̃
ᵀx, (67)

with σ̃ ..= Ω(σAB+σMs )Ω, and d̃ᵀ ..=
(
(dMs )ᵀ − dᵀAB + yᵀ/2 + ixᵀΩσAB

)
Ω. The integral can also be evaluated

using (15), which leads to ∫
d2(n+m)xe

1
2x

ᵀσ̃xeid̃
ᵀx =

√
(2π)2(n+m)

detσ̃ e
1
2 d̃

ᵀσ̃−1d̃. (68)

For simplicity let us assume that dAB = dMs = 0. Then we have

tr[D(y)%ABρAB ] ∝ e 1
2y

ᵀΩσABΩye
1
2 d̃

ᵀσ̃−1d̃

= e
1
2y

ᵀΩσABΩye−
1
2y

ᵀ(I/2+iΩσAB)(σAB+σM
s )−1(I/2+iΩσAB)ᵀy

= exp
{

1
2y

ᵀ
[
ΩσABΩ− (I/2 + iΩσAB)(σAB + σMs )−1(I/2 + iΩσAB)ᵀ

]
y

}
. (69)

We can now simply find the post-measurement covariance matrix of party A after the Gaussian measurement
Ma|s of party B by setting DAB(y) → DAB(yA,0B) in the exponent of the above relation, and by noticing
that the covariance matrix of the measurement operator can be written as σMs = limr→∞ r IA ⊕ σs,B . Using
the fact that

(σAB + σMs )−1 = lim
r→∞

(σAB + r IA ⊕ σs,B)−1 = 0A ⊕ (σB + σs,B)−1, (70)

we have

tr[DAB(yA,0B)%ABρAB ]

∝ exp
{

1
2(yA,0B)ᵀ

[
ΩσABΩ− (I/2 + iΩσAB)(σAB + σMs )−1(I/2 + iΩσAB)ᵀ

]
(yA,0B)

}
= exp

{
1
2(yA,0B)ᵀ

[
ΩσABΩ− (I/2 + iΩσAB)(0A ⊕ (σB + σs,B)−1)(I/2 + iΩσAB)ᵀ

]
(yA,0B)

}
= exp

{
1
2y

ᵀ
AΩA

[
σA − σCorr

AB (σB + σs,B)−1(σCorr
AB )ᵀ

]
ΩAyA

}
(71)

in which σCorr
AB is the correlation block of the covariance matrix σAB , such that

σAB =
[

σA σcorr
AB

(σcorr
AB )ᵀ σB

]
. (72)
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Thus, the covariance matrix of A, after B’s measurement is independent of the outcome and reads

σA|s = σA − σCorr
AB (σB + σs,B)−1(σCorr

AB )ᵀ. (73)

One can check that the same result holds for dAB 6= dMs 6= 0. See Refs. [32, 47] for earlier derivations.

B The classical Fisher information of Gaussian probability distributions
Given a Gaussian probability distribution p(a|θ) which can be written as

p(a|θ) = e−
1
2a

ᵀσ−1a

(2π)M
√

detσ
, (74)

we want to find the classical Fisher information. Note that we are assuming that the displacement vector is
zero. Similar results are expected if the displacement vector is non zero, but is independent of the parameter.
If neither of these are the case, one should use a more compete version of the Fisher information that is given
in Eq. (36)—see also refs. [15, 37]. Let us define σ̃ ..= σ−1. Firstly, note that

∂θ log p(a|θ) = −∂θ detσ
2 detσ −

1
2akal∂θσ̃kl, (75)

where summation over repeated indices is understood. Recall the Jacobi’s formula for the derivative of deter-
minant of [symmetric] matrices

∂θ detA = Tr[A−1∂θA] detA, (76)
∂Akl

detA = A−1
kl detA. (77)

By substitution in the expression of classical Fisher information one gets

F =
∫
d2Map(a|θ)[∂θ log p(a|θ)]2 =

∫
d2Map(a|θ)

[
−1

2 Tr[σ̃∂θσ]− 1
2akal∂θσ̃kl

]2

= 1
4 Tr[σ̃∂θσ]2 + 1

2 Tr[σ̃∂θσ]∂θσ̃kl
∫
d2Ma akalp(a|θ) + 1

4∂θσ̃kl∂θσ̃mn
∫
d2Ma akalamanp(a|θ)

= 1
4 Tr[σ̃∂θσ]2 + Tr[σ̃∂θσ]∂θσ̃kl

2(2π)M
√

detσ
(−2∂σ̃kl

)
∫
d2Ma e−

1
2a

ᵀσ̃a

+ ∂θσ̃kl∂θσ̃mn

4(2π)M
√

detσ
(4∂σ̃kl

∂σ̃mn)
∫
d2Ma e−

1
2a

ᵀσ̃a

= 1
4 Tr[σ̃∂θσ]2 − Tr[σ̃∂θσ]∂θσ̃kl√

detσ
(∂σ̃kl

) det σ̃− 1
2 + ∂θσ̃kl∂θσ̃mn√

detσ
(∂σ̃kl

∂σ̃mn
) det σ̃− 1

2

= 1
4 Tr[σ̃∂θσ]2 + 1

2Tr[σ̃∂θσ]∂θσ̃kl[σ̃−1]kl −
∂θσ̃kl∂θσ̃mn

2
√

detσ
(∂σ̃mn

)([σ̃−1]kl det σ̃− 1
2 )

= 1
4 Tr[σ̃∂θσ]2 + 1

2 Tr[σ̃∂θσ] Tr[σ∂θσ̃] + ∂θσ̃kl∂θσ̃mn

(
1
4 [σ̃−1]kl[σ̃−1]mn + 1

2[σ̃−1]mk[σ̃−1]nl
)

= 1
4 Tr[σ̃∂θσ]2 − 1

2 Tr[σ̃∂θσ]2 + 1
4 Tr[σ∂θσ̃]2 + 1

2 Tr[(∂θσ̃)σ(∂θσ̃)σ]

= 1
2 Tr[σ−1(∂θσ)σ−1(∂θσ)] = 1

2 Tr[(σ−1∂θσ)2] (78)

where we benefited multiple uses of σ̃∂θσ = −σ∂θσ̃, and also

∂σ̃mn
[σ̃−1]kl = −[σ̃−1(∂σ̃mn

σ̃)σ̃−1]kl = −[σ̃−1]kk′ [∂σ̃mn
σ̃]k′l′ [σ̃−1]l′l = −[σ̃−1]kk′δmk′δnl′ [σ̃−1]l′l

= −[σ̃−1]km[σ̃−1]nl. (79)

C The maximum likelihood estimator
In this Appendix, through an example we provide details on how one can actually process experimental outcomes
to assign an estimate to the unknown parameter—namely temperature. In local parameter estimation the
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maximum likelihood estimator (MLE) is known to saturate the Cramér-Rao bound [48]. In global estimation
strategies, however, the MLE saturates the bound in the asymptotic limit of large number of repetitions of the
measurement. Nonetheless, it is well-know that the MLE can saturate the bound when the outcome probability
distribution is described by the “Gaussian family”—see e.g., section 3.1.2.4 of [49] and references therein. This
is indeed the case for our Gaussian measurements.

The Likelihood function is defined as the probability of observing the outcome “a” if we performed some
measurement σMs on the state σ. By using Eq. (18) we have

L(T |a;σ(T ),d;σMs ) ..= p(a|σ(T ),d;σMs ) = e−
1
2 (a−d)ᵀ(σ(T )+σM

s )−1(a−d)

2π
√

det(σ(T ) + σMs )
. (80)

The MLE, assigns the estimate T̃ to the unknown parameter that maximises the likelihood or the log likelihood.
That is

∂T logL(T |a;σ(T ),d;σMs )|T̃ = 0

⇒ −1
2∂T log(det(σ(T ) + σMs ))|T̃ −

1
2 (a− d)ᵀ ∂T |(σ(T ) + σMs )−1 (a− d)|T̃ = 0 (81)

By using the Jacobie’s formula for derivative of the determinant, and the formula for derivative of inverse
matrix, this condition reduces to

(a− d)ᵀ (σ(T ) + σMs )−1[∂Tσ(T )](σ(T ) + σMs )−1 (a− d)|T̃ = Tr[(σ(T ) + σMs )−1σ′s]T̃ . (82)

Now let’s consider a single mode scenario in which the measurement is Homodyne detection with σMs =
1/2 limr→0 diag[r, 1/r]. In this case, we are projecting the state into the first quadrature. The above condition
reduces to

∂T [σ(T )]1,1
[σ(T )]21,1

(a1 − d1)2
∣∣∣
T̃

= ∂T [σ(T )]1,1
[σ(T )]1,1

∣∣∣
T̃
⇒ (a1 − d1)2 = [σ(T̃ )]1,1, (83)

which is quite expected.

In order to convert this to a temperature estimate, we can use the parameter dependence of σ(T ). As a
relevant example, when the state is at thermal equilibrium, we have σ(T ) = 1/2 coth(ω/2T )diag[1/ω2, 1]. As
such, upon observing some outcome “a1”, we assign the following estimate to the temperature

T̃ = ω

2acoth
(

2ω2 (a1 − d1)2
) . (84)

Similarly, if we repeat the measurement k times, we have

T̃ = ω

2acoth
(

2ω2
〈

(a1 − d1)2
〉) , (85)

with the angled brackets in
〈

(a1 − d1)2
〉

being the average over the k measurement repetitions. In Fig. 4 we

demonstrate a simulation of thermometry of a single mode thermal state by using Homodyne detection. One
can observe how the estimate gets closer and closer to the true value of the temperature as we increase k—a
direct result of the central limit theorem. Moreover, one can see that the estimation error follows the trend of
the Cramér-Rao bound.
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Figure 4: Loglog plot illustrating thermometry of a single Harmonic oscillator with Homodyne detection. The solid black line
shows a (single) trajectory of the temperature estimate—calculated by simulating the measurement outcomes a1 according to
the true temperature T0, and processing the outcomes by using the maximum likelihood estimator. One can clearly see that
the estimate converges to the true temperature T0 as we increase the measurement repetitions k. In the inset, we depict the
relative error δT̃ ..= (T̃ − T0)/T0 and benchmark it against the Cramér-Rao bound δTCRB = 1/

√
kF(σ(T );σM

HD) . Here we
set ω = 1.

D Imperfect Homodyne detection

Figure 5: Schematic of Homodyne detection; that is everything within the dashed box. The signal ρ1 enters from the upper
arm, and interferes with a local oscillator (a coherent state) in a 1/2 : 1/2 beam splitter. The final output is the difference
of the photocurrent from the two photodetectos, i.e., I = n′

1 − n′
2. If the local oscillator is highly displaced in either of the

quadratures, say 〈q2〉 � 1 while keeping the other quadrature zero i.e., 〈p2〉 = 0, then the outcome is proportional to the q1
quadrature of the signal, i.e., I ∝ q1. Similarly one can measure the other quadrature. However, if the local oscillator has a
limited energy, such a perfect quadrature measurement might be affected. For thermometry task at thermal equilibrium this
imperfection adds a bias to the temperature estimate.

Following [50], we note that measuring the quadratures may be implemented by Homodyne detection, that is
by interfering the signal and a local oscillator through a balanced beam splitter. The output modes will be
photodetected and the currents will be subtracted (see Fig. 5). Perfect quadrature measurement requires a signal
that has infinite energy. In many practical situations, the energy of the local oscillator is orders of magnitude
higher than the signal which leads to very precise quadrature measurement—see e.g., [51]. Nonetheless, in theory
it is not be possible to have unlimited energy; and one can study its impact on the measurement precision.
Below we examine the correction due to finite energy.

Firstly, note that the beam splitter is a Gaussian operation which can be represented by the following
symplectic transformation

SBS = 1√
2

[
cos(θ)I2 sin(θ)I2
sin(θ)I2 − cos(θ)I2

]
, (86)
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where I2 represents the 2× 2 identity matrix. The beam splitter transforms the quadratures as follows

R 7→ R′ = SBSR = 1√
2


cos(θ)q1 + sin(θ)q2
cos(θ)p1 + sin(θ)p2
sin(θ)q1 − cos(θ)q2
sin(θ)p1 − cos(θ)p2

 , (87)

with the first two quadrature representing the signal, and the second two representing the local oscillator. For
a balanced beam splitter we have θ = π/4 which leads to

SBS = 1√
2

[
I2 I2
I2 −I2

]
, (88)

which transforms the quadratures as follows

R 7→ R′ = SBSR = 1√
2


q1 + q2
p1 + p2
q1 − q2
p1 − p2

 , (89)

The operator that represents the difference of the photocurrents from the two arms is given by

I ..= n′1 − n′2 = q1q2 + p1p2, (90)

where we defined the number operators nk = (qk− ipk)(qk+ ipk)/2 k ∈ {1, 2} and similarly n′k = (q′k− ip′k)(q′k+
ip′k)/2 k ∈ {1, 2}. Note that this operator is generally not Gaussian. Nonetheless, we note that by choosing the
local oscillator such that 〈p2〉 = 0 we have

〈I〉 = 〈q1〉 〈q2〉 , (91)

which up to a constant reproduces the first moment statistics of the position quadrature. However, as we saw
in Appendix C, the estimator for thermometry is built upon the second moment, and thus Var(q1) plays the
most crucial role in quality of Homodyne detection for thermometry at thermal equilibrium. For the second
moment, we have

Var(I) =
〈
I2〉− 〈I〉2 =

〈
(q1q2 + p1p2)2〉− 〈q1〉2 〈q2〉2

=
〈
q2
1q

2
2 + p2

1p
2
2 + q1p1q2p2 + p1q1p2q2

〉
− 〈q1〉2 〈q2〉2

=
〈
q2
1
〉 〈
q2
2
〉

+
〈
p2

1
〉 〈
p2

2
〉
− 〈q1〉2 〈q2〉2 −

1
2 , (92)

where we used [q2, p2] = i and we assumed the local oscillator has a diagonal covariance matrix, i.e., 〈{q2, p2}〉 =
0.

In the last equation, we have some extra terms in Var(I) that contain information about the momentum
quadrature. To get rid of them, we prepare the local oscillator in a coherent state with the covariance matrix
σLO = I/2 and with the displacement dLO = (〈q2〉 , 0)ᵀ. We have

Var(I) = Var(q1) 〈q2〉2 + 1
2

(
〈q1〉2 +

〈
p2

1
〉
− 1
)
, (93)

where we used that
〈
p2

2
〉

= 1/2. Equations (91) and (93) suggest that I/ 〈q2〉 has the same mean value as the

position quadrature q1, while its variance is modified by an additional 1
2〈q2〉2

(
〈q1〉2 +

〈
p2

1
〉
− 1
)

=: ∆. In the

limit of 〈q2〉2 → ∞ we can reproduce the quadrature statistics perfectly by using q1 = I/ 〈q2〉. However, this
requires the local oscillator to have infinite energy. Nonetheless, for any situation that Var(q1)� ∆, we can still
have a good approximation—in such a case our estimate for temperature will have a bias that is proportional
to ∆/Var(q1). While for local metrology schemes one can correct this bias (since we can exactly calculate it),
for global thermometry protocols this is not possible.
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E Additivity of the Gaussian-measured Fisher information in a special case
Proposition 1. Let σ(T ) be a single-mode covariance matrix, and assume that σ = νI2 and ∂Tσ = µI2 are
both proportional to the identity. Then for all n it holds that

max
σM

s

FC (σ⊕n;σMs
)

= nmax
γM

s

FC (σ;γMs
)

= nµ2 max
{

1
ν2 ,

2
(1 + ν)2

}
, (94)

where the optimization on the left-hand side is over all (multimode) covariance matrices of the measurement
σMs .

Proof. Let γMs be an arbitrary covariance matrix of an n-mode Gaussian pure state. Then the spectrum of γMs
is well known to be of the form κ1, . . . , κn, κ

−1
n , . . . , κ−1

1 , where κ1, . . . , κn > 1. Thus,

FC (σ;σMs
)

= 1
2 Tr

[((
σ⊕n + γMs

)−1 (∂Tσ)⊕n
)2
]

= µ2

2 Tr
[(
νI2n + γMs

)−2]
= µ2

2

n∑
j=1

(
(ν + κj)−2 +

(
ν + κ−1)−2

)
.

Hence, maximizing over γMs , that is to say, maximizing over all choices of κj subjected to the above constraints,
we obtain that

max
σM

s

FC (σ⊕n;σMs
)

= max
κ1,...,κn>1

µ2

2

n∑
j=1

(
(ν + κj)−2 +

(
ν + κ−1)−2

)
= µ2

2

n∑
j=1

max
κj>1

(
(ν + κj)−2 +

(
ν + κ−1)−2

)
= nµ2

2 max
{

1
ν2 ,

2
(1 + ν)2

}
= nmax

γM
s

FC (σ;γMs
)
.

This establishes the additivity of the Gaussian-measured Fisher information in this special case.

F Numerical optimisation, and the algorithm
We aim to identify the measurement CM σMs that maximises (36). We are dealing with a nonlinear optimisation
problem subject to the positive semi-definiteness criterion σMs + iΩ > 0. We already proved that we should
have σMs = SM (SM )ᵀ, with some symplectic transformation satisfying SMΩ(SM )ᵀ = Ω. One can find the
optimal SM in MATLAB by using the code at the end of this section. Notice that this algorithm works for
arbitrary parameter estimation problem and is not limited to thermometry. One just needs to replace “dsigma”
with the derivative of the covariance matrix w.r.t. the parameter to be estimated.

F.1 Examples of the simulation
As we mentioned in the main text, our numerical simulations support the conjecture (47). Here, we present two
such simulations: (i) a scenario with two modes with different frequencies for different temperatures, and (ii) a
scenario with several oscillators, each with a different frequency but for a finxed temperature. As one can see
in Fig. 6, in either of these simulations global Gaussian measurements have no advantage over local ones.

1 f unc t i on [ CFI , s igma s ] = optim Gaussian ( sigma modes , dsigma modes , num modes )
2 %−−−−−−−−−−−−−−−−−−−
3 % sigma modes i s the Cov . Mat . o f the system , which has
4 % ‘ num modes ’ modes
5 % dsigma modes i s the d e r i v a t i v e o f sigma modes w. r . t the parameter
6 %−−−−−−−−−−−−−−−−−−−
7 %The Symplect ic form
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Figure 6: Testing the conjecture (47). Left—Two harmonic oscillators at frequencies ω1 = 0.5ω and ω2 = ω. Right—A
scenario with m harmonic oscillators, with frequencies ωm = (0.5 + 0.1m)ω, and for the fixed temperature T = 0.3ω. Both
panels show no advantage in using the global Gaussian operations. Here we have set ω = 1.

8 Omega = [ 0 1;−1 0 ] ; Omega = kron ( eye ( num modes ) ,Omega ) ;
9 %Object ive : ( minus ) the F i sher i n f o .

10 %Here , the measurement CM can be wr i t t en as sigmaˆM=SSˆT
11 f i s h e r = @(S) −1/2∗ t r a c e ( ( dsigma modes . . .
12 /( sigma modes + S∗ t ranspose (S ) ) ) ˆ 2 ) ;
13 %The c o n s t r a i n t on S , i . e . , i t should be symplec t i c
14 nonlequ = @(S) S∗Omega∗ t ranspose (S)−Omega ;
15 %the [ ] means we don ’ t have i n e q u a l i t i e s as c o n s t r a i n t s .
16 %nonlequ (S) i s an e q u a l i t y c o n s t r a i n t
17 nonlcon = @(S) dea l ( [ ] , nonlequ (S ) ) ;
18 %I n i t i a l guess f o r the opt im i sa t i on v a r i a b l e ;
19 %Probably a b e t t e r guess i s the l o c a l l y optimal measurement
20 S0 = eye (2∗num modes ) ;
21 %fmincon opt ions ; change to s u i t e your problem , i f needed .
22 %S p e c i f i c a l l y , ’ Constra intTolerance ’ should be smal l enough to guarantee
23 %p h y s i c a l i t y o f the answer .
24 opt ions = opt imopt ions ( ’ fmincon ’ , ’ StepTolerance ’ , 1e − 3 , . . .
25 ’ F i n i t e D i f f e r e n c e S t e p S i z e ’ , 1e −3 , ’ MaxFunctionEvaluations ’ , 1 0 ˆ 5 , . . .
26 ’ MaxIterat ions ’ , 1 0 ˆ 3 , ’ Constra intTolerance ’ , 1 e −1 5 , . . .
27 ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
28 problem = createOptimProblem ( ’ fmincon ’ , ’ ob j e c t i v e ’ , . . .
29 f i s h e r , ’ x0 ’ , S0 , ’ nonlcon ’ , nonlcon , ’ opt ions ’ , opt ions ) ;
30 ms = Mult iStar t ( ’ FunctionTolerance ’ , 2 e −4 , ’ UsePara l l e l ’ , t rue ) ;
31 gs = GlobalSearch (ms , ’ NumTrialPoints ’ , 1 e4 ) ;
32 [ S , f v a l ] = run ( gs , problem ) ;
33 %The optimal measurement ’ s Cov . Mat .
34 s igma s = S∗ t ranspose (S ) ;
35 %The Fi sher in fo rmat ion corre spond ing to the optimal measurement
36 CFI=−f v a l ;
37 end
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