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7Department of Physics, Waseda University, Tokyo 169-8555, Japan
May 23, 2022

We derive a universal nonperturbative bound on the distance between uni-
tary evolutions generated by time-dependent Hamiltonians in terms of the
difference of their integral actions. We apply our result to provide explicit er-
ror bounds for the rotating-wave approximation and generalize it beyond the
qubit case. We discuss the error of the rotating-wave approximation over long
time and in the presence of time-dependent amplitude modulation. We also
show how our universal bound can be used to derive and to generalize other
known theorems such as the strong-coupling limit, the adiabatic theorem, and
product formulas, which are relevant to quantum-control strategies including
the Zeno control and the dynamical decoupling. Finally, we prove general-
ized versions of the Trotter product formula, extending its validity beyond the
standard scaling assumption.

1 Motivations
Compare two unitary evolutions

U1(t) = T exp
(
−i
∫ t

0
dsH1(s)

)
, U2(t) = T exp

(
−i
∫ t

0
dsH2(s)

)
, (1.1)

where T denotes the time-ordering operator. What is the relation between these evolutions
and their (possibly time-dependent) Hamiltonians H1(t) and H2(t)?

If the Hamiltonians are close H1(t) ≈ H2(t), say in a time interval t ∈ [0, T ], then the
evolutions they generate are close. The converse is not necessarily true. The evolutions
can be close U1(t) ≈ U2(t) and their distance can be small even if their Hamiltonians H1(t)
and H2(t) are not close. A simple commutative example is a pair of Hamiltonians

H1(t) = H, H2(t) = (1 + κ cosκ2t)H, (1.2)

with a bounded self-adjoint operator H = H† and a large constant κ� 1. Their difference
is very large, H2(t) −H1(t) = O(κ), although highly oscillating, while the corresponding
evolutions,

U1(t) = e−itH , U2(t) = e−i(t+ 1
κ

sinκ2t)H , (1.3)
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are very close, U1(t) ≈ U2(t), with a distance of order O(1/κ). What happens is that the
large difference of the Hamiltonians is averaged out by the fast oscillations and has negli-
gible effects on the evolution. This is the essence of the averaging methods in dynamical
systems [1, 2].

A peculiar consequence of noncommutativity is that the same phenomenon can take
place also for constant time-independent Hamiltonians, as shown in the following example.
Consider the Hamiltonians

H1 = κZ, H2 = κZ +X, (1.4)

where X and Z are the first and third Pauli matrices, respectively (we will also use the
second Pauli matrix Y ), and κ � 1 as above. Both Hamiltonians are of order O(κ) and
their difference H2 −H1 = X is of order O(1). However, one can show that [3]

e−it(κZ+X) = e−iκtZ +O

(1
κ

)
, (1.5)

which would be blatantly false if X and Z commuted. Again, the source of this phe-
nomenon can be traced back to an averaging effect. In the rotating frame generated by
H1 (namely, in the interaction picture with respect to H1), one gets Ĥ1(t) = 0 and

Ĥ2(t) = eiκtZXe−iκtZ = cos(2κt)X − sin(2κt)Y, (1.6)

instead of H1 and H2, respectively. Their difference Ĥ2(t)− Ĥ1(t) is of order O(1) but is
fast oscillating and has negligible effects O(1/κ) on the evolution.

The moral is that in general the distance between two Hamiltonians loosely bounds the
distance between the evolutions they generate. A better physical quantity that controls
the divergence is instead the difference of the two integral actions

S21(t) =
∫ t

0
ds [H2(s)−H1(s)], (1.7)

in a suitable rotating frame. We will give an explicit bound on the distance between two
evolutions in terms of the difference between their actions (1.7), and thus show that

S21 ≈ 0 ⇒ U2 ≈ U1. (1.8)

Then, we will show the effectiveness of such bound in proving a plethora of old and new
results in simple ways.

1.1 Overview of Applications and Previous Related Results
Rotating-Wave Approximation. Coherent driving of quantum systems plays a cen-
tral role in many areas of physics and chemistry. The specific task with arguably the
highest demands on the accuracy of the desired operations carried out by such driving
is the manipulation of two-level systems, or qubits, that form the basic elements of a
quantum computer. Periodically driven two-level systems are important prototypes in
diverse phenomena in nearly every subfield of physics such as optics [4], nuclear magnetic
resonance [5], superconductor devices [6], solid-state systems [7], and their applications to
quantum information.

The rotating-wave approximation (RWA) replaces highly oscillatory components in the
Schrödinger equation with time-averaged quantities, which often leads to much simpler
and analytically tractable models, as well as capturing the essential physics. But how is it
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justified? At first encounter, the removal of terms from a differential equation which are
usually of the same order as the others seems ad hoc. Some geometrical interpretation
(often using a lot of literal hand-waving describing rotations of Bloch vectors) or the
term off-resonance might be provided to back up the approximation, but often these
explanations have a tautological flavor. On the other hand, there are many perturbative
methods which lead to a RWA. To name a few, there are average-Hamiltonian methods [5,
8,9] and approaches based on the Magnus expansion and the Floquet theory [10,11]. While
these methods are very efficient at higher orders of the RWA (such as the Bloch-Siegert
shift [4]), they do not give bounds on how good the naive RWA is and how it becomes
exact in a certain limit. The convergence of these series is also often a subtle issue, as
can be seen already for the Magnus series [12]. Recently, analytical solutions of the time-
dependent Schrödinger equation were discovered for linearly driven qubit systems [13] and
were put in relationship with the Floquet theory [14]. These solutions are however rather
unwieldy and make it hard to provide simple bounds for the RWA, as well as not being
applicable to more general cases.

In the mathematical-physics literature, rigorous proofs of the RWA are well estab-
lished [15–18], but not well known in the wider community. The basic idea is to use
averaging methods developed by Krylov, Bogoliubov, and Mitropolsky (KBM) for non-
linear dynamical systems in the 1950s [2]. In particular, it is shown that the solution in
the RWA converges uniformly to the true solution on finite intervals of time as the drive
frequency goes to infinity. This is also the idea we shall follow here. However, the KBM
theory is not well suited to quantum mechanics, which is manifestly linear. In quantum
theory, it should be possible to develop a self-contained approach which essentially follows
similar steps to the KBM theory, but provides much better and more explicit nonperturba-
tive bounds. The integration-by-part lemma presented in Sec. 2 allows us to develop such
bounds and to generalize the RWA further. A related but different idea is also mentioned
in Ref. [19, Chap. 8], but error bounds are not explicitly worked out. We will also prove
that the RWA is not eternal [20]: small errors accumulate over time. Such bounds are
useful in quantum information and control, where increasing precision is needed to match
stringent fault-tolerance thresholds, and the validity of the RWA is not always good [7].

Adiabatic Evolutions and Strong Coupling. Adiabatic theorems, concerning ap-
proximations of the evolutions generated by slowly varying Hamiltonians [3, 21–25], rely
on the same principle as that of the RWA, although maybe in a different flavor. In this
case, the separation of the timescale on which the evolution occurs and the timescale on
which the Hamiltonian changes hinders the transitions between different eigenspaces of the
Hamiltonian during the evolution. At first sight, the connection between this mechanism
and the RWA might seem difficult to grasp. It however becomes clear when the adiabatic
evolution is studied in a suitable frame rotating with the eigenspaces of the slowly varying
Hamiltonian. In this frame, one can see that the transitions between different eigenspaces
are generated by fast components which are averaged out in the effective evolution. It is
then intriguing to see how these apparently unrelated results may be derived using the
same technique.

A version of adiabatic theorem involving a time-independent Hamiltonian also plays an
important role in the control of quantum systems via the quantum Zeno dynamics [26–28],
and precisely in its manifestation through the strong-coupling limit [3, 20, 29–35]. The
framework developed here can be used to reproduce these results independently. The
simplicity of our approach also allows us to derive new versions of adiabatic theorem,
which require less stringent assumptions on the form of the slowly varying Hamiltonians.
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Generalized Product Formulas. Trotter’s product formula is widely used in physics
at various levels, ranging from fundamental problems such as Feynman’s path-integral
formulation of quantum mechanics [36, 37] to practical ones such as Hamiltonian simula-
tion on quantum computers [38–40]. A matter of utmost importance for applications is
the ability to control the digitization errors introduced by product formulas, and to find
suitable generalizations of the formulas which can be used flexibly in particular practical
problems considered. A remarkable example of this versatility is represented by symmetry
protected quantum simulations [41], where the symmetries of the target Hamiltonian are
exploited to greatly reduce the error of the simulation, which is achieved by alternating the
simulation steps with unitary transformations generated by the symmetries of the system.
The rapid alternation of several noncommuting Hamiltonians can be formally represented
by an evolution generated by a time-varying Hamiltonian which is piecewise constant.
Then, if the alternating Hamiltonians follow some particular structure, the resulting evo-
lution can be effectively described by their average effect, a feature which can be used in
practical applications of several sorts. We will show how various product formulas can be
derived using our main theorem, and we will provide their explicit error bounds, which
improve some of the existing ones [41]. Another motivation for studying product formulas
was recently highlighted in Ref. [42] in the attempt to establish a bridge between different
control techniques such as the strong-coupling and bang-bang controls, which both yield
quantum Zeno dynamics. To this aim, a “rescaled” version of the Trotter product for-
mula was proved in Ref. [42], with an analytical bound on the error which depends on the
scaling parameter, although numerical evidence suggested an error uniform in the scaling
parameter. Using the main theorem introduced in this paper, we will prove that the error
in the rescaled product formula is indeed uniform.

1.2 Summary of Results and Paper Outline
This paper contains several new results together with improvements or simple proofs of
known results. Our main purpose is to explore the wide range of applications of the
universal bound in Lemma 1. In particular, we will obtain the following new results (see
also Fig. 1 and Table 1):

• Theorem 1 is a specific instance of the averaging method for quantum systems with
explicit nonperturbative bound.

• Theorem 2 provides an averaged generator with eternal validity for periodic Hamil-
tonians.

• Section 3 applies our bound to the important case of the RWA for a qubit, develops
nonperturbative bounds, and settles the question of the long-time (in)validity of the
RWA. It also provides several generalizations beyond the qubit case.

• Theorem 4 provides a concise and explicit bound on the adiabatic theorem.

• Theorem 5 generalizes the adiabatic theorem to a larger class of Hamiltonians.

• Remark 14 generalizes the strong-coupling limit to time-dependent Hamiltonians.

• Theorem 6 generalizes Trotter’s product formula to ergodic sequences.

• An interesting application of Theorem 6 is the random Trotter formula in Corollary 2.

• Bound (5.67) on the dynamical decoupling is exponentially better in t than a previous
bound [43].
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Table 1: List of evolutions whose limits as κ → +∞ or n → +∞ are proved in this paper, from
adiabatic theorems to strong-coupling limits to RWAs to product formulas, including Zeno dynamics,
dynamical decoupling, and bang-bang control. Explicit bounds on their convergence are all ruled and
provided by one universal bound given in Lemma 1. The evolutions are generated by Hamiltonians
H(s), H0(s), H1(s), etc., and include pulsed dynamics, where continuous Hamiltonian evolutions are
interspersed with instantaneous unitaries Uj , Vj , etc., while their limit evolutions are generated by
average Hamiltonians H, Zeno Hamiltonians HZ(s), adiabatic connections A(s), etc. See the relevant
sections/statements for their definitions and the conditions required for the limits. Many results are
new or are improvements of known results. See the explanation in the text.

Universal Bound (Lemma 1, Theorem 1, Corollary 1)

‖U2 − U1‖∞,t ≤ ‖S21‖∞,t(1 + ‖H1‖1,t + ‖H2‖1,t), S21(t) =
∫ t

0
ds [H2(s)−H1(s)]

Theorem 2. Eternal Approximation of Periodic Hamiltonian H(s) = H(s+ τ)

T e−i
∫ t

0 dsH(κs) ≈ e−itHκ , for any long times t

Section 3. Rotating-Wave Approximation

T e−i
∫ t

0 ds [κH0(κs)+H1(s,κs)] ≈ T e−i
∫ t

0 ds κH0(κs) T e−i
∫ t

0 dsH(s)

Theorem 3. Strong-Coupling Limit

e−it(κH0+H1) ≈ e−it(κH0+HZ)

Theorem 4. Adiabatic Theorem

T e−i
∫ t

0 ds κH0(s) ≈ T e−i
∫ t

0 ds [κH0(s)+A(s)]

Theorem 5. Generalized Adiabatic Theorem

T e−i
∫ t

0 dsHκ(s) ≈ T e−i
∫ t

0 ds [κH0(s)+Gκ,Z(s)+A(s)], for 1
κHκ(t)→ H0(t)

Application of Theorem 5. Strong-Coupling Limit for Time-Dependent Hamiltonians

T e−i
∫ t

0 ds [κH0(s)+H1(s)] ≈ T e−i
∫ t

0 ds [κH0(s)+HZ(s)+A(s)]

Theorem 6 and Corollary 2. Ergodic-Mean and Random Trotter Formulas(
e−i t

n
Hne−i t

n
Hn−1 · · · e−i t

n
H1
)n
→ e−itH(

e−i t
np
Hpe−i t

np
Hp−1 · · · e−i t

np
H1
)n
→ e−itH

Corollary 3. Frequent Unitary Kicks

Un+1e−i t
n
HUne−i t

n
H · · · U2e−i t

n
HU1 ≈ Un+1 · · ·U1e−itH

Application of Corollary 3. Dynamical Decoupling(
V †p e−i t

np
H
Vp · · ·V †1 e−i t

np
H
V1
)n
→ e−itH

Corollary 4. Bang-Bang Control(
Ue−i t

n
H
)n
≈ Une−itHZ

Theorem 7. Generalized Trotter Formula(
e−i t

n
κH0e−i t

n
H
)n
≈ e−it(κH0+H1), for κ ≤ θ

ηtn
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Universal Bound

Figure 1: One universal bound on the difference between two evolutions in terms of an integral action
rules a variety of situations involving the separation of timescales, ranging from RWAs to adiabatic
evolutions to strong-coupling limits to Zeno dynamics to dynamical decoupling to product formulas.

• Bound (5.72) in Corollary 4 improves a bound on the unitary kicks obtained in
Ref. [41] from O( 1

n logn) to O( 1
n).

• Theorem 7 solves a numerical conjecture of Ref. [42] by another generalization of
Trotter’s formula.

The rest of the paper is structured as follows. In Sec. 2, we derive the universal
bound, which will be used throughout the paper in various applications. The main result
is split in Lemma 1, Theorem 1, and Corollary 1. Lemma 1 gives a bound on the distance
between unitary evolutions generated by general time-dependent Hamiltonians. It is ap-
plied to time-dependent Hamiltonians depending on a common control parameter, and a
bound on the convergence error in the distance in the limit of the parameter is provided
in Theorem 1. A particular case in which one of the two time-dependent Hamiltonians is
independent of the control parameter is stated in Corollary 1. In Sec. 2.1, the applica-
tion of the universal bound to periodic Hamiltonians is discussed, along with an eternal
approximation of the evolution valid for any long times. In Sec. 3, we apply our results
to the RWAs, first considering the standard case with a qubit, and then discussing gen-
eralizations beyond the qubit and when there are multiple timescales brought into play.
In Sec. 4, we use the universal bound for adiabatic evolutions, including the adiabatic
theorem, strong-coupling limit, and their generalizations. In Sec. 5, we focus on the ap-
plications involving product formulas, including the standard Trotter product formula,
random Trotter formula, dynamical decoupling, bang-bang control, etc. Finally, in Sec. 6,
we conclude the paper with some comments. The main results, Lemma 1, Theorem 1, and
Corollary 1, are all valid for just locally integrable generators (which are not necessarily
continuous). This is explicitly demonstrated in Appendix A. A few basic lemmas relevant
to the ergodic means are collected in Appendix B. Moreover, a converse of (1.8) is shown
in Appendix C, and in Appendix D we provide an interesting general lower bound for the
long-term divergence between evolutions generated by non-isospectral Hamiltonians.
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2 The Bound to Rule Them All
Let us start by stating our main instrument, which will be used throughout the paper to
estimate a variety of limit quantum evolutions.

In the following, we will always consider operators on a separable (not necessarily
finite-dimensional) Hilbert spaceH. In particular, our main object of investigations will be
unitary propagators U(t) onH generated by locally integrable (not necessarily continuous)
time-dependent bounded Hamiltonians H(t).

Given an operator-valued function A(t) on R, consider its L∞ and L1 norms

‖A‖∞,t = sup
s∈[0,t]

‖A(s)‖, ‖A‖1,t =
∫ t

0
ds ‖A(s)‖, (2.1)

for all t ≥ 0, where we use the spectral norm ‖A(s)‖ for operators. The time-dependent
operator A(t) is bounded if ‖A(t)‖ is finite for every t, and it is locally integrable if ‖A‖1,t
is finite for all t. [Notice that, if A(t) is not continuous in t, ‖A‖∞,t might diverge even if
A(t) is bounded for all t.]

Now we state and prove the universal bound that will be used throughout the paper.

Lemma 1 (Integration-by-part lemma). Consider two families of locally integrable time-
dependent Hamiltonians t ∈ R 7→ Hj(t), with Hj(t) bounded and self-adjoint for all t ∈ R
and j = 1, 2. Let t 7→ Uj(t) be the unitary propagator generated by Hj(t),

Uj(t) = T exp
(
−i
∫ t

0
dsHj(s)

)
, (2.2)

for j = 1, 2, and define the integral action

S21(t) =
∫ t

0
ds [H2(s)−H1(s)]. (2.3)

Then, one has for t ≥ 0

U2(t)−U1(t) = −iS21(t)U2(t)−
∫ t

0
dsU1(t)U1(s)†[H1(s)S21(s)−S21(s)H2(s)]U2(s), (2.4)

so that
‖U2(t)− U1(t)‖ ≤ ‖S21(t)‖+

∫ t

0
ds ‖S21(s)‖(‖H1(s)‖+ ‖H2(s)‖), (2.5)

and the following bound holds

‖U2 − U1‖∞,t ≤ ‖S21‖∞,t(1 + ‖H1‖1,t + ‖H2‖1,t). (2.6)

Proof. If Hj(t) is continuous, then U̇j(t) = −iHj(t)Uj(t), for j = 1, 2, and the proof is just
an integration by parts. Write

U2(t)− U1(t) =
∫ t

0
dsU1(t) d

ds [U1(s)†U2(s)]

= −i
∫ t

0
dsU1(t)U1(s)†[H2(s)−H1(s)]U2(s). (2.7)

Since H2(s)−H1(s) = Ṡ21(s), by integrating by parts one has

U2(t)− U1(t) = −i
∫ t

0
dsU1(t)U1(s)†Ṡ21(s)U2(s)

= −iS21(t)U2(t) + i
∫ t

0
dsU1(t)[U̇1(s)†S21(s)U2(s) + U1(s)†S21(s)U̇2(s)]
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= −iS21(t)U2(t)−
∫ t

0
dsU1(t)U1(s)†[H1(s)S21(s)− S21(s)H2(s)]U2(s).

(2.8)

This is (2.4). Since integration by parts holds for absolutely continuous functions, the
result remains valid for locally integrable Hj(t). See Theorem 9 for an explicit derivation.
By taking the norm of the divergence (2.4), one gets (2.5), that implies

‖U2(t)− U1(t)‖ ≤ ‖S21(t)‖+ ‖S21‖∞,t(‖H1‖1,t + ‖H2‖1,t), (2.9)

and the bound (2.6) follows.

Remark 1 (Constant Hamiltonians). If Hj(t) = Hj (j = 1, 2) are independent of time,
then S21(t) = t(H2 −H1), and

‖S21‖∞,t = t‖H2 −H1‖, ‖Hj‖1,t = t‖Hj‖, (2.10)

so that the bound (2.6) yields

‖U2 − U1‖∞,t ≤ t‖H2 −H1‖(1 + t‖H1‖+ t‖H2‖). (2.11)

Notice, however, that in such a situation with constant Hamiltonians one can get a sharper
bound directly from (2.7) as

‖U2 − U1‖∞,t ≤ ‖H2 −H1‖1,t = t‖H2 −H1‖. (2.12)

As we will momentarily see, the bound (2.6) is very useful for time-dependent Hamiltonians
when they tend to compensate on average so that even if the difference between the two
Hamiltonians H2(t)−H1(t) might be large their action is small,

S21(t) =
∫ t

0
dsH2(s)−

∫ t

0
dsH1(s) ≈ 0. (2.13)

Remark 2 (p-norm). Since
‖Hj‖1,t ≤ t‖Hj‖∞,t, (2.14)

for j = 1, 2, the bound (2.6) can be further bounded by

‖U2 − U1‖∞,t ≤ ‖S21‖∞,t(1 + t‖H1‖∞,t + t‖H2‖∞,t). (2.15)

More generally, let

‖Hj‖p,t =
(∫ t

0
ds ‖Hj(s)‖p

)1/p
< +∞, (2.16)

with 1 ≤ p ≤ ∞. Then, by the Hölder inequality

‖Hj‖1,t ≤ t1−
1
p ‖Hj‖p,t, (2.17)

one gets
‖U2 − U1‖∞,t ≤ ‖S21‖∞,t

(
1 + t

1− 1
p ‖H1‖p,t + t

1− 1
p ‖H2‖p,t

)
. (2.18)

According to Remark 1, it would be useful for constant Hamiltonians to consider their
actions in a rotating frame with respect to an arbitrary reference Hamiltonian H0(t),
so that the relevant action in the rotating frame may be small as a consequence of an
averaging mechanism.
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Proposition 1 (Rotating frame). Let U0(t) be the unitary propagator generated by some
reference Hamiltonian H0(t) and define

Ŝ21(t) =
∫ t

0
dsU0(s)†[H2(s)−H1(s)]U0(s). (2.19)

Then,
‖U2 − U1‖∞,t ≤ ‖Ŝ21‖∞,t(1 + ‖H1 −H0‖1,t + ‖H2 −H0‖1,t). (2.20)

Proof. This follows simply by applying Lemma 1 to Ûj(t) = U0(t)†Uj(t) (j = 1, 2), whose
generators are given by

Ĥj(t) = U0(t)†[Hj(t)−H0(t)]U0(t), (2.21)

and by noticing that

‖Û2(t)− Û1(t)‖ = ‖U0(t)†[U2(t)− U1(t)]‖ = ‖U2(t)− U1(t)‖, (2.22)

and ‖Ĥj(t)‖ = ‖Hj(t)−H0(t)‖.

Remark 3 (Gauge freedom). The freedom in the choice of the gauge Hamiltonian H0(t)
makes this bound very useful in many applications, beyond the above-mentioned case of
constant Hamiltonians. In particular, by choosing as a reference Hamiltonian the average

H0(t) = 1
2[H1(t) +H2(t)], (2.23)

one gets
H2(t)−H0(t) = −[H1(t)−H0(t)] = 1

2[H2(t)−H1(t)], (2.24)

whence the bound (2.20) is reduced to

‖U2 − U1‖∞,t ≤ ‖Ŝ21‖∞,t(1 + ‖H2 −H1‖1,t). (2.25)

This is a more symmetric version of Lemma 1, which involves only the difference H2(t)−
H1(t) of the Hamiltonians and the action Ŝ21(t) in the average frame as defined in (2.19).
For further discussion about rotating frames, and a proof of a converse of the inequal-
ity (2.20), see Appendix C.
Remark 4 (Unbounded Hamiltonians). Notice that the bound (2.20) can be easily extended
to unbounded Hamiltonians H1(t) and H2(t) whose difference H2(t)−H1(t) is bounded, by
suitably choosing the (unbounded) reference Hamiltonian H0(t) so that Hj(t)−H0(t), with
j = 1, 2, are both bounded. Typical examples are the controlled Schrödinger operators in
Sec. 4.1 of Ref. [15].

An immediate consequence of Lemma 1 in the case of time-dependent Hamiltonians
which depend on a control parameter κ is the following convergence result, which we state
as a Theorem due to its importance in applications.

Theorem 1. Consider two families of integrable time-dependent Hamiltonians t ∈ [0, T ] 7→
Hκ(t) and t ∈ [0, T ] 7→ Hκ(t), with Hκ(t) and Hκ(t) self-adjoint and bounded for all
t ∈ [0, T ] and κ ∈ A, with A ⊂ R a set with a limit point κ0 (possibly κ0 = ∞). Let
t 7→ Uκ(t) and t 7→ Uκ(t) be the unitary propagators generated by Hκ(t) and Hκ(t), re-
spectively,

Uκ(t) = T exp
(
−i
∫ t

0
dsHκ(s)

)
, Uκ(t) = T exp

(
−i
∫ t

0
dsHκ(s)

)
. (2.26)
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Assume that
‖Sκ‖∞,T (1 + ‖Hκ‖1,T + ‖Hκ‖1,T )→ 0, as κ→ κ0, (2.27)

where
Sκ(t) =

∫ t

0
ds [Hκ(s)−Hκ(s)]. (2.28)

Then, one gets
Uκ(t)− Uκ(t)→ 0, as κ→ κ0, (2.29)

uniformly for t ∈ [0, T ]. The convergence error is bounded by

‖Uκ(t)− Uκ(t)‖ ≤ ‖Sκ‖∞,T (1 + ‖Hκ‖1,T + ‖Hκ‖1,T ). (2.30)

Proof. From Lemma 1 with H1(t) = Hκ(t) and H2(t) = Hκ(t), one gets

‖Uκ(t)− Uκ(t)‖ ≤ ‖Uκ − Uκ‖∞,t ≤ ‖Sκ‖∞,t(1 + ‖Hκ‖1,t + ‖Hκ‖1,t)→ 0, (2.31)

as κ→ κ0.

If the second Hamiltonian Hκ(t) in Theorem 1 is independent of κ, we get the following
result.

Corollary 1. Consider an integrable time-dependent Hamiltonian t ∈ [0, T ] 7→ Hκ(t),
with Hκ(t) self-adjoint and bounded for all t ∈ [0, T ] and κ ∈ A, with A ⊂ R a set with a
limit point κ0. Let t 7→ Uκ(t) be the unitary propagator generated by Hκ(t),

Uκ(t) = T exp
(
−i
∫ t

0
dsHκ(s)

)
. (2.32)

Assume that there exists an integrable time-dependent Hamiltonian t 7→ H(t), with H(t)
self-adjoint and bounded, such that

‖Sκ‖∞,T (1 + ‖Hκ‖1,T )→ 0, as κ→ κ0, (2.33)

where
Sκ(t) =

∫ t

0
ds [Hκ(s)−H(s)]. (2.34)

Then, one gets
Uκ(t)→ U(t), as κ→ κ0, (2.35)

uniformly for t ∈ [0, T ], where t 7→ U(t) is the unitary propagator generated by H(t),

U(t) = T exp
(
−i
∫ t

0
dsH(s)

)
. (2.36)

The convergence error is bounded by

‖Uκ(t)− U(t)‖ ≤ ‖Sκ‖∞,T (1 + ‖Hκ‖1,T + ‖H‖1,T ). (2.37)

Remark 5 (‖Hκ‖1,T can be unbounded in κ). Assumption (2.33) implies the condition

Sκ(t)→ 0, as κ→ κ0, (2.38)

uniformly for t ∈ [0, T ]. Moreover, condition (2.33) follows from assumption (2.38) if
‖Hκ‖1,T is bounded in κ, i.e.,

sup
κ
‖Hκ‖1,T < +∞, (2.39)
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which happens, for instance, if supκ ‖Hκ‖∞,T < +∞. However, this condition is not
necessary for Corollary 1 to hold. For example,

Hκ(t) = κ1/3 sin(κt)H (2.40)

has an unbounded norm

‖Hκ‖1,t ≥ 2κ1/3‖H‖(t/π − 1/κ)→ +∞, as κ→ +∞, (2.41)

but the action Sκ(t) with H(t) = 0 vanishes as Sκ(t) = 2κ−2/3 sin2(κt/2)H → 0, and

‖Sκ‖∞,t‖Hκ‖1,t ≤ t‖Sκ‖∞,t‖Hκ‖∞,t ≤ 2tκ−1/3‖H‖2 → 0, (2.42)

as κ→ +∞. Therefore, Corollary 1 applies.
Remark 6 (Rotating frame). Most of the applications we are going to consider make use
of the strategy introduced in Proposition 1, that consists in identifying a suitable rotating
frame U0,κ(t) such that the averaged action (2.19) vanishes as κ→ κ0.

1. Let H0,κ(t) be the reference Hamiltonian generating U0,κ(t) and apply Theorem 1
to the evolutions Ûκ(t) = U0,κ(t)†Uκ(t) and Ûκ(t) = U0,κ(t)†Uκ(t). If

‖Ŝκ‖∞,T (1 + ‖Hκ −H0,κ‖1,T + ‖Hκ −H0,κ‖1,T )→ 0, as κ→ κ0, (2.43)

where
Ŝκ(t) =

∫ t

0
dsU0,κ(s)†[Hκ(s)−Hκ(s)]U0,κ(s), (2.44)

one gets, using (2.20), that

‖Uκ(t)− Uκ(t)‖ ≤ ‖Ŝκ‖∞,T (1 + ‖Hκ −H0,κ‖1,T + ‖Hκ −H0,κ‖1,T )→ 0, (2.45)

as κ→ κ0, for all t ∈ [0, T ].

2. Moreover, let
Ĥκ(t) = U0,κ(t)†[Hκ(t)−H0,κ(t)]U0,κ(t) (2.46)

be the generator of Ûκ(t) = U0,κ(t)†Uκ(t). Then, Corollary 1 applied to Ûκ(t) implies
that as κ→ κ0 the Hamiltonian

Hκ(t) = H0,κ(t) + U0,κ(t)Ĥκ(t)U0,κ(t)† (2.47)

can be replaced by the effective Hamiltonian

Heff
κ (t) = H0,κ(t) + U0,κ(t)H(t)U0,κ(t)†, (2.48)

provided that
‖Ŝκ‖∞,T (1 + ‖Ĥκ‖1,T )→ 0, as κ→ κ0, (2.49)

where
Ŝκ(t) =

∫ t

0
ds [Ĥκ(s)−H(s)]. (2.50)

Indeed, the divergence between the evolutions Uκ(t) and U eff
κ (t) = U0,κ(t)U(t) gen-

erated by Hκ(t) and Heff
κ (t), respectively, vanishes uniformly in time, with an error

bounded by

‖Uκ(t)− U eff
κ (t)‖ ≤ ‖Ŝκ‖∞,T (1 + ‖Ĥκ‖1,T + ‖H‖1,T )→ 0, (2.51)

as κ→ κ0, for all t ∈ [0, T ].

Accepted in Quantum 2022-06-06, click title to verify. Published under CC-BY 4.0. 11



2.1 Periodic Hamiltonians
In most applications, the evolution Uκ(t) is generated by a periodic Hamiltonian and
the parameter κ is related to its frequency, that can be very large. In such situations,
we can get an even better control on the error between the true evolution Uκ(t) and a
unitary group exp(−itHκ) generated by a time-independent Hamiltonian Hκ [which is not
necessarily the average of Hκ(t)]. In particular, we will show that by a suitable choice of
Hκ the error can be uniformly bounded for arbitrarily large times.

Consider a 1-periodic Hamiltonian

H(t) = H(t+ 1), (2.52)

and the dynamics generated by Hκ(t) = H(κt), where κ is large. We can approximate the

evolution Uκ(t) generated by Hκ(t) with the unitary group U(t) = e−itH generated by the
(constant) average Hamiltonian

H =
∫ 1

0
dsH(s). (2.53)

Indeed, the relevant integral action reads

Sκ(t) =
∫ t

0
ds [Hκ(s)−H]

= 1
κ

∫ κt

0
dsH(s)− tH

= bκtc
κ

H + 1
κ

∫ {κt}
0

dsH(s)− tH

= −{κt}
κ

H + 1
κ

∫ {κt}
0

dsH(s), (2.54)

where bxc ∈ N is the integer part of x, i.e. the greatest integer less than or equal to x,
and {x} = x − bxc ∈ [0, 1) is its fractional part. Therefore, we get ‖Sκ(t)‖ ≤ 2‖H‖1,1/κ
uniformly in t. Since

‖Hκ‖1,T = 1
κ

∫ κT

0
ds ‖H(s)‖ ≤

(
T + 1

κ

)
‖H‖1,1 (2.55)

and ‖H‖1,T ≤ T‖H‖1,1, from Corollary 1 we get

‖Uκ − U‖∞,T ≤
2
κ
‖H‖1,1

[
1 +

(
2T + 1

κ

)
‖H‖1,1

]
→ 0, (2.56)

as κ→ +∞, so that Uκ(t)→ U(t) uniformly for t ∈ [0, T ].
Notice, however, that in general the distance (2.56) between the approximation U(t)

and the true evolution Uκ(t) does not remain small uniformly in time and it can increase
with T . In the following theorem, we will show how one can exploit the periodicity in
order to give a uniform bound which is eternal in time. To this end, recall the Floquet
theorem [44]. Since Hκ(t) = H(κt) is (1/κ)-periodic, one has

Uκ(t) = Uκ

({κt}
κ

)[
Uκ

(1
κ

)]bκtc
. (2.57)

The strategy is to take, in place of the average Hamiltonian H in (2.53), a constant (κ-
dependent) Hamiltonian Hκ = H +O(1/κ) which generates exactly the same evolution as
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Uκ(t) at all periods t = n/κ with n ∈ N, namely, Uκ(n/κ) = [Uκ(1/κ)]n = e−in
κ
Hκ . This

allows us to reduce the distance between the approximation Uκ(t) = e−itHκ and the true
evolution Uκ(t) for any t to the distance during only one period 0 ≤ t < 1/κ.

Theorem 2 (Eternal approximation of periodic Hamiltonian). Consider an integrable
time-dependent Hamiltonian t ∈ R 7→ H(t), with H(t) self-adjoint, bounded, and 1-
periodic,

H(t+ 1) = H(t), (2.58)

for all t. For all κ > 0, let t 7→ Uκ(t) be the unitary propagator generated by Hκ(t) =
H(κt),

Uκ(t) = T exp
(
−i
∫ t

0
dsH(κs)

)
, (2.59)

and let Hκ be a bounded self-adjoint operator such that

exp
(
− i
κ
Hκ

)
= Uκ

(1
κ

)
. (2.60)

Then, one gets
sup
t∈R
‖Uκ(t)− e−itHκ‖ = O

(1
κ

)
, as κ→ +∞, (2.61)

the convergence error being bounded by

‖Uκ(t)− e−itHκ‖ ≤ θ

κ
‖H‖1,1

(
1 + θ

κ
‖H‖1,1

)
, (2.62)

with θ ≤ 1 + 2 log 2.

Proof. The identity (2.60) forces the approximate evolution Uκ(t) = e−itHκ to coincide
with Uκ(t) after one period at t = 1/κ, namely Uκ(1/κ) = Uκ(1/κ), and thus, by the
Floquet theorem (2.57), at all periods, Uκ(n/κ) = Uκ(n/κ) with n ∈ N. The approximate
Hamiltonian Hκ is given by a logarithm of the true evolution over one period, Hκ =
iκ logUκ(1/κ), and it is a perturbation of H. To see this, note that

Uκ(t) = T exp
(
−i
∫ t

0
dsHκ(s)

)
= T exp

(
− i
κ

∫ κt

0
dsH(s)

)
, (2.63)

and hence,

Uκ

(1
κ

)
= T exp

(
− i
κ

∫ 1

0
dsH(s)

)
= exp

(
− i
κ
Hκ

)
= Uκ

(1
κ

)
. (2.64)

Then, for κ > ‖H‖1,1,

Hκ = iκ logUκ
(1
κ

)
=
∫ 1

0
dsH(s)− i

2κ

∫ 1

0
ds
∫ s

0
du [H(s), H(u)] +O

( 1
κ2

)
= H +O

(1
κ

)
. (2.65)

This is nothing but the Magnus expansion, which in fact can be proved to be valid for
κ > ‖H‖1,1/π. See Theorem 9 of Ref. [12]. This fact, combined with the bound (2.56),
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ensures that the evolution Uκ(t) generated by Hκ also approximates the true evolution
Uκ(t) at O(1/κ) at least for t ∈ [0, T ]. Moreover, from (2.57) and (2.64), we have

Uκ(t)− Uκ(t) =
[
Uκ

({κt}
κ

)
− Uκ

({κt}
κ

)]
Uκ

(bκtc
κ

)
, (2.66)

whence
‖Uκ(t)− Uκ(t)‖ =

∥∥∥∥Uκ({κt}κ
)
− Uκ

({κt}
κ

)∥∥∥∥ , (2.67)

so that the distance is traced back to one period 0 ≤ {κt}/κ < 1/κ and is thus bounded
uniformly in time t.

Let us prove the explicit error bound (2.62). From (2.63), we get

Uκ

({κt}
κ

)
= T exp

(
− i
κ

∫ {κt}
0

dsH(s)
)
, (2.68)

while
Uκ

({κt}
κ

)
= exp

(
−i{κt}

κ
Hκ

)
. (2.69)

By using Lemma 1 for the evolutions U1(t) and U2(t) generated by H1 = Hκ/κ and
H2(t) = H(t)/κ, respectively, one has∥∥∥∥Uκ({κt}κ

)
− Uκ

({κt}
κ

)∥∥∥∥ = ‖U2({κt})− U1({κt})‖

≤ ‖U2 − U1‖∞,1

≤ ‖S21‖∞,1
(

1 + 1
κ
‖H‖1,1 + 1

κ
‖Hκ‖

)
, (2.70)

where the action is given by

S21(t) = 1
κ

∫ t

0
ds [H(s)−Hκ], (2.71)

and is bounded by
‖S21‖∞,1 ≤

1
κ

(‖H‖1,1 + ‖Hκ‖). (2.72)

Moreover,

‖Hκ‖ = κ

∥∥∥∥log
(

1 +
[
Uκ

(1
κ

)
− 1

])∥∥∥∥ ≤ −κ log
(

1−
∥∥∥∥Uκ(1

κ

)
− 1

∥∥∥∥) , (2.73)

for ‖Uκ(1/κ)− 1‖ < 1. Now, notice that∥∥∥∥Uκ(1
κ

)
− 1

∥∥∥∥ = 1
κ

∥∥∥∥∫ 1

0
dsH(s)Uκ

(
s

κ

)∥∥∥∥ ≤ 1
κ
‖H‖1,1, (2.74)

whence
‖Hκ‖ ≤ −κ log

(
1− 1

κ
‖H‖1,1

)
≤ (2 log 2)‖H‖1,1, (2.75)

for κ ≥ 2‖H‖1,1. Therefore,

‖Uκ(t)− Uκ(t)‖ =
∥∥∥∥Uκ({κt}κ

)
− Uκ

({κt}
κ

)∥∥∥∥ ≤ θ

κ
‖H‖1,1

(
1 + θ

κ
‖H‖1,1

)
, (2.76)

with θ = 1 + 2 log 2. Since the right-hand side is larger than 2 for κ < 2‖H‖1,1, this bound
can be trivially extended to all κ > 0.
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Remark 7 (Large-time approximation). In general, one does not have an explicit analytic
expression for the solution Hκ of equation (2.60), and for sufficiently large κ one relies
on the series expansion of the logarithm as in (2.65). Notice, however, that for practical
purposes one might be content to consider an asymptotic expansion of Hκ up to a given
order O(1/κ`) for some ` ≥ 2, and approximate the evolution with the unitary group
generated by a Hamiltonian

H̃κ = Hκ +O

( 1
κ`

)
. (2.77)

In such a case, in general the approximation exp(−itH̃κ) is no longer eternal (but see
Remark 8 for a notable exception). However, it can be proved to work up to a time
T = O(κ`−1), which becomes larger and larger for higher and higher `. Indeed, from (2.12)
we get

‖e−itH̃κ − e−itHκ‖ ≤ t‖H̃κ −Hκ‖ = O

(
t

κ`

)
, (2.78)

and by the triangle inequality and (2.62),

sup
t∈[0,T ]

‖Uκ(t)− e−itH̃κ‖ ≤ θ

κ
‖H‖1,1

(
1 + θ

κ
‖H‖1,1

)
+O

(
T

κ`

)
. (2.79)

Therefore,
sup
t∈[0,T ]

‖Uκ(t)− e−itH̃κ‖ = O

(1
κ

)
, for T = O(κ`−1), (2.80)

which should be compared with the approximation (2.56),

sup
t∈[0,T ]

‖Uκ(t)− e−itH‖ = O

(1
κ

)
, for T = O(1), (2.81)

given by the average Hamiltonian H.
Remark 8 (Isospectral perturbations). Notice that any isospectral (1/κ)-perturbation of
Hκ in Theorem 2 does the job. Indeed, let

Hκ = WκHκW
†
κ, (2.82)

with Wκ = 1 +O(1/κ) and unitary. Then,

∥∥e−itHκ − e−itHκ
∥∥ =

∥∥[Wκ, e−itHκ
]
W †κ

∥∥ =
∥∥[Wκ − 1, e−itHκ

]∥∥ ≤ 2‖Wκ − 1‖ = O

(1
κ

)
,

(2.83)
uniformly in time t. Therefore, by the triangle inequality

sup
t∈R

∥∥Uκ(t)− e−itHκ
∥∥ = O

(1
κ

)
, as κ→ +∞. (2.84)

Moreover, if Hκ has a pure point spectrum, the isospectral Hamiltonians in (2.82) are the
only generators of eternal approximations as shown in Proposition 4 in Appendix D. The
proof is based on the idea that evolutions which are not isospectral eventually diverge.
See Ref. [35, Eq. (36) of the Supplemental Material].
Remark 9 (General period). A periodic Hamiltonian with a general period τ > 0,

H(t) = H(t+ τ), (2.85)
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is reduced to a 1-periodic Hamiltonian H̃(s) = H̃(s + 1) by scaling time as t → s = t/τ
and

H(t)→ H̃(s) = τH(τs). (2.86)

The evolution operator Uκ(t) generated by H(κt) can then be obtained by the evolution
operator Ũκ(t) generated by H̃(κs) as Uκ(t) = Ũκ(t/τ). The average Hamiltonian (2.53)
is replaced by

H = 1
τ

∫ τ

0
dsH(s), (2.87)

and the distance between the group U(t) = e−itH and the true evolution Uκ(t) is bounded
by

‖Uκ − U‖∞,T =
∥∥Ũκ − Ũ∥∥∞,T/τ

≤ 2
κ
‖H̃‖1,1

[
1 +

(2T
τ

+ 1
κ

)
‖H̃‖1,1

]
= 2
κ
‖H‖1,τ

[
1 +

(2T
τ

+ 1
κ

)
‖H‖1,τ

]
. (2.88)

The eternal bound (2.62) is translated into

‖Uκ(t)− e−itHκ‖ ≤ θ

κ
‖H‖1,τ

(
1 + θ

κ
‖H‖1,τ

)
, (2.89)

where Hκ is a solution of the equation

exp
(
−iτ
κ
Hκ

)
= Uκ

(
τ

κ

)
, (2.90)

that is

Hκ = iκ
τ

logUκ
(
τ

κ

)
= H − i

2κτ

∫ τ

0
ds
∫ s

0
du [H(s), H(u)] +O

( 1
κ2

)
, (2.91)

for κ > ‖H‖1,τ/π.

3 Rotating-Wave Approximation
3.1 Qubit Example
Consider the Hamiltonian of a two-level atom with a natural frequency ω0 (almost) reso-
nantly coupled with an oscillating laser field,

H(t) = 1
2ω0Z + g cos(ωt)X, (3.1)

where ω > 0 is the frequency of the drive, and we denote the detuning by δ = ω0 − ω.
The time-dependent part of this Hamiltonian, g cos(ωt)X, can be decomposed into two
components, one containing the “co-rotating” terms

Hco(t) = 1
2g(e−iωtσ+ + eiωtσ−), (3.2)

and the other containing the “counter-rotating” terms

Hcounter(t) = 1
2g(eiωtσ+ + e−iωtσ−), (3.3)
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where σ± = (X ± iY )/2 are the ladder operators. This terminology can be understood by
looking at these two components in the reference frame rotating with the constant part of
the Hamiltonian, U0,ω0(t) = e−

i
2ω0tZ :

U0,ω0(t)†Hco(t)U0,ω0(t) = 1
2g(eiδtσ+ + e−iδtσ−), (3.4)

U0,ω0(t)†Hcounter(t)U0,ω0(t) = 1
2g(ei(ω0+ω)tσ+ + e−i(ω0+ω)tσ−). (3.5)

These show that, if the detuning δ is small, i.e. ω0 ≈ ω, the co-rotating terms rotate more
or less with the reference frame, while the counter-rotating terms rotate in the opposite
direction. The RWA drops the counter-rotating terms and approximates the evolution by

U(t) ≈ URWA(t), (3.6)

where URWA(t) is generated by

HRWA(t) = 1
2ω0Z + 1

2g(e−iωtσ+ + eiωtσ−), (3.7)

with the co-rotating terms. The evolution URWA(t) generated by HRWA(t) is indeed easily
dealt with compared to the original U(t) generated by H(t), since in the reference frame
rotating with

H0,ω = 1
2ωZ, U0,ω(t) = e−

i
2ωtZ , (3.8)

the Hamiltonian HRWA(t) in (3.7) in the RWA is transformed to a constant one as

ĤRWA = U0,ω(t)†[HRWA −H0,ω]U0,ω(t) = 1
2δZ + 1

2gX. (3.9)

Then, the evolution it generates is simply given by ÛRWA(t) = U0,ω(t)†URWA(t) = e−itĤRWA ,

and the evolution in the original frame is explicitly obtained as URWA(t) = e−
i
2ωtZe−itĤRWA .

The validity of the approximation (3.6) can be verified by using Corollary 1 with
κ0 = +∞. It also provides an upper bound on the error associated with the approximation.
More specifically, we take the strategy described in Remark 6. We work in the reference
frame rotating with the driving frequency ω, specified by (3.8). The generator of Ûω(t) =
U0,ω(t)†U(t) in the rotating frame reads

Ĥω(t) = U0,ω(t)†[H(t)−H0,ω]U0,ω(t)

= 1
2(ω0 − ω)Z + g cos(ωt)e

i
2ωtZXe−

i
2ωtZ

= 1
2δZ + g cos(ωt)[cos(ωt)X − sin(ωt)Y ]

= 1
2δZ + 1

2g[(1 + cos 2ωt)X − sin(2ωt)Y ]. (3.10)

Observe here that in the limit of large ω the integral action of Ĥω(t) converges to∫ t

0
ds Ĥω(s)→ tH, as ω → +∞, (3.11)

where

H = lim
τ→+∞

1
τ

∫ τ

0
ds Ĥω(s) = ω

π

∫ π/ω

0
ds Ĥω(s) = 1

2δZ + 1
2gX (3.12)
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O
(
1
ω

)

U(t)

URWA(t)

Figure 2: Cartoon of the RWA. While the true evolution U(t) oscillates quickly with a high frequency
ω, the averaged one URWA(t) is simpler and only O(1/ω) away from the exact dynamics. For the simple
but ubiquitous single-qubit case, an explicit nonperturbative bound is provided by (3.17).

is the time-average of Ĥω(t), and is actually H = ĤRWA introduced in (3.9). Therefore,
the action defined by

Ŝω(t) =
∫ t

0
ds [Ĥω(s)−H] = g

4ω [sin(2ωt)X − (1− cos 2ωt)Y ] (3.13)

vanishes as ω → +∞. The condition (2.49) is satisfied, and by Corollary 1 the evolution
Ûω(t) is well approximated by the evolution generated by the average Hamiltonian H
in (3.12). In the original frame,

U(t)− URWA(t)→ 0, as ω → +∞, (3.14)

where URWA(t) is generated by an effective Hamiltonian

HRWA(t) = H0,ω + U0,ω(t)HU0,ω(t)†

= 1
2(ω + δ)Z + 1

2ge−
i
2ωtZXe

i
2ωtZ

= 1
2ω0Z + 1

2g[cos(ωt)X + sin(ωt)Y ], (3.15)

which is exactly the RWA Hamiltonian (3.7).
A bound on the error of the approximation follows from (2.51). By noting

‖Ŝω‖∞,t ≤
|g|
2ω , ‖Ĥω‖1,t ≤

1
2

√
δ2 + 4g2 t, ‖H‖1,t = 1

2

√
δ2 + g2 t, (3.16)

the error within the time range t ∈ [0, T ] is estimated by

‖U(t)− URWA(t)‖ ≤ ‖Ŝω‖∞,T (1 + ‖Ĥω‖1,T + ‖H‖1,T ) ≤ |g|2ω

(
1 +

√
δ2 + 4g2 T

)
. (3.17)

See Fig. 2 for a pictorial representation of the RWA.
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Remark 10. The error bound in (3.17) increases with time T . In fact, the RWA approx-
imation in general is not uniform, and the error accumulates over time. If one seeks for
an eternal approximation, one has to look for the ω-dependent perturbation Hω of H,
introduced in Theorem 2, which exactly reproduces the evolution generated by Ĥω(t) at
every period t = nπ/ω with n ∈ N. According to (2.91), we get

Hω = iω
π

log Ûω
(
π

ω

)
= H − iπ

2ω

∫ 1

0
ds
∫ s

0
du [Ĥω(πs/ω), Ĥω(πu/ω)] +O

( 1
ω2

)
= 1

2δZ + 1
2gX + g

4ω

(
δX − 1

2gZ
)

+O

( 1
ω2

)
, (3.18)

for ‖Ĥω‖1,π/ω < π. Since ‖Ĥω‖1,π/ω ≤ π
2ω
√
δ2 + 4g2, we can take, e.g. ω > π

2
√
δ2 + 4g2.

Because H in (3.12) and Hω in (3.18) have different eigenvalues, the evolution generated
by H eventually diverges from U(t) as discussed in Remark 8.
Remark 11. If one tries to approximate H(t) in (3.1) by HcRWA(t) = 1

2ω0Z + Hcounter(t)
instead of HRWA(t) = 1

2ω0Z + Hco(t) in (3.7), one needs to go to the reference frame
rotating with U0,−ω(t) instead of U0,ω(t) in (3.8). Then, the counterparts of ‖Ĥω‖1,t and
‖H‖1,t in this case become O(ω) and the error of the approximation remains O(1). For
the same reason, simply taking the time-average of H(t) as H fails to approximate the
original evolution U(t).

3.2 Generalization beyond the Qubit Scenario
The above procedure for the RWA can be easily generalized to systems beyond the qubit.
Let us consider a time-dependent Hamiltonian of the form

H(t) = κH0 +H1(κt), (3.19)

with large κ. In the qubit example considered above, κ = ω, H0 = 1
2Z, and H1(τ) =

1
2δZ + g cos τ X. Notice, however, that in general H1(τ) is not assumed to be periodic.

In the reference frame rotating with the Hamiltonian κH0, the generator of the evolu-
tion is given by

Ĥκ(t) = eiκtH0H1(κt)e−iκtH0 , (3.20)
which is a function of τ = κt. Assuming that the long-time average of Ĥκ(t) converges to
some limit, namely,

lim
τ→+∞

1
τ

∫ τ

0
ds eisH0H1(s)e−isH0 = H, (3.21)

we have that the action vanishes,

Ŝκ(t) =
∫ t

0
ds [Ĥκ(s)−H] = 1

κ

∫ κt

0
ds [eisH0H1(s)e−isH0 −H]→ 0, (3.22)

as κ→ +∞. Then, according to (2.51), the divergence between the evolution U(t) gener-

ated by the Hamiltonian H(t) and the unitary e−iκtH0e−itH is bounded by

‖U(t)− e−iκtH0e−itH‖ ≤ ‖Ŝκ‖∞,T
(

1 + 1
κ
‖H1‖1,κT + ‖H‖1,T

)
. (3.23)

Therefore, if the condition

‖Ŝκ‖∞,T
(

1 + 1
κ
‖H1‖1,κT

)
→ 0, as κ→ +∞ (3.24)
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is satisfied, the evolution U(t) is well approximated by e−iκtH0e−itH ,

U(t)− e−iκtH0e−itH → 0, as κ→ +∞. (3.25)

In particular, if ‖H1(t)‖ ≤M uniformly for all t for some M ≥ 0, we have ‖H1‖1,T ≤MT ,
‖H‖1,T ≤MT , and hence

‖U(t)− e−iκtH0e−itH‖ ≤ (1 + 2MT )‖Ŝκ‖∞,T → 0. (3.26)

3.3 Rotating-Wave Approximation for Systems with Two Driving Timescales
3.3.1 Time-Dependent Drive Envelope for a Qubit

We can also discuss the RWA under situations where the drive is modulated with a time-
dependent envelope [11]. As a simple example, let us look at the evolution generated by
the Hamiltonian

H(t) = 1
2ω0Z + g(t) cos(ωt)X. (3.27)

Compared with the above qubit example (3.1), the drive here is modulated in time with
an envelope function g(t). In the reference frame rotating with H0,ω and U0,ω(t) in (3.8),
the generator of the evolution is given by

Ĥω(t) = U0,ω(t)†[H(t)−H0,ω]U0,ω(t)

= 1
2δZ + 1

2g(t)[(1 + cos 2ωt)X − sin(2ωt)Y ], (3.28)

with δ = ω0−ω. We are going to show that this evolution with large ω is well approximated
by the evolution generated by the time-dependent Hamiltonian

H(t) = 1
2δZ + 1

2g(t)X. (3.29)

To this end, let us consider the integral action

Ŝω(t) =
∫ t

0
ds [Ĥω(s)−H(s)] = 1

2

∫ t

0
ds g(s)[cos(2ωs)X − sin(2ωs)Y ]. (3.30)

Let us assume that g(t) is of class Cn. By performing n integration by parts, we get

‖Ŝω‖∞,t ≤
n∑
k=1

1
(2ω)k ‖g

(k−1)‖∞,t + 1
2(2ω)n ‖g

(n)‖1,t, (3.31)

which is small for large ω. Since

‖Ĥω‖1,t ≤
1
2

√
δ2 + 4‖g‖2∞,t t, ‖H‖1,t ≤

1
2

√
δ2 + ‖g‖2∞,t t, (3.32)

the bound (2.51) gives

‖U − URWA‖∞,T ≤
(

n∑
k=1

1
(2ω)k ‖g

(k−1)‖∞,T + 1
2(2ω)n ‖g

(n)‖1,T

)(
1 +

√
δ2 + 4‖g‖2∞,T T

)
→ 0, (3.33)

Accepted in Quantum 2022-06-06, click title to verify. Published under CC-BY 4.0. 20



as ω → +∞, where U(t) and URWA(t) are unitaries generated by the Hamiltonian H(t)
in (3.27) and the Hamiltonian

HRWA(t) = H0,ω + U0,ω(t)H(t)U0,ω(t)†

= 1
2ω0Z + 1

2g(t)(e−iωtσ+ + eiωtσ−) (3.34)

in the RWA, respectively.

Remark 12 (Piecewise-constant drive). The bound (3.33) holds under the assumption that
g(t) is n times continuously differentiable. In practical situations, it can happen that the
drive envelope g(t) is not differentiable but is piecewise constant as

g(t) = gj , for t ∈ [tj−1, tj) (j = 1, . . . , N), (3.35)

where 0 = t0 < t1 < · · · < tN = T . Then, for tk < t < tk+1, the action (3.30) reads

Ŝω(t) = 1
2

k∑
j=1

gj

∫ tj

tj−1
ds [cos(2ωs)X − sin(2ωs)Y ] + 1

2gk+1

∫ t

tk

ds [cos(2ωs)X − sin(2ωs)Y ]

= − g1
4ωY −

1
4ω

k∑
j=1

(gj+1 − gj)[sin(2ωtj)X + cos(2ωtj)Y ]

+ gk+1
4ω [sin(2ωt)X + cos(2ωt)Y ]. (3.36)

The bound (3.33) in this case is replaced by

‖U − URWA‖∞,T ≤
1

2ω

 max
1≤j≤N

|gj |+
1
2

N−1∑
j=1
|gj+1 − gj |

(1 +
√
δ2 + 4 max

1≤j≤N
|gj |2 T

)
.

(3.37)

3.3.2 General System with Two Driving Timescales

The strategy employed above for the qubit driven by a time-dependent drive envelope can
be applied to systems beyond qubits. Consider a Hamiltonian with two driving timescales
of the form

H(t) = κH0(κt) +H1(t, κt). (3.38)

In the rotating frame of κH0(κt), one has

Ĥκ(t) = W (κt)†H1(t, κt)W (κt) = H̃(t, κt), (3.39)

where

W (t) = T exp
(
−i
∫ t

0
dsH0(s)

)
. (3.40)

The essential idea in the previous section was to average over the fast time-dependence in
the drive. To do this in the integral action, integration by parts was performed. Suppose
that the average over the fast variable has a limit,

H(t, τ) = 1
τ

∫ τ

0
ds H̃(t, s)→ H(t), as τ → +∞, (3.41)
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uniformly for t ∈ [0, T ]. Now, note that

s
d
dsH(s, κs) = s∂1H(s, κs) + κs∂2H(s, κs)

= s∂1H(s, κs)−H(s, κs) + H̃(s, κs), (3.42)

where ∂1 and ∂2 are partial derivatives of H(s1, s2) with respect to s1 and s2, respectively.
Then,

d
ds [sH(s, κs)] = s∂1H(s, κs) + H̃(s, κs), (3.43)

which yields the following formula of integration by parts,∫ t

0
ds Ĥκ(s) =

∫ t

0
ds H̃(s, κs) = tH(t, κt)−

∫ t

0
ds s∂1H(s, κs). (3.44)

Using this formula, we estimate the integral action as

Ŝκ(t) =
∫ t

0
ds [Ĥκ(s)−H(s)]

= t[H(t, κt)−H(t)]−
∫ t

0
ds s[∂1H(s, κs)− ∂sH(s)], (3.45)

where ∂s is the derivative with respect to s. Thus, under the additional assumption that

∂1H(t, τ)→ ∂tH(t), as τ → +∞, (3.46)

uniformly for t ∈ [0, T ], the action vanishes ‖Ŝκ‖∞,T → 0, as κ→ +∞. Since

‖Ĥκ(t)‖ = ‖W (κt)†H1(t, κt)W (κt)‖ = ‖H1(t, κt)‖, (3.47)

assumption (2.49) is satisfied if for instance ‖H1(t, s)‖ ≤ M uniformly for all t and s. In
such a case, Corollary 1 applies, and one has

U(t)− T exp
(
−i
∫ κt

0
dsH0(s)

)
T exp

(
−i
∫ t

0
dsH(s)

)
→ 0, (3.48)

as κ→ +∞, uniformly on finite time intervals.

4 Strong-Coupling Limit and Adiabatic Theorem
An adiabatic theorem in quantum mechanics describes the evolution of a quantum system
under a slowly driven Hamiltonian [21]. This can be formally expressed by considering an
evolution operator U(t) satisfying

i d
dtU(t) = H

(
t

T

)
U(t), t ∈ [0, T ], (4.1)

for large time T → +∞, with a family of self-adjoint operators {H(s)}s∈[0,1]. Upon
rescaling time to s = t/T , s ∈ [0, 1] (“macroscopic” time), and setting UT (s) = U(sT ),
the above equation becomes

i d
dsUT (s) = TH(s)UT (s), s ∈ [0, 1], (4.2)

that is a strong-coupling limit T → +∞ [22]. This simple observation establishes an in-
teresting link between slow evolutions for long times and evolutions with strong couplings.
In this section, we will show how Corollary 1 is useful to deal with both situations.
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4.1 Strong-Coupling Limit
Let us start with the simplest case of the strong-coupling limit, i.e., the limit κ→ +∞ of
the evolution generated by a time-independent Hamiltonian κH0+H1. This limit gives rise
to the separation of timescales in the evolution, and the transitions between eigenspaces
of H0 are suppressed. Still, if the dimension of an eigenspace is greater than 1, the system
can evolve unitarily within the eigenspace. This is a manifestation of the quantum Zeno
dynamics [3, 20, 26–35], and the evolution within the eigenspaces is generated by a “Zeno
Hamiltonian” [26, 27]. This limit can be treated by our method and yields the following
theorem.

Theorem 3 (Strong-coupling limit). Given two bounded self-adjoint operators H0 and
H1, assume that H0 has the finite spectral representation

H0 =
m∑
`=1

E`P`, (4.3)

where Ek 6= E` for k 6= `, P` = P †` , PkP` = δk`P` for all k and `, and
∑m
`=1 P` = 1. Let

η = min
k,`
k 6=`

|Ek − E`| (4.4)

be the minimal spectral gap of H0, and

HZ =
m∑
`=1

P`H1P` (4.5)

be the Zeno Hamiltonian. Then,

‖e−it(κH0+H1) − e−it(κH0+HZ)‖ ≤ 2
√
m

κη
‖H1‖(1 + 2T‖H1‖), (4.6)

for all t ∈ [0, T ].
Proof. This is a particular case of the scenario discussed in Sec. 3.2. By using Lemma 5
in Appendix B, the time-average of the Hamiltonian in the rotating frame is shown to
converge to the Zeno Hamiltonian,

1
τ

∫ τ

0
ds eisH0H1e−isH0 → HZ , as τ → +∞, (4.7)

and the integral action (3.22) is explicitly given by

Ŝκ(t) = 1
κ

∫ κt

0
ds (eisH0H1e−isH0 −HZ) =

∑
k,`

′ eiκt(Ek−E`) − 1
iκ(Ek − E`)

PkH1P`, (4.8)

where
∑′
k,` represents summation over the pair (k, `) excluding terms with k = `. Us-

ing (B.2) of Lemma 4, this action is bounded by

‖Ŝκ‖∞,t ≤
2
√
m

κη
‖H1‖. (4.9)

Noting ‖HZ‖ ≤ ‖H1‖, the bound (3.26) applies and reads (4.6).

The bound (4.6) is comparable with the slightly better bound obtained in Ref. [35]
by a different method. However, this theorem can immediately be generalized to a time-
dependent Hamiltonian H1(t), a case that cannot be dealt with the methods of Ref. [35].
We just get a time-dependent Zeno Hamiltonian HZ(t) projected exactly in the same way
as (4.5), with the same error (4.6) with ‖H1‖∞,T in place of ‖H1‖.
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4.2 Adiabatic Theorem
The main concern in adiabatic theorems is to characterize how likely it is for a system
starting from an eigenspace of a time-dependent Hamiltonian generating the evolution to
remain in the same eigenspace during the evolution, provided that the variation of the
Hamiltonian is sufficiently slow. By virtue of Eqs. (4.1) and (4.2), the limit evolution
operator when the Hamiltonian variation is slow is equivalently described by

Uκ(t) = T exp
(
−i
∫ t

0
ds κH0(s)

)
, (4.10)

with κ → +∞. In the geometric approach introduced by Kato [22], the transitions be-
tween different eigenspaces of the Hamiltonian can be controlled by bounding the distance
between the exact evolution Uκ(t) and an “adiabatic evolution” which sends each initial
eigenspace of H0(0) to the corresponding eigenspace of H0(t) at t ∈ [0, T ] with dynamical
phases within each eigenspace (see Remark 13 below). The following theorem is proved by
using Corollary 1. Since our purpose is to show how our universal bound can be applied
to prove also the adiabatic theorem, we do not intend to use the weakest assumptions
possible. The readers interested in a broader overview on adiabatic theorems and more
refined bounds tailored to specific situations might refer to Ref. [45].

Theorem 4 (Adiabatic theorem). Assume that for every t ∈ [0, T ] the self-adjoint operator
H0(t) has the finite spectral representation

H0(t) =
m∑
`=1

E`(t)P`(t), (4.11)

where {E`(t)} ⊂ R, while P`(t) = P`(t)† and Pk(t)P`(t) = δk`P`(t) for all k and `. Assume
that E`(t) are C1 and P`(t) are C2, and that there are no level crossings, i.e.,

|ωk,`(t)| = |Ek(t)− E`(t)| > 0, for t ∈ [0, T ], (4.12)

for k 6= `. Then, one has∥∥∥∥Uκ(t)− T exp
(
−i
∫ t

0
ds [κH0(s) +A(s)]

)∥∥∥∥
≤
√
m

κη
(1 + T‖A‖∞,T )

[(
2 + η′

η
T

)
‖A‖∞,T + T‖Ȧ‖∞,T

]
, (4.13)

for all t ∈ [0, T ], where

A(t) =
m∑
`=1

i
2 [Ṗ`(t), P`(t)] (4.14)

is the generator of the adiabatic transporter, and

η = min
k,`
k 6=`

min
t∈[0,T ]

|ωk,`(t)|, η′ = max
k,`
k 6=`

max
t∈[0,T ]

|ω̇k,`(t)| (4.15)

are the minimal spectral gap and the maximal spectral slope, respectively.

Remark 13. The second term inside the norm in (4.13) can be written as

T exp
(
−i
∫ t

0
ds [κH0(s) +A(s)]

)
= W (t)e−iκtHW (t), (4.16)

Accepted in Quantum 2022-06-06, click title to verify. Published under CC-BY 4.0. 24



where
W (t) = T exp

(
−i
∫ t

0
dsA(s)

)
(4.17)

is the unitary adiabatic transporter [22], which transports P`(0) to P`(t) through

P`(t) = W (t)P`(0)W (t)†, (4.18)

and
HW (t) = W (t)†H0(t)W (t) =

m∑
`=1

E`(t)P`(0) (4.19)

yields the dynamical phases within each eigenspace. Note that since [HW (t), HW (t′)] = 0
we have

T exp
(
−iκ

∫ t

0
dsHW (s)

)
= exp

(
−iκ

∫ t

0
dsHW (s)

)
= e−iκtHW (t), (4.20)

where
HW (t) = 1

t

∫ t

0
dsHW (s) =

m∑
`=1

E`(t)P`(0). (4.21)

Proof of Theorem 4. By going to the adiabatic rotating frame of W (t) and by removing
the dynamical phases, we get

Vκ(t) = eiκtHW (t)W (t)†Uκ(t) = T exp
(
−i
∫ t

0
ds Ĥκ(s)

)
, (4.22)

with

Ĥκ(t) = −eiκtHW (t)W (t)†A(t)W (t)e−iκtHW (t) = −
∑
k,`

′
eiκσk,`(t)Ak,`(t), (4.23)

where

σk,`(t) =
∫ t

0
ds ωk,`(s), Ak,`(t) = Pk(0)W (t)†A(t)W (t)P`(0), (4.24)

and
∑′
k,` represents the summation over the pair (k, `) excluding terms with k = `. Notice

that A`,`(t) = W (t)†P`(t)A(t)P`(t)W (t) = 0, and thus the diagonal terms in (4.23) do not
contribute.

By the assumption (4.12) that there are no level crossings, σk,`(t) is strictly monotonic
and invertible, and we get

Sκ(t) =
∫ t

0
ds Ĥκ(s) = −

∑
k,`

′
∫ t

0
ds eiκσk,`(s)Ak,`(s)

= −
∑
k,`

′
∫ σk,`(t)

0
dv eiκv 1

ωk,`(σ−1
k,` (v))

Ak,`(σ−1
k,` (v))

= −
∑
k,`

′
∫ σk,`(t)

0
dv eiκvÃk,`(v)→ 0, as κ→ +∞, (4.25)

by the Riemann-Lebesgue lemma [46]. Moreover,

‖Ĥκ(t)‖ = ‖eiκtHW (t)W (t)†A(t)W (t)e−iκtHW (t)‖ = ‖A(t)‖ ≤ ‖A‖∞,T , (4.26)
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so that Ĥκ(t) is uniformly bounded in κ, and Corollary 1 applies with H(t) = 0, giving

‖Uκ(t)−W (t)e−iκtHW (t)‖ ≤ ‖Sκ‖∞,T (1 + T‖A‖∞,T )→ 0, (4.27)

for all t ∈ [0, T ].
Let us bound the error. Since E`(t) is C1 and P`(t) is C2, Ak,`(s) is differentiable, and

by integration by parts we get∫ t

0
ds eiκσk,`(s)Ak,`(s) = 1

iκ

(
eiκσk,`(t)

ωk,`(t)
Ak,`(t)−

1
ωk,`(0)Ak,`(0)

)

− 1
iκ

∫ t

0
ds eiκσk,`(s)

ωk,`(s)

(
Ȧk,`(s)−

ω̇k,`(s)
ωk,`(s)

Ak,`(s)
)
. (4.28)

Note here that Ȧk,`(t) = Pk(0)W †(t)Ȧ(t)W (t)P`(0). Then, using Lemma 4 in Appendix B,
the action Sκ(t) is bounded by

‖Sκ‖∞,T ≤
√
m

κη

[(
2 + η′

η
T

)
‖A‖∞,T + T‖Ȧ‖∞,T

]
. (4.29)

By noting
W (t)e−iκtHW (t) = T exp

(
−i
∫ t

0
ds [κH0(s) +A(s)]

)
, (4.30)

the bound in (4.27) yields the adiabatic theorem (4.13).

An explicit error bound for an adiabatic approximation, which looks similar to the
bound (4.13), can be found in Ref. [47], but it concerns a different scenario. It bounds the
probability of leakage from a collection of eigenspaces to the rest of the spectrum of the
Hamiltonian, while Theorem 4 bounds the distance from the adiabatic evolution confined
within every eigenspace. The two bounds are not directly comparable.

4.3 Generalized Adiabatic Theorem
The adiabatic theorem proved in Theorem 4 in the previous section can be generalized
to the case of a more general time-dependent Hamiltonian Hκ(t) which assumes the form
κH0(t) only asymptotically for large κ. The possibility of such a generalization was men-
tioned by Kato in Ref. [22] but not worked out explicitly.

Theorem 5 (Generalized adiabatic theorem). Let t ∈ [0, T ] 7→ Hκ(t) be an integrable
Hamiltonian, with Hκ(t) self-adjoint and bounded for all t ∈ [0, T ] and all κ > 0. Let

Uκ(t) = T exp
(
−i
∫ t

0
dsHκ(s)

)
(4.31)

be the evolution generated by Hκ(t). Assume that for all t ∈ [0, T ] there exists the limit

H0(t) = lim
κ→+∞

1
κ
Hκ(t), (4.32)

where H0(t) has the properties of the Hamiltonian in Theorem 4. Assume that

Gκ(t) = Hκ(t)− κH0(t) (4.33)
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is differentiable and ‖Gκ‖∞,T , ‖Ġκ‖∞,T = o(
√
κ). Then, we have

Uκ(t)− T exp
(
−i
∫ t

0
ds [κH0(s) +Gκ,Z(s) +A(s)]

)
→ 0, (4.34)

as κ → +∞, uniformly for t ∈ [0, T ], where A(t) is the adiabatic connection defined
in (4.14), and

Gκ,Z(t) =
m∑
`=1

P`(t)Gκ(t)P`(t) (4.35)

is the time-dependent Zeno Hamiltonian. The convergence error is bounded by∥∥∥∥Uκ(t)− T exp
(
−i
∫ t

0
ds [κH0(s) +Gκ,Z(s) +A(s)]

)∥∥∥∥
≤
√
m

κη
(1 + T‖A‖∞,T + 2T‖Gκ‖∞,T )

×
[(

2 + η′

η
T

)
(‖A‖∞,T + ‖Gκ‖∞,T ) + T (‖Ȧ‖∞,T + ‖Ġκ‖∞,T + 2‖A‖∞,T ‖Gκ‖∞,T )

]
,

(4.36)

where η and η′ are the minimal spectral gap and the maximal spectral slope, respectively,
defined in (4.15).

Proof. We prove this in the same way as in the proof of Theorem 4. We go to the adiabatic
rotating frame of W (t) and remove the dynamical phases,

Vκ(t) = eiκtHW (t)W (t)†Uκ(t) = T exp
(
−i
∫ t

0
ds Ĥκ(s)

)
. (4.37)

In the present case, the Hamiltonian Ĥκ(t), at variance with that in (4.23), reads

Ĥκ(t) = −eiκtHW (t)W (t)†[A(t)−Gκ(t)]W (t)e−iκtHW (t) = −
∑
k,`

eiκσk,`(t)Ak,`(t), (4.38)

where W (t), HW (t), and σk,`(t) are the same as those in (4.17), (4.21), and (4.24), respec-
tively, while Ak,`(t) in (4.24) is replaced by

Ak,`(t) = Pk(0)W (t)†[A(t)−Gκ(t)]W (t)P`(0). (4.39)

Now, we consider the integral action

Sκ(t) =
∫ t

0
ds [Ĥκ(s)−W (s)†Gκ,Z(s)W (s)] = −

∑
k,`

′
∫ t

0
ds eiκσk,`(s)Ak,`(s). (4.40)

We can bound it in the same way as done in Theorem 4, but now we have Ȧk,`(t) =
Pk(0)W †(t){Ȧ(t)− Ġκ(t)− i[A(t), Gκ(t)]}W (t)P`(0). By noting that

W (t)e−iκtHW (t) T exp
(
−i
∫ t

0
dsW (s)†Gκ,Z(s)W (s)

)
= T exp

(
−i
∫ t

0
ds [κH0(s) +Gκ,Z(s) +A(s)]

)
, (4.41)

and ‖Gκ,Z(t)‖ ≤ ‖Gκ(t)‖, we get the bound (4.36).

Accepted in Quantum 2022-06-06, click title to verify. Published under CC-BY 4.0. 27



Remark 14 (Strong-coupling limit with time-dependent Hamiltonians). An immediate ap-
plication of Theorem 5 is to the case where a time-dependent perturbation H1(t) is added
to the strong driving κH0(t) considered in Theorem 4,

Uκ(t) = T exp
(
−i
∫ t

0
ds [κH0(s) +H1(s)]

)
. (4.42)

This is also regarded as a generalization of the strong-coupling limit proved in Theorem 3
in Sec. 4.1 to the case where the Hamiltonians are time-dependent. In this case, Gκ(t) =
H1(t), and one gets∥∥∥∥Uκ(t)− T exp

(
−i
∫ t

0
ds [κH0(s) +HZ(s) +A(s)]

)∥∥∥∥
≤
√
m

κη
(1 + T‖A‖∞,T + 2T‖H1‖∞,T )

×
[(

2 + η′

η
T

)
(‖A‖∞,T + ‖H1‖∞,T ) + T (‖Ȧ‖∞,T + ‖Ḣ1‖∞,T + 2‖A‖∞,T ‖H1‖∞,T )

]
,

(4.43)

with a time-dependent Zeno Hamiltonian

HZ(t) =
m∑
`=1

P`(t)H1(t)P`(t). (4.44)

The example (4.42) represents a strong-coupling implementation of the quantum Zeno
dynamics of a time-dependent Hamiltonian, which has potential applications in holonomic
quantum computation [48].

4.4 Comments
• In Secs. 2.1, 3.1, and 3.2, we dealt with Hamiltonians of the type

Hκ(t) = H(κt), (4.45)

in particular to discuss the RWA in Sec. 3. The dynamics is approximated by an
average Hamiltonian

H = lim
κ→+∞

1
t

∫ t

0
dsHκ(s) = lim

κ→+∞

1
t

∫ t

0
dsH(κs) = lim

τ→+∞

1
τ

∫ τ

0
dsH(s), (4.46)

which is independent of time. In the situation where the drive envelope is modulated
in time, the system is driven with two different timescales,

Hκ(t) = H(t, κt). (4.47)

We analyzed such situations in Sec. 3.3, and the effective evolution is generated by
a time-dependent Hamiltonian H(t) obtained by averaging H(t, κt) over the fast
variable,

H(t) = lim
τ→+∞

1
τ

∫ τ

0
dsH(t, s). (4.48)

• A further generalization is provided in terms of two non-isochronous timescales,

Hκ(t) = H(t, κσ(t)), (4.49)
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with σ̇(t) > 0 for t ∈ [0, T ], so that σ(t) is strictly increasing and invertible. This case,
however, is essentially equivalent to the previous one up to a time-reparametrization
s = σ(t). Indeed, the Schrödinger equation

dUκ(t)
dt = −iH(t, κσ(t))Uκ(t) (4.50)

is equivalent to
dŨκ(s)

ds = −iH̃(s, κs)Ũκ(s), (4.51)

with s = σ(t) and

H̃(u, v) = 1
σ̇(σ−1(u))H(σ−1(u), v). (4.52)

• The adiabatic theorems proved in Secs. 4.2 and 4.3 were reduced to analyzing Hamil-
tonians of the form

Hκ(t) =
∑
`

H`(t, κσ`(t)). (4.53)

This cannot be turned into the form (4.47) by a single time-reparametrization.

• The effectiveness of Corollary 1 shows that the introduction of a particular form of
Hκ(t) = H(t, κt) in terms of a two-variable Hamiltonian H(u, v) (and its average
with respect to the fast variable v) is something of a red herring. No particular
structure of Hκ(t) is in fact required. What is really needed is only that the limit∫ t

0
dsHκ(s)→

∫ t

0
dsH(s), as κ→ +∞ (4.54)

exists uniformly in time, as well as a growth condition on ‖Hκ‖1,T for large κ.

5 Product Formulas
The applications considered so far involve continuous Hamiltonians, but as shown in Ap-
pendix A, our main tool still works for Hamiltonians which are not continuous, as long as
they are locally integrable. In this section, we show how this is relevant in proving var-
ious product formulas, where the evolution stems from the alternation of noncommuting
Hamiltonians.

5.1 Ergodic-Mean Trotter Formula
The standard Trotter product formulas require repetitive operations. For instance, for a
sequence of p bounded Hamiltonians (H1, . . . ,Hp), one has [38](

e−i t
n
Hpe−i t

n
Hp−1 · · · e−i t

n
H1
)n
→ e−it

∑p

j=1 Hj , as n→ +∞. (5.1)

For generic infinite sequences (H1, H2, . . . ), however, it is easy to construct counterexam-
ples to such convergence (see the following Remark 15). Here, we show that, with an
additional assumption of existence, an ergodic-mean Trotter formula can be established
(see also Ref. [49]). This has a variety of applications and many known results can be
reproduced on the basis of Theorem 6, as we will see in the following subsections (some
of the results are even improved and/or new).
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Theorem 6 (Ergodic-mean Trotter formula). Given a sequence of bounded self-adjoint
operators (Hn)n≥1 with ‖Hn‖ ≤M , consider the unitary product

Wn(t) = e−i t
n
Hne−i t

n
Hn−1 · · · e−i t

n
H1 . (5.2)

Suppose that

Hn = 1
n

n∑
j=1

Hj → H, as n→ +∞, (5.3)

for some bounded self-adjoint operator H. Then,

Wn(t)→ e−itH , as n→ +∞, (5.4)

uniformly for t in compact intervals. The convergence error is bounded by

‖Wn(t)− e−itH‖ ≤
(
Mn + 2M

n

)
t(1 + 2tM), (5.5)

where Mn = max1≤j≤n{ jn‖Hj −H‖}. In particular, if one assumes that

‖Hn −H‖ ≤
θM

nα
, (5.6)

for some θ ≥ 0 and α > 0 and for all integer n ≥ 1, then

‖Wn(t)− e−itH‖ ≤
(
θ

nα1
+ 2
n

)
tM(1 + 2tM), (5.7)

where α1 = min{α, 1}.

Proof. The proof is an application of Corollary 1 to the unitary evolution

Wn(t) = T exp
(
−i
∫ t

0
ds hn(s)

)
(5.8)

generated by the piecewise-constant Hamiltonian

hn(s) = Hj , for s ∈
[
(j − 1) t

n
, j

t

n

)
(j = 1, . . . , n). (5.9)

We have
‖hn‖1,t ≤ tM, ‖H‖1,t ≤ tM. (5.10)

For any s ∈ [0, t], let s = (m − r)t/n, with m = dns/te and r = dns/te − ns/t, where
dxe ∈ N represents the least integer greater than or equal to x. Then,

Sn(s) =
∫ s

0
du [hn(u)−H]

= t

n

m∑
j=1

Hj −
rt

n
Hm − sH

= mt

n
Hm − sH −

rt

n
Hm

= s(Hm −H) + rt

n
(Hm −Hm). (5.11)
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Therefore,
‖Sn(s)‖ ≤ s

∥∥Hdns/te −H∥∥+ 2t
n
M, (5.12)

whence

‖Sn‖∞,t = sup
s∈[0,t]

‖Sn(s)‖

≤ t sup
σ∈[0,1]

{
σ
∥∥Hdnσe −H∥∥}+ 2t

n
M

= t max
1≤j≤n

{
j

n
‖Hj −H‖

}
+ 2t
n
M, (5.13)

which implies that
‖Sn‖∞,t → 0, as n→ +∞. (5.14)

Thus, by Corollary 1, we get

‖Wn(t)− e−itH‖ ≤ ‖Sn‖∞,t(1 + 2tM)→ 0, (5.15)

as n→ +∞, with a rate bounded by (5.5).
In particular, under the assumption (5.6), one gets

Mn = max
1≤j≤n

{
j

n
‖Hj −H‖

}
≤ max

1≤j≤n

{
j

n

θM

jα

}
, (5.16)

that is
Mn ≤

θM

n
max

1≤j≤n
j1−α = θM

nmin{α,1} . (5.17)

By plugging it into (5.5), one gets the bound (5.7).

See Fig. 3 for a pictorial representation giving the intuition behind the ergodic-mean
Trotter formula.

Remark 15 (Counterexample). Notice that if the sequence (H1, H2, . . .) does not have an
ergodic mean, the product formula Wn(t) in (5.2) may not converge. Indeed, suppose that
there are two subsequences of (Hn), say (Hnk)k≥1 and (Hn′

k
)k≥1, with different ergodic

means, namely,
Hnk → H1 and Hn′

k
→ H2, as k → +∞, (5.18)

with H1 6= H2. Then, by Theorem 6 we get that

Wnk(t)→ e−itH1 and Wn′
k
(t)→ e−itH2 , as k → +∞, (5.19)

so that the product Wn(t) does not converge.
A simple example is given by Hn = X if blog10(n)c is even, and Hn = Y if blog10(n)c is

odd, so that the sequence alternates between X and Y with a slower and slower switching
frequency, exponentially decreasing. It is easy to see that H102k−1 = 1

11X + 10
11Y for all

k ≥ 1, while H102k+1 → 1
11Y + 10

11X as k → +∞, and thus the Trotter product (5.2) does
not converge.
Remark 16 (Trotter product formula). When the sequence of Hamiltonians Hj is periodic,

Hj+p = Hj , for all j ≥ 1, (5.20)
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e−i tnH1

e−i tnH2

e−i tnHn

e−itHn

O
(

1
nα1

)

Figure 3: Cartoon of product formula. While the true evolution generated by n noncommuting unitaries
oscillates quickly, the averaged one is simpler and only O(1/nα1) away from the exact dynamics. For
the simple but ubiquitous periodic case, an explicit nonperturbative bound is provided by (5.26).

for some p ≥ 2, then one gets back to the standard Trotter formula (5.1). Set

M = max
1≤j≤p

‖Hj‖. (5.21)

In this case, the limit (5.3) exists, and

H = Hp = 1
p

p∑
j=1

Hj . (5.22)

In more detail, by noting

n∑
j=1

Hj =
⌊
n

p

⌋ p∑
j=1

Hj +
{n
p
}p∑

j=1
Hj , (5.23)

one has

Hn −H =
⌊
n

p

⌋
p

n
H + 1

n

{n
p
}p∑

j=1
Hj −H

= −
{
n

p

}
p

n
H + 1

n

{n
p
}p∑

j=1
Hj , (5.24)

and hence,
‖Hn −H‖ ≤ 2

{
n

p

}
p

n
M ≤ 2pM

n
, (5.25)

which has the form (5.6) with θ = 2p and α = 1. Therefore, Theorem 6 applies, and the
Trotter formula (5.1) holds with a rate∥∥∥(e−i t

np
Hpe−i t

np
Hp−1 · · · e−i t

np
H1
)n
− e−itH

∥∥∥ ≤ 2
n

(
1 + 1

p

)
tM(1 + 2tM). (5.26)
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This shows the same scaling as the bound derived in Ref. [38]. This bound can be gener-
alized and improved considering commutator scalings as done in Ref. [50].
Remark 17 (Eternal Trotterization). Let us look at the behavior of the Trotter product
formula for large times. Consider, for simplicity, the case p = 2 and fix the value τ > 0 of
the time step, so that the total time is t = nτ . The bound (5.26) reads∥∥∥(e−i τ2H2e−i τ2H1

)n
− e−inτH

∥∥∥ ≤ 3τM(1 + 2nτM), (5.27)

with H = 1
2(H1 +H2), that is(

e−i τ2H2e−i τ2H1
)n
− e−inτH = O(τM), for n = O

( 1
τM

)
. (5.28)

Therefore, for small τ , the Trotter formula is well approximated by the unitary group
generated by the average Hamiltonian H up to a number n of periods of O(1/τ), that is
up to a total time t = nτ of O(1).

By using Theorem 2, we can find a generator of a unitary group which approximates
the product formula uniformly in n. The Trotter formula is obtained at t = nτ by the
propagator

Uτ (t) = T exp
(
−i
∫ t

0
ds h(s)

)
, (5.29)

generated by the τ -periodic Hamiltonian

h(t) =
{
H1, t ∈ [0, τ2 ),
H2, t ∈ [ τ2 , τ),

h(t+ τ) = h(t). (5.30)

The equation (2.90) reads e−iτHτ = Uτ (τ), that is

e−iτHτ = e−i τ2H2e−i τ2H1 , (5.31)

whose solution, for sufficiently small τ , is

Hτ = i
τ

log
(
e−i τ2H2e−i τ2H1

)
= 1

2(H1 +H2) + iτ8 [H1, H2] +O(τ2M3). (5.32)

The bound (2.89) reads

‖Uτ (t)− e−itHτ ‖ ≤ θ‖h‖1,τ (1 + θ‖h‖1,τ ), (5.33)

for all t ≥ 0, and since

‖h‖1,τ =
∫ τ

0
ds ‖h(s)‖ = τ

2 (‖H1‖+ ‖H2‖) ≤ τM, (5.34)

one has
‖Uτ (t)− e−itHτ ‖ ≤ θτM(1 + θτM), (5.35)

for all t ≥ 0. By setting t = nτ , we finally get the sought eternal bound∥∥∥(e−i τ2H2e−i τ2H1
)n
− e−inτHτ

∥∥∥ ≤ θτM(1 + θτM), ∀n ∈ N. (5.36)

If instead one uses the Hamiltonian

H̃τ = 1
2(H1 +H2) + iτ8 [H1, H2], (5.37)
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then its distance from the eternal generator is

H̃τ = Hτ +O(τ2M3), (5.38)

and the approximation is no more eternal. However, according to Remark 7, one gets(
e−i τ2H2e−i τ2H1

)n
− e−inτH̃τ = O(τM), for n = O

( 1
τ2M2

)
, (5.39)

which is valid for a number n of periods larger than (5.28), that is up to a total time
t = nτ of O(1/τ).

5.2 Random Trotter Formula
The crucial ingredient in the ergodic-mean Trotter formula is the convergence (5.3) of the
arithmetic mean to a limit. If the sequence of Hamiltonians H1, H2, . . . is drawn at random
from a given distribution with finite variance σ2

H , by the law of large numbers one gets
that (5.3) holds in probability:

Hn
P−→ H, as n→ +∞, (5.40)

where H = E[Hj ] is the mean of the distribution, that is

lim
n→+∞

Prob
(
‖Hn −H‖ > ε

)
= 0, for all ε > 0. (5.41)

As a consequence, in such a situation one will get

Wn(t) P−→ e−itH , as n→ +∞, (5.42)

and the theorem will hold in probability. This is the content of the following corollary,
which is a probabilistic version of Theorem 6, with θ = σH/M and α = 1/2.

Similar stochastic convergence theorems have been known in the mathematical-physics
literature. See for instance Ref. [51]. However, because they are framed in a much more
general setting, there are no explicit bounds on the convergence speed provided. On the
other hand, in the context of quantum information, there has been renewed interest in
randomized Trotter evolutions [52–55]. In particular, Ref. [52] provides an elegant way to
obtain bounds on the average evolution, and Ref. [55] computes an error bound for the
expected difference of the individual realizations to the limit. In our framework, we obtain
a similar bound (though it is not optimal) with a different proof strategy.

Corollary 2 (Random Trotter formula). Suppose that each operator of a sequence of
bounded self-adjoint operators (Hn)n≥1 is sampled independently and randomly from an
identical distribution (i.i.d. sampling), and consider the unitary product

Wn(t) = e−i t
n
Hne−i t

n
Hn−1 · · · e−i t

n
H1 . (5.43)

Assume that ‖Hj‖ ≤ M for all j ≥ 1, and the distribution has a finite mean H = E[Hj ]
and variance σ2

H = E
[
‖Hj − H‖22

]
, where ‖A‖2 =

√
tr(A2) is the Hilbert-Schmidt norm.

Then, for any ε > 0,
Prob

(
‖Hn −H‖ > ε

)
≤ 1
ε

σH
n1/2 , (5.44)

and
Prob

(
‖Wn(t)− e−itH‖ > ε

)
≤ 1
ε

(
σH
M

1
n1/2 + 2

n

)
tM(1 + 2tM), (5.45)

for t ≥ 0.
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Proof. The first bound (5.44) is the weak law of large numbers for i.i.d. random operators.
Indeed, we get (

E
[
‖Hn −H‖

])2
≤ E

[
‖Hn −H‖2

]
≤ E

[
‖Hn −H‖22

]
= E

[
tr{(Hn −H)2}

]
= 1
n2

n∑
i=1

n∑
j=1

E
[
tr{(Hi −H)(Hj −H)}

]
= 1
n2

n∑
j=1

E
[
tr{(Hj −H)2}

]
= 1
n
E
[
‖Hj −H‖22

]
= 1
n
σ2
H , (5.46)

that is
E
[
‖Hn −H‖

]
≤ σH
n1/2 , (5.47)

where the i.i.d. property

E
[
(Hi −H)(Hj −H)

]
= δij E

[
(Hj −H)2] (5.48)

has been used. By Markov’s inequality, for any ε > 0 we get

Prob
(
‖Hn −H‖ > ε

)
≤ 1
ε
E
[
‖Hn −H‖

]
≤ 1
ε

σH
n1/2 , (5.49)

that is inequality (5.44).
Now, we proceed as in Theorem 6 and bound the action Sn(s) by (5.12), i.e.,

‖Sn(s)‖ ≤ s
∥∥Hdns/te −H∥∥+ 2t

n
M, (5.50)

for s ∈ [0, t]. By taking the expectation value and using (5.47), we get

E
[
‖Sn(s)‖

]
≤ sE

[∥∥Hdns/te −H∥∥]+ 2t
n
M

≤ s

dns/te1/2
σH + 2t

n
M

≤ s1/2t1/2

n1/2 σH + 2t
n
M

≤ t

n1/2σH + 2t
n
M. (5.51)

By the intermediate bound (2.5) in Lemma 1, we have

‖Wn(t)− e−itH‖ ≤ ‖Sn(t)‖+ 2M
∫ t

0
ds ‖Sn(s)‖, (5.52)

whence, by taking the expectation value,

E
[
‖Wn(t)− e−itH‖

]
≤ E

[
‖Sn(t)‖

]
+ 2M

∫ t

0
dsE

[
‖Sn(s)‖

]
≤
(
σH
n1/2 + 2M

n

)
t(1 + 2tM). (5.53)

The bound (5.45) follows by Markov’s inequality.
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5.3 Frequent Unitary Kicks
Consider the evolution of a system generated by a time-independent Hamiltonian H in-
terrupted by a sequence of n+ 1 unitary kicks U1, . . . , Un+1,

Wn(t) = Un+1e−i t
n
HUne−i t

n
H · · · U2e−i t

n
HU1. (5.54)

The evolution lasts for a time t and there is a kick every time t/n. We are interested in
the evolution for large n.

We can rewrite (5.54) in a more convenient form

Wn(t) = Vn+1(V †n e−i t
n
HVn) · · · (V †2 e−i t

n
HV2)(V †1 e−i t

n
HV1)

= Vn+1e−i t
n
V †nHVn · · · e−i t

n
V †2 HV2e−i t

n
V †1 HV1 , (5.55)

where Vj = Uj · · ·U1 (j = 1, . . . , n + 1), which, up to the last factor Vn+1, reduces to an
isospectral case of the product formula (5.2). Therefore, for large n the evolution can be
approximated by the unitary group generated by the average Hamiltonian, namely,

Wn(t) ≈ Vn+1e−itH . (5.56)

Corollary 3 (Frequent unitary kicks). Given a bounded self-adjoint operator H and a
sequence of unitaries (Un)n≥1, consider the unitary product

Wn(t) = Un+1e−i t
n
HUne−i t

n
H · · · U2e−i t

n
HU1. (5.57)

Let Vn = Un · · ·U1 for all integer n ≥ 1, and suppose that

Hn = 1
n

n∑
j=1

V †j HVj → H, as n→ +∞, (5.58)

for some bounded self-adjoint operator H. Then,

Wn(t)− Vn+1e−itH → 0, as n→ +∞, (5.59)

uniformly for t in compact intervals. Moreover, if one assumes that

‖Hn −H‖ ≤
θ

nα
‖H‖, (5.60)

for some θ ≥ 0 and α > 0 and for all integer n ≥ 1, then

‖Wn(t)− Vn+1e−itH‖ ≤
(
θ

nα1
+ 2
n

)
t‖H‖(1 + 2t‖H‖), (5.61)

with α1 = min{α, 1}.

Proof. Choosing Hn = V †nHVn in Theorem 6, we have M = ‖H‖, and the statement
follows immediately.
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5.4 Dynamical Decoupling
Let us assume that the sequence of unitaries Vj is periodic,

Vj+p = Vj , for all j ≥ 1, (5.62)

for some p ≥ 2. This happens if

Up+1 = U †2U
†
3 · · ·U

†
p , (5.63)

and
Uj+p = Uj , for all j ≥ 2. (5.64)

We say that (V1, . . . , Vp) is a cycle of kicks. In such a case, the limit (5.58) exists,

H = Hp = 1
p

p∑
j=1

V †j HVj , (5.65)

and one has

‖Hn −H‖ ≤ 2
{
n

p

}
p

n
‖H‖ ≤ 2p

n
‖H‖, (5.66)

which has the form (5.60) with θ = 2p and α = 1. Therefore, Corollary 3 applies, and the

evolution subjected to n cycles of p kicks converges to the evolution e−itH as n increases,
with a rate∥∥∥(V †p e−i t

np
H
Vp · · ·V †1 e−i t

np
H
V1
)n
− e−itH

∥∥∥ ≤ 2
n

(
1 + 1

p

)
t‖H‖(1 + 2t‖H‖). (5.67)

This bound is exponentially better in t than a previous bound [43].
The method of dynamical decoupling [56–62] fits in this formalism and has important

applications in quantum control. Consider for instance a d-dimensional quantum system
coupled to an environment that induces decoherence on the quantum system. The Hilbert
space of the total system is a product HS ⊗HE , and the system-environment coupling is
represented by the sum of interaction Hamiltonians of the form h ⊗HE . The aim of the
dynamical decoupling is to suppress such detrimental interactions by rapidly rotating the
system around different axes with a cycle of unitary kicks Vj = vj ⊗ 1 on the system with
the property

1
p

p∑
j=1

v†jhvj = 1
d

trh (5.68)

for every operator h on HS . Such cycles of unitaries average out the unwanted interactions
(h⊗HE = 0 if h is traceless, otherwise it yields just a Hamiltonian of the environment),
and the evolutions of the system and of the environment are decoupled.

Finally, it is worth noticing that random dynamical decoupling [63–68], in which the
unitaries Vj are randomly chosen (without periodicity), can also be treated by our method,
as an application of the random Trotter formula proved in Corollary 2.

5.5 Bang-Bang Control
The dynamical decoupling mentioned in the previous section intends to decouple the evo-
lutions of systems interacting with each other, by applying a variety of unitaries to average
out the interactions through (5.68). It can be regarded as a manifestation of the quantum
Zeno dynamics [43,69]: the Hamiltonian of the coupled systems is projected by the group
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average (5.68), and the systems evolve within subspaces (Zeno subspaces) according the
projected Hamiltonian (Zeno Hamiltonian) [26,27]. To induce the quantum Zeno dynam-
ics, it is actually enough to repeat a single fixed unitary kick [69], instead of applying
several different unitaries to cover a complete unitary group. This situation is a special
case of Corollary 3, and an explicit error bound is available (see also Ref. [49]). The limit
evolution is generated by a Zeno Hamiltonian HZ defined in the same way as the one (4.5)
induced by the strong-coupling limit proved in Theorem 3 in Sec. 4.1 [27,30,32,41,43,69].

Corollary 4 (Fixed kick). Let H be bounded and self-adjoint, and let U be a unitary
operator with the finite spectral representation

U =
m∑
`=1

e−iφ`P`, (5.69)

where {e−iφ`} are the m distinct eigenvalues of U . Let

η = min
k,`
k 6=`

|e−iφk − e−iφ` | = 2 min
k,`
k 6=`

∣∣∣∣sin φk − φ`2

∣∣∣∣ (5.70)

be the minimal spectral gap of U , and

HZ =
m∑
`=1

P`HP` (5.71)

be the Zeno Hamiltonian. Then,

∥∥∥(Ue−i t
n
H
)n
− Une−itHZ

∥∥∥ ≤ 2
n

(√
m

η
+ 1

)
t‖H‖(1 + 2t‖H‖), (5.72)

for all integer n ≥ 1 and for all t ≥ 0.

Proof. This is an application of Corollary 3 with U1 = 1 and Uj = U for j = 2, 3, . . . , n+1,
and thus V1 = 1 and Vj = U j−1 for j = 2, 3, . . . , n + 1. By Lemma 6 in Appendix B, we
get the ergodic mean

Hn = 1
n

n−1∑
j=0

U †
j
HU j →

∑
`

P`HP`, as n→ +∞, (5.73)

that is H = HZ . Moreover,

‖Hn −HZ‖ ≤
2
√
m

ηn
‖H‖, (5.74)

which has the form (5.60) with θ = 2
√
m/η and α = 1, and (5.61) gives the thesis.

The bound (5.72) is tighter by a factor logn than the bound derived in Ref. [41].

5.6 A Generalized Trotter Formula
The strong-coupling limit and the bang-bang control, analyzed in Secs. 4.1 and 5.5, respec-
tively, are both manifestations of the quantum Zeno dynamics. The connection between
these two quite different situations can be made more explicit by writing the unitary kicks
in the bang-bang evolution in the form U = e−itH0 (here, t is some fixed time). Then,
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the strong-coupling limit (4.6) and the bang-bang limit (5.72) respectively represent the
following approximations,

e−it(κH0+H1) ≈ e−it(κH0+HZ), as κ→ +∞, (5.75)(
e−itH0e−i t

n
H1
)n
≈ e−it(nH0+HZ), as n→ +∞. (5.76)

The right-hand sides of the these equations coincide by identifying κ = n, which implies
that the left-hand sides must be approximately equal by this identification. In other words,
we are interested in the validity of the following Trotter-like formula,(

e−i t
n
κH0e−i t

n
H1
)n
≈ e−it(κH0+H1), as n→ +∞, (5.77)

where the coupling strength κ is allowed to grow with the number n of Trotter steps. This
relation was discussed in Ref. [42], where it was found that the error can be bounded, but
the bound grows with κ. Here, we improve this result using Corollary 1.

Theorem 7 (Generalized Trotter formula). Let H0 be a bounded self-adjoint operator with
the finite spectral representation

H0 =
m∑
µ=1

λµPµ, (5.78)

and denote with
η = min

µ,ν
µ 6=ν

|λµ − λν | (5.79)

the minimal spectral gap of H0. Assume that

κ ≤ θ

ηt
n, (5.80)

for some 0 < θ < 2π. Then,(
e−i t

n
κH0e−i t

n
H
)n
− e−it(κH0+H1) → 0, (5.81)

as n→ +∞. In particular, one has∥∥∥(e−i t
n
κH0e−i t

n
H
)n
− e−it(κH0+H1)

∥∥∥ ≤ 1
n

[
√
mg(θ) + 2]t‖H1‖(1 + 2t‖H1‖), (5.82)

where g(x) = 2|1 + ix− eix|/|(eix − 1)x| ≤ 2/(2π − x) + (1− 1/π).

Remark 18. Note that the product formula (5.81) holds for κ = o(n), i.e. for a coupling
strength κ growing sublinearly in the number of Trotter steps n, which was conjectured
in Ref. [42]. Here, by using the universal bound, we show that the conjecture is in fact
true up to κ = O(n), as in (5.80).

Proof of Theorem 7. As in the proof of the strong-coupling limit in Theorem 3, it is con-
venient to look at the distance between the two evolutions in the frame rotating with
κH0, (

e−i t
n
κH0e−i t

n
H1
)n
− e−it(κH0+H1) = e−itκH0 [Ûn,κ(t)− Ũκ(t)], (5.83)

where
Ũκ(t) = eiκtH0e−it(κH0+H1) = T exp

(
−i
∫ t

0
ds H̃κ(s)

)
(5.84)
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is generated by the Hamiltonian in the rotating frame

H̃κ(s) = eiκsH0H1e−iκsH0 , (5.85)

while

Ûn,κ(t) = eiκtH0
(
e−i t

n
κH0e−i t

n
H1
)n

=
(
ei(n−1) t

n
κH0e−i t

n
H1e−i(n−1) t

n
κH0

)
· · ·
(
ei t
n
κH0e−i t

n
H1e−i t

n
κH0

)
e−i t

n
H1

= e−i t
n
H̃κ((n−1)t/n) · · · e−i t

n
H̃κ(t/n)e−i t

n
H̃κ(0)

= T exp
(
−i
∫ t

0
ds Ĥn,κ(s)

)
, (5.86)

with Ĥn,κ(s) being a “discretized” version of H̃κ(s), i.e.,

Ĥn,κ(s) = H̃κ

(⌊
s
n

t

⌋
t

n

)
. (5.87)

By applying Lemma 1, one has

‖Ûn,κ(s)− Ũκ(s)‖ ≤ ‖Sn,κ‖∞,t(1 + ‖Ĥn,κ‖1,t + ‖H̃κ‖1,t), (5.88)

for all s ∈ [0, t], where in this case

Sn,κ(t) =
∫ t

0
ds [Ĥn,κ(s)− H̃κ(s)] (5.89)

represents essentially the integrated error associated with the “discretization.” Since
‖Ĥn,κ(s)‖ = ‖H̃κ(s)‖ = ‖H1‖, the bound (5.88) is reduced to

‖Ûn,κ(t)− Ũκ(s)‖ ≤ ‖Sn,κ‖∞,t(1 + 2t‖H1‖), (5.90)

for all s ∈ [0, t]. We now need to bound ‖Sn,κ‖∞,t.
Let us first consider the action Sn,κ(s) at s = s` = ` tn for ` = 1, . . . , n,

Sn,κ(s`) =
∫ s`

0
ds [Ĥn,κ(s)− H̃κ(s)]

= t

n

`−1∑
j=0

H̃κ

(
j
t

n

)
−
∫ s`

0
ds H̃κ(s)

= τn

`−1∑
j=0

H̃κ(jτn)−
∫ `

0
du H̃κ(uτn)

 , (5.91)

where τn = t/n. By using the spectral representation of H0 in (5.78), we have

H̃κ(s) =
m∑

µ,ν=1
eiκωµνsPµH1Pν , (5.92)

with ωµν = λµ − λν . Then,
`−1∑
j=0

H̃κ(jτn)−
∫ `

0
du H̃κ(uτn)

=
∑
µ,ν

`−1∑
j=0

eijκωµντn −
∫ `

0
du eiuκωµντn

PµH1Pν

=
∑
µ,ν

′
(

ei`κωµντn − 1
eiκωµντn − 1 −

ei`κωµντn − 1
iκωµντn

)
PµH1Pν
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=
∑
µ,ν

′
(ei`κωµντn − 1)1 + iκωµντn − eiκωµντn

(eiκωµντn − 1)iκωµντn
PµH1Pν . (5.93)

Thus, by taking the norm of the action (5.91) using Lemma 4 in Appendix B, we get the
bound

‖Sn,κ(s`)‖ ≤
t

n

√
mmax

µ,ν
µ 6=ν

g`(κωµντn)‖H1‖, (5.94)

where
g`(x) =

∣∣∣∣∣(ei`x − 1)1 + ix− eix

(eix − 1)x

∣∣∣∣∣ , (5.95)

which is bounded by

g`(x) ≤ g(x) = 2
∣∣∣∣∣1 + ix− eix

(eix − 1)x

∣∣∣∣∣ =
∣∣∣∣∣sinc(x/2)− eix/2

sin(x/2)

∣∣∣∣∣ . (5.96)

Notice that g(x) diverges at points x` = 2π` with ` = ±1,±2, . . . , but can be suitably
bounded far from these points. In particular, since g(x) is even and increasing in (0, 2π),
by assuming (5.80), one has

0 ≤ κ|ωµν |τn = κ|λµ − λν |
t

n
≤ θ, (5.97)

and g(κωµντn) ≤ g(θ) < +∞. The action (5.94) is thus bounded by

‖Sn,κ(s`)‖ ≤
t

n

√
mg(θ)‖H1‖, (5.98)

uniformly for ` = 0, . . . , n. The bound on ‖Sn,κ(s)‖ for s ∈ [0, t] can be easily obtained by
this result: for each fixed s, take s` = ` tn for ` = bsnt c, and write

‖Sn,κ(s)‖ ≤ ‖Sn,κ(s`)‖+ ‖Sn,κ(s)− Sn,κ(s`)‖ ≤
t

n
[
√
mg(θ) + 2]‖H1‖, (5.99)

where we used

‖Sn,κ(s)− Sn,κ(s`)‖ ≤
∫ s

s`

dσ ‖Ĥn,κ(σ)− H̃κ(σ)‖ ≤ 2(s− s`)‖H1‖ ≤
2t
n
‖H1‖. (5.100)

Equation (5.99) yields the bound

‖Sn,κ‖∞,t ≤
t

n
[
√
mg(θ) + 2]‖H1‖, (5.101)

which is inserted into (5.90) to finally obtain

‖Ûn,κ(t)− Ũκ(t)‖ ≤ 1
n

[
√
mg(θ) + 2]t‖H1‖(1 + 2t‖H1‖). (5.102)

This, used together with (5.83), proves (5.82).
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6 Conclusions
The evolutions generated by time-dependent Hamiltonians are notoriously complicated
to characterize. In many cases of interest, one looks for a simple approximation of the
exact evolution which captures its essential features. Here, we have derived simple bounds
to estimate the errors of such approximations. Our result allows one to estimate the er-
ror associated with these approximations in terms of the integral action of the difference
between the approximated and the exact generator of the evolution. Thanks to the com-
plete generality of the approach, this result can be used in a wide plethora of cases which
may appear to be unrelated to each other, such as the RWA, the adiabatic theorems,
strong-coupling limits, and even pulsed evolutions, which have the additional peculiarity
of being generated by time-dependent discontinuous (usually piecewise-constant) Hamil-
tonians. An obvious limitation of our work is that all bounds are given in terms of norms
of some operators. Therefore, most of our results do not apply to unbounded operators
(however, see Remark 4). In particular, with respect to the RWA, it would be interesting
to develop convergence results for commonly used systems such as the Jaynes-Cummings
model.
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A Locally Integrable Generators
Our main tools, Lemma 1, Theorem 1, and Corollary 1, based on integration by parts, are
all valid for locally integrable generators. In this appendix, we provide explicit derivations
of our basic tools by just assuming the local integrability of the generators.

Lemma 2 (Gronwall’s inequality for L1
loc functions). Let a ∈ L1

loc(R) be locally integrable,
with a(t) ≥ 0 for all t ≥ 0. Assume that g ∈ L∞loc(R) satisfies

0 ≤ g(t) ≤
∫ t

0
ds a(s)g(s). (A.1)

Then, g(t) ≡ 0 for all t ≥ 0.

Proof. By iterating,

0 ≤ g(t) ≤
∫ t

0
ds1 a(s1)

∫ s1

0
ds2 a(s2)g(s2)

≤
∫ t

0
ds1 · · ·

∫ sn−1

0
dsn

∫ sn

0
ds a(s1) · · · a(sn)a(s)g(s)
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=
∫ t

0
ds a(s)g(s)

∫ t

s
dsn · · ·

∫ t

s2
ds1 a(s1) · · · a(sn)

=
∫ t

0
ds a(s)g(s) 1

n!

(∫ t

s
ds1 a(s1)

)n
≤ 1
n!

(∫ t

0
ds1 a(s1)

)n ∫ t

0
ds a(s)g(s)→ 0, (A.2)

as n→ +∞.

Proposition 2 (Propagators generated by L1
loc generators). Let t ∈ R 7→ H(t) ∈ B(H)

be a locally integrable operator-valued map, H ∈ L1
loc(R). Then, the integral equation

U(t) = 1− i
∫ t

0
dsH(s)U(s) (A.3)

has a unique bounded solution t 7→ U(t) ∈ B(H). Moreover, U(t) is continuous.

Proof.

1. (Existence) The series

U(t) = 1 +
∑
k≥1

∫ t

0
ds1 · · ·

∫ sk−1

0
dskH(s1) · · ·H(sk) (A.4)

is absolutely convergent for every t ≥ 0. Indeed,

‖U(t)‖ ≤ 1 +
∑
k≥1

∫ t

0
ds1 · · ·

∫ sk−1

0
dsk ‖H(s1)‖ · · · ‖H(sk)‖

=
∑
k≥0

1
k!

(∫ t

0
ds ‖H(s)‖

)k

= exp
(∫ t

0
ds ‖H(s)‖

)
(A.5)

is bounded, and it is immediate to show that U(t) satisfies the integral equa-
tion (A.3).

2. (Uniqueness) Let U and V be two bounded solutions of the integral equation (A.3).
Then,

‖U(t)− V (t)‖ =
∥∥∥∥∫ t

0
dsH(s)[U(s)− V (s)]

∥∥∥∥ . (A.6)

Let g(t) = ‖U(t) − V (t)‖ and a(t) = ‖H(t)‖. They satisfy Gronwall’s inequal-
ity (A.1), so that g(t) = 0. Thus, U = V .

3. (Continuity) One has

U(t1)− U(t2) = −i
∫ t2

t1
dsH(s)U(s), (A.7)

so that
‖U(t1)− U(t2)‖ ≤

∫ t2

t1
ds ‖H(s)‖‖U(s)‖ → 0, (A.8)

as t2 → t1.
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Lemma 3 (Integration by parts). Let a(t), b(t), and c(t) be locally integrable bounded
operator-valued functions, and let A(t) = A(0) +

∫ t
0 ds a(s), B(t) = B(0) +

∫ t
0 ds b(s), and

C(t) = C(0) +
∫ t

0 ds c(s). Then,∫ t

0
ds [a(s)B(s) +A(s)b(s)] = A(t)B(t)−A(0)B(0), (A.9)

and∫ t

0
ds [a(s)B(s)C(s) +A(s)b(s)C(s) +A(s)B(s)c(s)] = A(t)B(t)C(t)−A(0)B(0)C(0).

(A.10)

Proof. The proof is a direct computation:∫ t

0
ds [a(s)B(s) +A(s)b(s)]

=
∫ t

0
ds a(s)

(
B(0) +

∫ s

0
du b(u)

)
+
∫ t

0
du
(
A(0) +

∫ u

0
ds a(s)

)
b(u)

= [A(t)−A(0)]B(0) +
∫ t

0
ds a(s)

∫ s

0
du b(u)

+A(0)[B(t)−B(0)] +
∫ t

0
ds a(s)

∫ t

s
du b(u)

= [A(t)−A(0)]B(0) +A(0)[B(t)−B(0)] + [A(t)−A(0)][B(t)−B(0)]

= A(t)B(t)−A(0)B(0), (A.11)

that is formula (A.9). Formula (A.10) is obtained by setting D(t) = A(t)B(t), so that
D(t) = D(0) +

∫ t
0 ds d(s) with d(t) = a(t)B(t) +A(t)b(t) by (A.9). Thus,∫ t

0
ds [a(s)B(s)C(s) +A(s)b(s)C(s) +A(s)B(s)c(s)] =

∫ t

0
ds [d(s)C(s) +D(s)c(s)],

(A.12)
and applying again (A.9), we are done.

Theorem 8. Let Uj be the continuous propagators generated by Hj ∈ L1
loc(R), for j = 1, 2.

Then,
U1(t)†U2(t) = 1− i

∫ t

0
dsU1(s)†[H2(s)−H1(s)†]U2(s). (A.13)

Proof. From

U2(t) = 1− i
∫ t

0
dsH2(s)U2(s), U1(t)† = 1 + i

∫ t

0
dsU1(s)†H1(s)†, (A.14)

one gets (A.13) by integration by parts (A.9), for A(t) = U1(t)† with a(t) = iU1(t)†H1(t)†,
and B(t) = U2(t) with b(t) = −iH2(t)U2(t).

Corollary 5. Let H = H† ∈ L1
loc(R) be the bounded self-adjoint generator of a continuous

propagator U . Then, U(t) is unitary for all t,

U(t)†U(t) = U(t)U(t)† = 1. (A.15)
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Corollary 6. Let Hj = H†j ∈ L1
loc(R) be the bounded self-adjoint generators of continuous

propagators Uj, for j = 1, 2. Then,

U2(t)− U1(t) = −i
∫ t

0
dsU1(t)U1(s)†[H2(s)−H1(s)]U2(s). (A.16)

Now, the next theorem provides an explicit derivation of the integration-by-part lemma
(Lemma 1) for locally integrable generators.

Theorem 9 (Integration-by-part lemma for locally integrable generators). Let Uj be the
continuous propagators generated by bounded self-adjoint Hj ∈ L1

loc(R), for j = 1, 2. Let

S21(t) =
∫ t

0
ds [H2(s)−H1(s)]. (A.17)

Then,

U2(t)− U1(t) = −iS21(t)U2(t)−
∫ t

0
dsU1(t)U1(s)†[H1(s)S21(s)− S21(s)H2(s)]U2(s).

(A.18)

Proof. By Corollary 6, U2(t)− U1(t) = U1(t)D(t), with

D(t) = −i
∫ t

0
dsU1(s)†[H2(s)−H1(s)]U2(s). (A.19)

Then, an application of (A.10) of Lemma 3 to A(t) = U1(t)† with a(t) = iU1(t)†H1(t),
B(t) = S21(t) with b(t) = H2(t)−H1(t), and C(t) = U2(t) with c(t) = −iH2(t)U2(t) gives

D(t) = −iU1(t)†S21(t)U2(t) + i
∫ t

0
ds [iU1(s)†H1(s)]S21(s)U2(s)

+ i
∫ t

0
dsU1(s)†S21(s)[−iH2(s)U2(s)], (A.20)

and the theorem is proved for U2(t)− U1(t) = U1(t)D(t).

B Ergodic Means
In this appendix, we provide a few basic bounds on ergodic means, which are used in the
main text. We use the spectral norm.

Lemma 4. Let {P`} be a set of m Hermitian projections satisfying P` = P †` and PkP` =
δk`P` for all k and `. Then, for any bounded operators {A`}, we have

∥∥∥∥∑
`

A`P`

∥∥∥∥ ≤
√√√√∑

`

‖A`‖2. (B.1)

Moreover, for any bounded operator A and for any complex numbers {ck,`}, we have∥∥∥∥∑
k,`

ck,`PkAP`

∥∥∥∥ ≤ √mmax
k,`
|ck,`|‖A‖. (B.2)
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Proof. The spectral norm ‖A‖ gives the largest singular value of an operator A, and
satisfies ‖A‖2 = ‖A†A‖ = ‖AA†‖. Thus,∥∥∥∥∑

`

A`P`

∥∥∥∥2
=
∥∥∥∥(∑

k

AkPk

)(∑
`

A`P`

)†∥∥∥∥ =
∥∥∥∥∑
`

A`P`A
†
`

∥∥∥∥
≤
∑
`

‖A`P`A†`‖ =
∑
`

‖A`P`‖2 ≤
∑
`

‖A`‖2, (B.3)

that is (B.1).
The second inequality (B.2) derives from (B.1),∥∥∥∥∑
k,`

ck,`PkAP`

∥∥∥∥2
=
∥∥∥∥∑
`

(∑
k

ck,`PkA

)
P`

∥∥∥∥2
≤
∑
`

∥∥∥∥∑
k

ck,`PkA

∥∥∥∥2

≤
∑
`

∥∥∥∥∑
k

ck,`Pk

∥∥∥∥2
‖A‖2 =

∑
`

max
k
|ck,`|2‖A‖2 ≤ mmax

k,`
|ck,`|2‖A‖2.

(B.4)

In the following two lemmas,
∑′
k,` represents double summations over k and ` excluding

terms with k = `.

Lemma 5 (Continuous ergodic mean). Let H be a bounded self-adjoint operator with the
finite spectral representation

H =
m∑
`=1

E`P`, (B.5)

where {E`} is the spectrum of H and {P`} its spectral projections. Let

η = min
k,`
k 6=`

|Ek − E`| (B.6)

be the minimal spectral gap of H. Then, for any bounded operator A and for any t > 0,
we have ∥∥∥∥1

t

∫ t

0
ds eisHAe−isH −

∑
`

P`AP`

∥∥∥∥ ≤ 2
√
m

ηt
‖A‖. (B.7)

Proof. By using the spectral representation of H in (B.5), we have

1
t

∫ t

0
ds eisHAe−isH −

∑
`

P`AP` =
∑
k,`

′ 1
t

∫ t

0
ds eis(Ek−E`)PkAP`

=
∑
k,`

′ eit(Ek−E`) − 1
it(Ek − E`)

PkAP`. (B.8)

By using Lemma 4, this is bounded by∥∥∥∥1
t

∫ t

0
ds eisHAe−isH −

∑
`

P`AP`

∥∥∥∥ =
∥∥∥∥∥∑
k,`

′ eit(Ek−E`) − 1
it(Ek − E`)

PkAP`

∥∥∥∥∥
≤
√
mmax

k,`
k 6=`

∣∣∣∣sin[t(Ek − E`)/2]
t(Ek − E`)/2

∣∣∣∣ ‖A‖ ≤ 2
√
m

ηt
‖A‖.

(B.9)
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Lemma 6 (Discrete ergodic mean). Let U be a unitary operator with the finite spectral
representation

U =
m∑
`=1

e−iφ`P`, (B.10)

where {e−iφ`} is the spectrum of U and {P`} its spectral projections. Let

η = min
k,`
k 6=`

|e−iφk − e−iφ` | = 2 min
k,`
k 6=`

∣∣∣∣sin φk − φ`2

∣∣∣∣ (B.11)

be the minimal spectral gap of U . Then, for any bounded operator A and for any integer
n ≥ 1, we have ∥∥∥∥∥ 1

n

n−1∑
j=0

U †
j
AU j −

∑
`

P`AP`

∥∥∥∥∥ ≤ 2
√
m

ηn
‖A‖. (B.12)

Proof. By using the spectral representation of U in (B.10), we have

1
n

n−1∑
j=0

U †
j
AU j −

∑
`

P`AP` =
∑
k,`

′ 1
n

n−1∑
j=0

eij(φk−φ`)PkAP` = 1
n

∑
k,`

′ 1− ein(φk−φ`)

1− ei(φk−φ`)
PkAP`.

(B.13)
By using Lemma 4, this is bounded by∥∥∥∥∥ 1

n

n−1∑
j=0

U †
j
AU j −

∑
`

P`AP`

∥∥∥∥∥ = 1
n

∥∥∥∥∥∑
k,`

′ 1− ein(φk−φ`)

1− ei(φk−φ`)
PkAP`

∥∥∥∥∥
≤
√
m

n
max
k,`
k 6=`

∣∣∣∣sin[n(φk − φ`)/2]
sin[(φk − φ`)/2]

∣∣∣∣ ‖A‖ ≤ 2
√
m

ηn
‖A‖. (B.14)

C Rotating Frames
In Remark 3, the freedom in the choice of a rotating frame is mentioned. Given U1(t)
and U2(t) unitary propagators, the “canonical” gauge for a rotating frame is given by one
of the two evolutions, say U1(t). In this rotating frame, the distance between the two
evolutions is given by the distance between the relative evolution U(t) = U1(t)†U2(t) and
the identity (zero Hamiltonian),

‖U2(t)− U1(t)‖ = ‖U(t)− 1‖. (C.1)

The Hamiltonian of the relative evolution U(t) is given by

H(t) = U1(t)†[H2(t)−H1(t)]U1(t), (C.2)

and the integral action is simply

S(t) =
∫ t

0
dsH(s). (C.3)

The Hamiltonian H(t) may have an involute form and such canonical frame may be
unpractical. However, it has a conceptual merit as we are going to show.

One can show that the converse of (1.8) holds in the canonical frame, under suitable
assumptions on H(t). Namely,

U2 ≈ U1 ⇒ S ≈ 0. (C.4)
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Proposition 3. Let t 7→ U(t) be the unitary propagator generated by a locally integrable
time-dependent Hamiltonian H(t), with H(t) bounded and self-adjoint for all t ∈ R. Then,
the integral action S(t) =

∫ t
0 dsH(s) is bounded by

‖S‖∞,t ≤ (1 + ‖H‖1,t)‖U − 1‖∞,t. (C.5)

Proof. We have

U(t)− 1 = −i
∫ t

0
dsH(s)U(s)

= −i
∫ t

0
dsH(s)[U(s)− 1]− i

∫ t

0
dsH(s)

= −i
∫ t

0
dsH(s)[U(s)− 1]− iS(t), (C.6)

that is,
S(t) = i[U(t)− 1]−

∫ t

0
dsH(s)[U(s)− 1]. (C.7)

By taking the norm the result follows.

D Non-isospectral Hamiltonians
Here, we prove that, if the constant generators of two evolutions are not isospectral, the
two evolutions eventually diverge, regardless of how close the generators may be.

Proposition 4. Let H and G be two (not necessarily bounded) self-adjoint operators with
pure point spectrum. If H and G are not unitarily equivalent, then

sup
t∈R
‖e−itH − e−itG‖ ≥

√
2. (D.1)

Proof.

1. Let g be an eigenvalue of G and let ϕ be its associated normalized eigenvector. One
has

δ2
ϕ(t) = ‖(e−itH − e−itG)ϕ‖2

= ‖(e−it(H−g) − 1)ϕ‖2

=
∫
|e−it(λ−g) − 1|2 dµϕ(λ)

= 4
∫

sin2
(
λ− g

2 t

)
dµϕ(λ)

= 2− 2
∫

cos[(λ− g)t] dµϕ(λ), (D.2)

where µϕ is the spectral measure of H at ϕ. Thus, for any T > 0,

sup
t∈R

δ2
ϕ(t) ≥ 1

T

∫ T

0
δ2
ϕ(t) dt = 2− 2

∫
sinc[(λ− g)T ] dµϕ(λ) (D.3)
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by Fubini’s theorem. Notice that sinc(λT )→ 1{0}(λ) pointwise as T → +∞, where
1Ω(λ) is the indicator function of the set Ω. Therefore, by taking the limit T → +∞,
by the dominated convergence theorem one gets

sup
t∈R

δ2
ϕ(t) ≥ 2− 2µϕ({g}). (D.4)

Notice that this result is valid for every self-adjoint H, irrespective of its spectrum.
If H has a pure point spectrum, with the spectral resolution

H =
∑
j

hjPj , (D.5)

then the spectral measure at ϕ of a set Ω ⊂ R reads

µϕ(Ω) =
∑

j :hj∈Ω
‖Pjϕ‖2, (D.6)

which yields
δ2
ϕ(t) = 2− 2

∑
j

‖Pjϕ‖2 cos[(hj − g)t], (D.7)

and
µϕ({g}) =

∑
j

δhj ,g‖Pjϕ‖
2, (D.8)

with δh,g denoting the Kronecker delta.

2. Since by assumption H and G are not unitarily equivalent, either they have different
spectra or they have the same spectrum with different multiplicities. In the first
case, let g be an eigenvalue of, say, G with g /∈ specH. Then, µϕ({g}) = 0 and, by
point 1 above,

sup
t∈R
‖e−itH − e−itG‖ ≥ sup

t
δϕ(t) ≥

√
2. (D.9)

In the second case, there is a common eigenvalue g of G and H with different
multiplicities. Let Pj1 and Qj2 , for some j1 and j2, be the associated eigenprojections
of H and G, respectively, i.e. hj1 = gj2 = g. We have, say, dim ranQj2 > dim ranPj1 ,
and thus there exists a unit vector ϕ ∈ ranQj2 , with Pj1ϕ = 0. Therefore,

µϕ({g}) = ‖Pj1ϕ‖2 = 0, (D.10)

and (D.9) holds again.
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[28] P. Facchi and M. Ligabò, Quantum Zeno Effect and Dynamics, J. Math. Phys. 51,
022103 (2010).

[29] L. S. Schulman, Continuous and Pulsed Observations in the Quantum Zeno Effect,
Phys. Rev. A 57, 1509 (1998).

[30] P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, and D. A. Lidar, Control
of Decoherence: Analysis and Comparison of Three Different Strategies, Phys. Rev.
A 71, 022302 (2005).

[31] E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E.
Pritchard, Continuous and Pulsed Quantum Zeno Effect, Phys. Rev. Lett. 97, 260402
(2006).
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