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We investigate the homogeneous chiral edge
theory of the filling ν = 4/3 fractional quan-
tum Hall state, which is parameterized by a
Luttinger liquid velocity matrix and an elec-
tron tunneling amplitude (ignoring irrelevant
terms). We identify two solvable cases: one
case where the theory gives two free chiral bo-
son modes, and the other case where the the-
ory yields one free charge 2e√

3 chiral fermion
and two free chiral Bogoliubov (Majorana)
fermions. For generic parameters, the energy
spectrum from our exact diagonalization shows
Poisson level spacing statistics (LSS) in each
conserved charge and momentum sector, indi-
cating the existence of hidden conserved quan-
tities and the possibility that the generic edge
theory of the ν = 4/3 fractional quantum Hall
state is integrable. We further show that a
global symmetry preserving irrelevant nonlin-
ear kinetic term will lead to the transition of
LSS from Poisson to Wigner-Dyson at high en-
ergies. This further supports the possibility
that the model without irrelevant terms is in-
tegrable.

1 Introduction
The integrability of quantum systems is known to sig-
nificantly affect their quantum coherence and quan-
tum dynamics. An important class of integrable
quantum models is the chiral Luttinger liquid [1–
7], which are free boson theories describing the low-
energy chiral edge states of many fractional quantum
Hall (FQH) states [6, 7]. The quantum coherence
of integrable chiral edge states makes it possible to
observe their interference [8–11], which for instance
enables the detection of anyon braiding in the Fabry-
Pérot interferometers of the filling ν = 1/3 FQH state
[12–17]. On the other hand, interactions between
multiple edge modes may lead to mode reconstruc-
tions [18–26], robust quantum chaos at low energies
[27, 28], and quantum scars [29, 30], which are cru-
cial for understanding their thermal equilibration in
thermal transports [31–34].

An intriguing question is whether low-energy chi-
ral edge states can be integrable without being free

boson/fermion theories. In this letter, we investigate
the chiral edge theory of the filling ν = 4/3 FQH state
[35–40] as a possible example of such, which is param-
eterized by a Luttinger liquid velocity matrix and a
dimensionless electron tunneling amplitude, with ir-
relevant terms ignored. We identify analytically two
solvable special cases: one case where the theory gives
two free chiral bosons, and another case where the
theory consists of a charge 2e√

3 free chiral fermion and

two charge neutral free chiral Bogoliubov (Majorana)
fermions. For generic parameters, we employ exact
diagonalization (ED) to numerically calculate the en-
ergy spectrum. Interestingly, our results show that
the many-body energy spectrum of each conserved
global charge and momentum sector obeys a Poisson
level spacing statistics. This indicates that there are
hidden local conserved quantities, and possibly the
4/3 FQH edge model is integrable while not being a
free theory. We further test the effect of an irrelevant
nonlinear kinetic term that preserves all global sym-
metries. For large nonlinearity, LSS shifts from Pois-
son towards Wigner-Dyson, indicating the breaking of
the potential integrability of the model by irrelevant
terms at high energies. Lastly, we identify a family of
FQH edge theories which share similar physics.

2 The edge model
The filling ν = 4/3 FQH state can be viewed as a
filling ν = 1/3 Laughlin FQH state plus a filling ν =
1 integer QH (IQH) state in the bulk. Accordingly,
its edge theory consists of two forward-moving chiral
bosons modes: φ1 and φ2 from the 1/3 Laughlin state
and the IQH state, respectively, which have a free
Lagrangian density

L0 = − 1
4π

2∑
i,j=1

∂xφi(Kij∂t + Vij∂x)φj , (1)

where Kij = diag(3, 1) is the K matrix with integer
entries, and Vij is the real symmetric velocity ma-
trix. The physical edge charge excitations are given
by vertex operators ei(l1φ1+l2φ2), where l = (l1, l2)T
is an integer vector, and their electrical charges are
Ql = lTK−1q, with q = (1, 1)T being the charge vec-
tor associated with the bosons [6, 7]. In particular,
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χ = eiφ1 is the annihilation operator of the charge e/3
anyon of the Laughlin state with exchange statistical
phase π/3. The operators annihilating an electron on
the edge are ψ′ = e3iφ1 and ψ = eiφ2 .

Electron tunneling between the edges of the 1/3
Laughlin state and the IQH state generically exists.
Here we assume the edge is homogeneous, and assume
the two modes φ1, φ2 have a momentum difference
p, then the leading electron tunneling term takes the
form

L1 = −J(x)e3iφ1−iφ2 − h.c., J(x) = Jeipx , (2)

where J is constant. The chiral operator e3iφ1−iφ2 has
an exact scaling dimension 2 as fixed by its conformal
spin, making the coupling J dimensionless and non-
negligible at low energies. Note that a similar tunnel-
ing term occurs on the 2/3 FQH edge [18], but there
the term has a velocity-dependent scaling dimension
because the edge is not fully chiral.

In realistic experimental systems such as the
GaAs/AlGaAs 2D electron gas, since the cyclotron
energy is much larger than the Zeeman energy, the
monolayer 4/3 FQH state usually occupies two Lan-
dau levels with opposite spins (filling 1 for spin up
and filling 1/3 for spin down). This would imply the
electron tunneling term in Eq. (2) is spin flipping,
which is possible in the presence of spin-orbital cou-
pling (SOC). In GaAs/AlGaAs, the edge mode veloc-
ity parameters Vij in our model are typically given by
the Coulomb interaction as of order ∼ 0.2e2/ε ≈ 20
meV · nm [41], where ε ≈ 13 is the dielectric con-
stant. The spin-flipping tunneling J term is of the
order of the spin-flipping SOCs in GaAs/AlGaAs, for
instance, the Dresselhaus SOC parameter around ∼ 4
meV· nm, and the Rashba SOC parameter within a
similar range depending on the displacement field of
the quantum well [42]. The tunneling parameter J
is thus not far off from the velocity parameters Vij .
We do note that the spatial separation of different
FQH edge states may make J smaller. If instead the
4/3 FQH state is realized in a bilayer structure and
occupies two Landau levels with the same spin (with
fillings 1 and 1/3, respectively), the electron tunneling
J term would not require spin flipping SOC. However,
this also requires an asymmetric filling which is less
common in bilayer FQH experiments, and the layer
separation may further suppress the tunneling.

The above model Lagrangian L = L0 + L1 can be
mapped into an interacting fermion model. We first
transform into a new boson basis

φn = 3φ1 − φ2

2 , φρ =
√

3(φ1 + φ2)
2 , (3)

under which the K matrix in Eq. (1) transforms
into an identity matrix. This allows us to define two
fermion annihilation fields cn = eiφn and cρ = eiφρ

with scaling dimension 1
2 . The fermion cn is charge

neutral, while cρ carries an irrational electron charge

2e√
3 . The Lagrangian density then fermionizes into

(App. A)

L = ic†n(∂t + vn∂x)cn + ic†ρ(∂t + vρ∂x)cρ

+ Jeipx

2π icn∂xcn + J∗e−ipx

2π ic†n∂xc
†
n − 2πvnρc†ncnc†ρcρ ,

(4)
where vρ = V11+6V12+9V22

12 , vn = V11−2V12+V22
4 and

vnρ = V11+2V12−3V22
4
√

3 , and we have used the bosoniza-

tion mappings between fermions and bosons c†αcα =
∂xφα

2π , −ic†α∂xcα = (∂xφα)2

4π , and −icα∂xcα = 2πe2iφα

(α = n, ρ) [27, 28]. In the rest of paper, we
study the eigen-spectrum of the model in Eq. (4),
as well as calculate the (time non-ordered) zero-
temperature fermion two-point functions Gn/ρ(t, x) =
〈cn/ρ(t, x)c†n/ρ(0, 0)〉, and the two-point functions

Gχ(t, x) = 〈χ(t, x)χ†(0, 0)〉 of the charge e/3 anyon
operator χ = eiφ1 and Gψ(t, x) = 〈ψ(t, x)ψ†(0, 0)〉 of
the electron operator ψ = eiφ2 . We first focus on two
solvable free points, and then turn to a generic exact
diagonalization (ED) study.

3 The exactly solvable free limits
3.1 The J = 0 case
When the tunneling term L1 is absent, namely J = 0,
the Lagrangian L = L0 in Eq. (1) yields two free chi-
ral boson modes φ′+ = φρ cos ζ2 + φn sin ζ

2 and φ′− =
−φρ sin ζ

2 + φn cos ζ2 with ζ = arctan 2vnρ
vρ−vn . Both

modes have linear dispersions ω±(k) = v′±k, with the

velocities v′± = vn+vρ±
√

4v2
nρ+(vn−vρ)2

2 , respectively.
The model in Eq. (4) at J = 0 is therefore inte-
grable. The correlations of the boson fields are given
by 〈φ′η(t, x)φ′η′(0, 0)〉 = −δηη′ log [2πi(v′ηt− x− i0+)],
where η, η′ = ± and 0+ an infinitesimal positive num-
ber. Accordingly, the two-point functions of different
particle operators can be obtained from the Wick’s
theorem as

Gα(t, x) =
∏
η=±

1
[2πi(v′ηt− x− i0+)]σηα

, (5)

where α = n, ρ, χ, ψ denotes the particle species
we defined earlier. The corresponding exponents
are given by σ±n = 1∓cos ζ

2 , σ±ρ = 1±cos ζ
2 , σ±χ =

2±(
√

3 sin ζ−cos ζ)
12 and σ±ψ = 2∓(

√
3 sin ζ−cos ζ)

4 (App. B).

For fermions α = n, ρ, ψ, we have σ+
α + σ−α = 1, while

for anyon χ we have σ+
χ + σ−χ = 1

3 , which yield the
expected exchange statistical angles π of the fermions
and π/3 of anyon χ, respectively.

The two-point functions for fermions α = n, ρ, ψ
allow us to define the retarded Green’s function
Gα,ret (t, x) = Θ(t)[Gα(t − i0+, x) − Gα(t + i0+, x)].
From its Fourier transform, we can define the spec-
tral weight Aα(ω, k) = 2ImGα,ret(ω, k), which van-
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Figure 1: (a) Spectral weight Aα=n,ρ(ω, k) at J = 0, k =
7.5, vρ = 1.5, vn = 1 and vnρ = 0.8. (b) Spectral weight
Aα=n,ρ(ω, k), at J = 0.8π, p = 0, k = 7.5, vρ = 1.5,
vn = 1 and vnρ = 0. Red thick lines (Blue thin lines) stand
for the ρ (n) sector.

ishes when ω
k > v′+ and ω

k < v′−. An example of spec-
tral weights of n and ρ fermions (thin and thick lines,
respectively) at fixed k > 0 in this case is plotted in
Fig. 1(a).

3.2 The vnρ = 0 case
At the special point vnρ = 0, the model in the
form of Eq. (4) becomes a free fermion model,
with fermions n and ρ decoupled. The fermion cρ
has a linear dispersion ωρ(k) = vρk. By chang-
ing the fermion cn to a momentum shifted basis
c′n(x) = eipx/2cn(x), which eliminates the x depen-
dence of tunneling term J , it splits into two chi-
ral Bogoliubov fermionic modes bn(k) and b†n(−k) in
the Nambu basis, where the fermion bn(k) has a dis-
persion ωbn(k) = vnk + 1

2π
√

(2Jk)2 + (πvnp)2. The
model in Eq. (4) in this case is thus integrable.

We derive below the two-point functions of different
particles in this case for momentum difference p = 0.
The generic p 6= 0 case is discussed in Appendix C.
1. With p = 0, the two Bogoliubov modes can be re-

combined into two Majorana modes γn+ = cn+c†n√
2 and

γn− = cn−c†n√
2i with linear dispersions ωn±(k) = vn±k,

where velocities vn± = vn ± J
π . The two-point func-

tions of the n and ρ fermions are simply free propa-
gators:

Gn(t, x) = 1
4πi

∑
s=±

1
vnst− x− i0+ ,

Gρ(t, x) = 1
2πi

1
vρt− x− i0+ .

(6)

Their spectral weights are An(ω, k) = π(δ(ω−kvn+)+
δ(ω − kvn−)) and Aρ(ω, k) = 2πδ(ω − kvρ), respec-
tively, as shown in Fig. 1(b).

In the bosonic representation, with vnρ = 0,
the boson φρ is free and thus has a correlation
〈φρ(t, x)φρ(0, 0)〉 = − log [2πi(v′ηt− x− i0+)]. The

boson φn is not free, although cn = eiφn splits
into free Majorana fermions. It is thus easy to
calculate the two-point function of the charge 2e/3

anyon operator χ′ = e2iφ1 = e
i(φn+ φρ√

3
) = cne

i
φρ√

3 ,
which reads Gχ′(t, x) = Gn(t, x)e 1

3 〈φρ(t,x)φρ(0,0)〉 =
Gn(t, x)Gρ(t, x)1/3. However, the calculation of two-
point functions of the charge e/3 anyon operator

χ = eiφ1 = e
i(φn2 + φρ

2
√

3
)

and the electron operator

ψ = eiφ2 = ei(
√

3φρ
2 −φn2 ) are more complicated, due to

the non-free nature of boson field φn. We now show
that they can be calculated by doubling the model.

We define a double-copy of our model Lagrangian
as L2c = L(+) + L(−), where L(η) is the Lagrangian
L = L0 + L1 defined in Eqs. (1) and (2) with boson

fields φ
(η)
1 and φ

(η)
2 (η = ±). Accordingly, we per-

form a basis transformation φ
(η)
n = 3φ(η)

1 −φ
(η)
2

2 , φ
(η)
ρ =

√
3(φ(η)

1 +φ(η)
2 )

2 for each copy, similar to Eq. (3). Next,

we transform to a boson basis φ̃j (1 ≤ j ≤ 4)

defined by φ
(η)
n = (φ̃1−φ̃2)+η(φ̃3−φ̃4)

2 and φ
(η)
ρ =

(φ̃1+φ̃2)+η(φ̃3+φ̃4)
2 , and define four complex fermion

fields fj = eiφ̃j . This is known as the SO(8) trial-
ity transformation [28, 43–48]. By further transform-
ing into a new fermion basis d1,± = f1±if2√

2 , d2,± =
f3±if4√

2 , and then do a bosonization ds,η = eiθs,η to

four boson fields θs,η (s = 1, 2, η = ±), one ar-
rives at a free boson model (see App. C 2. b).
The eigen-boson fields of this free boson model are
θ̃ηη′ = (θ1,++ηθ1,−+η′θ2,++ηη′θ2,−) where η, η′ = ±,
under which the double-copy Lagrangian takes a di-
agonal form

L2c = − 1
4π

∑
η,η′=±

∂xθ̃ηη′(∂t + uηη′∂x)θ̃ηη′ . (7)

The velocities uηη′ are defined by u+± = vρ, and
u−± = vn± , with vρ and vn± in Eq. (6).

We can now calculate the two-point functions of
the charge e/3 anyon χ = eiφ1 and the electron
ψ = eiφ2 . Since the two copies we introduced
are identical and decoupled, the two-point func-
tion of anyon χ can be rewritten as Gχ(t, x) =√
〈χ(+)(t, x)χ(−)(t, x)χ(+)†(0, 0)χ(−)†(0, 0)〉, where

χ(±) = eiφ
(±)
1 is the anyon operator in copy

L(±). Next, we note that the product operator

χ(+)χ(−) = e
i
φ

(+)
n +φ(−)

n
2 +i

φ
(+)
ρ +φ(−)

ρ

2
√

3 , and φ
(±)
ρ are free

bosons and decoupled with φ
(±)
n . Therefore, we only

need to know the two-point function of operator

ei
φ

(+)
n +φ(−)

n
2 , which can be derived from the two-point

function of fermion f1 = eiφ̃1 = ei
φ

(+)
n +φ(−)

n +φ(+)
ρ +φ(−)

ρ
2 .

This enables us to express the anyon two-point func-
tion as Gχ(t, x) =

√
〈f1(t, x)f1(0, 0)〉Gρ(t, x)−1/3,

with Gρ(t, x) given by Eq. (6). A similar
transformation holds for the two-point func-
tion of electron ψ. The two-point function of
fermion f1 can be calculated by transforming
into the fermion basis ds,η = eiθs,η , which yields
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〈f1(t, x)f1(0, 0)〉 =
∏
η,η′=± e

〈̃θ
ηη′ (t,x)̃θ

ηη′ (0,0)〉
4 in terms

of the free bosons θ̃ηη′ in Eq. (7). We therefore find
the two-point function of anyon χ and electron ψ
given by (App. C. 2. b)

Gα(t, x) =
∏

η=ρ,n±

1
[2πi(vηt− x− i0+)]σηα

, (8)

where α = χ, ψ, and the exponents σρχ = 1
12 , σρψ = 3

4 ,

σ
n±
χ = σ

n±
ψ = 1

8 .

4 The generic case
For generic parameters J 6= 0 and vnρ 6= 0, the model
in Eq. (4) is difficult to solve, so we turn to study the
model numerically with ED. To simplify the problem,
we first eliminate eipx factor of the tunneling J term
by a unitary transformation, at the price of adding
a chemical potential. This is done by shifting the
boson fields φn and φρ in Eq. (3) into a new basis
φ′n = φn + p

2x and φ′ρ = φρ − vnp
2vnρx, and define their

corresponding fermion fields c′n = eiφ
′
n = eipx/2cn and

c′ρ = eiφ
′
ρ = e

−i vnp2vnρ xcρ. The Lagrangian in Eq. (4)
then becomes (App. D. 1)

L = ic′†n (∂t + vn∂x)c′n + ic′†ρ (∂t + vρ∂x)c′ρ

− µρc′†ρ c′ρ +
(
i
J

2π c
′
n∂xc

′
n + h.c.

)
− 2πvnρc′†n c′nc′†ρ c′ρ ,

(9)

where the chemical potential µρ =
(
vnvρ
vnρ
− vnρ

)
p.

Since the fermion c′n is neutral and the fermion c′ρ
carry charge 2e√

3 , the µρ term is equivalent to a phys-

ical chemical potential 2√
3µρ on the edge of the 4/3

FQH state.
The model in the form of Eq. (9) has three appar-

ent conserved global charges: (i) the total many-body
momentum Ktot, (ii) the total charge of the ρ fermion
Nρ, and (iii) the parity of the n fermion (−1)Nn , which
are explicitly given by

Ktot = −i
∫
dx(c′†n∂xc′n + c′†ρ ∂xc

′
ρ) ,

Nρ =
∫
dxc′†ρ c

′
ρ ,

(−1)Nn = (−1)
∫
dxc′†n c

′
n .

(10)

To perform ED calculations, we assume the 1D space
is closed and has length L, and we take an anti-
periodic boundary condition for both the c′n and c′ρ
fermions (which is the boundary condition for zero
bulk flux). Since the chirality allows only positive
momentum excitations, the Hilbert space dimension
of each total momentum (Ktot is finite, making our
ED numerical calculation possible (see App. D. 2).

For convenience, we set the unit of length such that
L = 2π. This constraints the single-particle mo-
mentum of the fermions to half-odd integers, i.e.,
k ∈ Z + 1

2 . As a result, the many-body momentum
Ktot is an integer (half-odd integer) if the total num-
ber of fermions is even (odd). Therefore, the three
conserved charges Ktot, Nρ and (−1)Nn are not inde-
pendent, and we have

(−1)Nn = (−1)2Ktot+Nρ . (11)

The Nρ = 0 charge sector has an additional spe-
cial symmetry. To see this, we define a particle-hole
transformation P obeying

PcαP
−1 = c†α, P c†αP

−1 = cα, (α = ρ, n)
PNρP

−1 = −Nρ, P (−1)NnP−1 = (−1)Nn .
(12)

When Nρ = 0, P becomes a symmetry of the Hamil-
tonian, which can have eigenvalues ηP = ±1.

Therefore, the eigenstates of our model can be clas-
sified into global charge sectors labeled by (Ktot, Nρ)
when Nρ 6= 0, and (Ktot, Nρ, ηP ) when Nρ = 0.

Noting that the µρ term only shifts the energy spec-
trum of a global charge sector by a constant µρNρ,
thus we will not discuss much on the effect of µρ. But
µρ does affect the spectral weights, which can be seen
from Fig. 2 and App. D. 2. Fig. 2 shows a com-
parison among the numerical results of the J = 0
case ((a)-(c)), the vnρ = 0 case ((d)-(f)), and the
generic case with both J and vnρ nonzero ((g)-(i) for
µρ = 0, and (j)-(l) for µρ = 4), with the total mo-
mentum Ktot up to 27

2 , and the parameters are given
in the Fig. 2 caption. In particular, we compute
the many-body level spacing statistics (LSS) in each
global charge sector, which is known to obey a Pois-
son distribution pLS(s) ∝ e−s/s0 if the model is in-
tegrable [49], and obey a Wigner-Dyson distribution

pLS(s) ∝ sme−s2/s2
0 (m = 1, 2, 4 for Gaussian orthog-

onal, unitary and symplectic ensembles, respectively)
if the model is fully chaotic in the charge sector [50–
52].

In the J = 0 case, Fig. 2(a) shows the spectral
weights Aρ(ω, k) of fermion c′ρ (red thick lines) and
An(ω, k) of fermion c′n (blue thin lines) from ED,
which matches well with the theoretical curves in Fig.
1(a) derived from the free boson picture. With a finite
system size, the numerical spectral weights are a set of
discrete delta functions, which we have broadened into
Lorentzian functions (App. D. 2). In Fig. 2(b), we
plot the density of states (DOS) at total momentum
Ktot = 27

2 of all the Nρ sectors (black unfilled line)
and of only the Nρ = 0 sector (red filled line). Fig.
2(c) shows the LSS in the Ktot = 27

2 , Nρ = 0 sector,
which is approximately a delta function (or Poisson
distribution with an infinite decay exponent) because
of the extensive level degeneracy of free bosons.

In the vnρ = 0 case, c′ρ and c′n are free fermions,
and their ED spectral weights are delta functions as
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Figure 2: ED results up to total momentum Ktot = 13.5
for different parameters. We fix vρ = 1.5, vn = 1, and the
other parameters are (a)-(c): J = 0, vnρ = 0.8, µρ = 0; (d)-
(f): J = 0.8π, vnρ = 0, µρ = 0; (g)-(i); J = 0.8π, vnρ =
0.4, µρ = 0, and (j)-(l): J = 0.8π, vnρ = 0.4, µρ = 4.
(a), (d), (g), (j) are spectral weight of fermions ρ (thick red
lines) and n (thin blue lines). The upper unfilled (lower filled)
lines in (b), (e), (h) show the total (the Nρ = 0 subsector)
DOS in the Ktot = 13.5 sector. The upper unfilled (lower
filled) lines in (k) show the total (the Nρ = 1 subsector)
DOS in the Ktot = 13.5 sector. (c), (f) show the LSS of the
(Ktot = 13.5, Nρ = 0) sector, in which cases the model is
free. (i) shows the LSS of the (Ktot = 13.5, Nρ = 0, ηP =
−1) sector. (l) shows the LSS of the (Ktot = 13.5, Nρ = 1)
sector.

shown in Fig. 2(d), agreeing with the theoretical plot
in Fig. 1(d). Similar to the J = 0 case, the existence
of enormous degenerate levels (Fig. 2(e)) leads to
an approximate delta function LSS in each conserved
(Ktot, Nρ) sector, as shown in Fig. 2(f).

In the generic J 6= 0, vnρ 6= 0 case, the spec-
tral weights of fermions c′n, c′ρ show behaviors in be-
tween the free boson and free fermion pictures, as
shown in Fig. 2(g) and (j) (see more examples in
App. D. 2). Accordingly, the DOS (Fig. 2(h),(k))
is smoother than that in the free boson and free
fermion cases (Fig. 2(b),(e)). Most intriguingly, the
LSS of each conserved global charge sector shows a
Poisson statistics. Fig. 2(i) shows the LSS in the
(Ktot = 27

2 , Nρ = 0, ηP = −1) sector, and Fig. 2(l)
shows the LSS of the (Ktot = 27

2 , Nρ = 1) sector.
More examples are given in App. D. 2 Fig. (4). Note
that a nonzero µρ in Eq. (9) will not change the LSS,
which only globally shifts the energy of each sector.
This suggests that there are more hidden local con-
served quantities (local symmetries), or the generic
model in Eq. (9) may in fact be quantum integrable
if there are sufficient number of hidden local conserved
quantities, which is an intriguing future problem. We
note that the Poisson LSS in the generic case is still
drastically different from the delta-function like LSS
in the free boson and free fermion cases. This indi-
cates that randomness exists in the energy spectrum
of the generic case, unlike the free cases which yield
extensively degenerate many-body energy levels.

5 The effect of irrelevant terms
Our model has been ignoring the irrelevant terms so
far. Generically, if a model is integrable at low ener-
gies, irrelevant terms may lead to breaking of integra-
bility at high energies. Examining such integrability
breaking by irrelevant terms would also support that
the Poisson LSS shown in our edge model is not an
artefact of numerical calculation.

In this section, we introduce an irrelevant nonlin-
ear term to the Lagrangian density of our edge model,
which preserves all the global symmetries we have
identified:

Lnon = −iλ
(
c†ρ∂

3
xcρ + c†n∂

3
xcn
)
, (13)

where λ is the coupling strength. This term gives an
additional nonlinear dispersion relation λk3 for the
free part of both the charged and neutral fermions. A
simple dimension counting reveals that this nonlinear
term is irrelevant and thus has vanishing effects on
the low energy physics. To examine the effect of this
term in Eq. (13) at high energies, one can either go to
larger momentum Ktot or larger coupling strength λ,
which are equivalent up to a scaling transformation.
Numerically, it is easier to enlarge the coupling λ than
the momentum Ktot.
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Figure 3: ED results up to total momentum Ktot = 13.5 with
an irrelevant nonlinear cubic dispersion term (with coefficient
λ, see Eq. (13)) added, and the rest parameters are vρ =
1.5, vn = 1, µρ = 0, J = 0.8π, vnρ = 0.4, and µρ = 0 (the
same as Fig. 2(g)). We set λ = 2 (λ = 20) in panels
(a) − (c) ((d) − (f)). Panels (a), (d) show spectral weight of
fermions ρ (thick red lines) and n (thin blue lines). The upper
(lower) lines in (b), (e) show the total (the Nρ = 0, ηP = −1
subsector) DOS in the Ktot = 13.5 sector. (c), (f) show the
LSS of the (Ktot = 13.5, Nρ = 0, ηP = −1) sector. When
the nonlinearity λ increases, the LSS in each charge sector
evolves from Poisson (Fig. 2(g)) to Wigner-Dyson (GOE)
(this figure).

It has been shown that by adding such nonlinear
terms to the free chiral boson Luttinger liquid theory,
the integrability will be broken at high energies as
revealed by the LSS [29, 53]. Therefore, we expect a
similar breaking of the potential integrability of our
model by such irrelevant nonlinear terms here.

As shown in Fig. 3 (as compared with Fig. 2(i)),
which are calculated from ED (see details in App. D.
2), when the coupling strength λ increases, the LSS in
a global charge sector clearly shows a crossover from
Poisson distribution to a Gaussian orthogonal ensem-
ble (GOE) Wigner-Dyson distribution. The GOE
type Wigner-Dyson LSS is due to the combined anti-
unitary PT symmetry of our model, where P is the
spatial inversion and T is the spinless time-reversal
symmetry. This indicates that the irrelevant nonlin-
ear term in Eq. 13 makes our model quantum chaotic
at high energies, in contrast to the potentially inte-
grable behavior at low energies. This also indicates
that any hidden local conserved charges in each global
charge sector will be broken by the irrelevant terms.

6 Discussion

We have shown that the generic 4/3 FQH edge model
is equivalent to an interacting fermion model with a
p-wave pairing in the neutral channel (Eq. (9)). It
has two solvable points as free chiral bosons and free
chiral (Majorana) fermions, respectively. It would
be interesting to tune the system towards vnρ = 0
and momentum difference p = 0 (by tuning the edge
potentials and chemical potential), where three dif-
ferent velocities of free chiral fermions (one charge
2e√

3 and two Majorana) emerge. For generic param-

eters, each conserved global charge and momentum
sector shows a Poisson LSS in our ED calculation,
suggesting the existence of more hidden local con-
served quantities. This also suggests the possibility
that the generic model is quantum integrable. On the
other hand, adding irrelevant nonlinear kinetic terms
shifts the LSS from Poisson to Wigner-Dyson at high
energies, which also indicates that any hidden local
conserved quantities we have not identified yet are
only exact at low energies. Moreover, it will be in-
teresting and important to understand if the hidden
local conserved quantities could protect the quantum
coherence and obstruct the thermalization of the 4/3
FQH edge states, in contrast to quantum chaotic low-
energy chiral edge theories [27, 28] where edge states
are decoherent and fast scrambling. Further practical
questions include if interference of different edges can
be observed for the 4/3 FQH chiral edge state, similar
to that of the 1/3 FQH state which was employed to
measure the anyon braiding [13].

There are more FQH edge theories which exhibit
a similar physics. For example, in the experimen-
tally accessible regimes, the edge theory of the (3, 3, 1)
Halperin state [54, 55] at total filling ν = 1

2 also
allows only one charge-conserving tunneling term

Jeipxeil
T
(3,3,1)φ with dimensionless coupling J similar

to Eq. (2), where l(3,3,1) = (2,−2)T , and no other
tunneling term is more relevant. The other exam-
ple is the (1, 7, 2) Halperin state at total filling ν = 4

3 ,
which allows only one tunneling term of dimensionless
coupling with l(1,7,2) = (3, 7)T . More series of such
Abelian bilayer FQH states are identified in App. E.
All of these models can be mapped into the fermion
model in Eq. (4) and thus exhibit similar physics.
An interesting future direction is to study chiral edge
models allowing multiple tunneling terms with dimen-
sionless couplings, which may not be mapped to a
fermion model. One may ask if the competition be-
tween different tunneling terms (which are equally rel-
evant) will bring testable robust quantum chaos at low
energies.

Lastly, in our numerical ED calculations, we consid-
ered only pure FQH edges without any disorder. Dis-
order is certainly a significant aspect of FQH physics,
however, it is difficult to be added to numerical cal-
culations due to its momentum conservation break-
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ing nature. Therefore, we leave it for future stud-
ies from more analytical perspectives. For a clean
enough sample, our theoretical analysis with spatially
uniform coupling J and chemical potential µρ can be
regarded as a lowest order approximation keeping the
mean values of the disordered potentials, which are
more relevant than their fluctuations. Moreover, in
FQH edge interference experiments [13], to maintain
coherence, the length of edge is usually not too long.
Disorder effects are thus expected to play less of a role
in such conditions.
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A Fermionization of edge theory for the ν = 4/3 Quantum Hall state
The Lagrangian density describing the edge theory of the Abelian ν = 4/3 quantum Hall state is

L = − 1
4π

∑
i,j=1,2

∂xφi(Kij∂t + Vij∂x)φj (14)

with K-matrix K =
(

3 0
0 1

)
, charge vector q = (1, 1)T and Vij is the real symmetric velocity matrix. For

spatially uniform tunneling between these two edge modes, the leading interaction term is

− J(x)e3iφ1−iφ2 − h.c., J(x) = Jeipx , (15)

where a momentum difference p exist between the two modes adding a x-dependent phase factor in the coupling
strength J(x). The hopping operator e3iφ1−iφ2 has scaling dimension two which renders the coupling constant
J dimensionless and non-negligible at low energies.

Our Lagrangian now becomes

L = − 1
4π

∑
i,j=1,2

∂xφi(Kij∂t + Vij∂x)φj − (Jeipxe3iφ1−iφ2 + h.c.) (16)

We can further separate the neutral degrees of freedom from the charge degrees of freedom by the following
basis transformation

φn = 3φ1 − φ2

2 , φρ =
√

3(φ1 + φ2)
2 (17)

characterized by vectors (transformation coefficients) ln = ( 3
2 ,−

1
2 ) and lρ = (

√
3

2 ,
√

3
2 ). Fermionizing as cn = eiφn

and cρ = eiφρ , we obtain an equivalent interacting fermion model:

L = ic†n(∂t + vn∂x)cn + ic†ρ(∂t + vρ∂x)cρ +
(
Jeipx

2π icn∂xcn + h.c.

)
− 2πvnρc†ncnc†ρcρ . (18)

where electric charges Qn = 0 and Qρ = 2e√
3 according to Ql = lTK−1t. The velocities are given by

vρ = V11+6V12+9V22
12 , vn = V11−2V12+V22

4 and vnρ = V11+2V12−3V22
4
√

3 . We have taken the following convention

for bosonization mappings with a point-splitting procedure in the x-direction, the details of which can be found
in Appendices of Refs. [27, 28]:

c†αcα = ∂xφα
2π , −ic†α∂xcα = (∂xφα)2

4π , −icα∂xcα = 2πe2iφα , (α = n, ρ) . (19)

B Solvable point at J = 0
When J = 0, Eq. (16) becomes a free boson model

L = − 1
4π∂xφρ(∂t + vρ∂x)φρ −

1
4π∂xφn(∂t + vn∂x)φn −

2
4πvnρ∂xφn∂xφρ (20)
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Let ζ = arctan 2vnρ
vρ−vn , we perform the following basis transformation for boson fields

φ′− = − sin ζ2φρ + cos ζ2φn, φ′+ = cos ζ2φρ + sin ζ2φn . (21)

This diagonalizes the above Lagrangian density and gives us

L = − 1
4π
∑
η=±

∂xφ
′
η(∂t + v′η∂x)φ′η (22)

with v′η = vn+vρ±
√

4v2
nρ+(vn−vρ)2

2 and 〈φ′η(t, x)φ′η′(0, 0)〉 = −δηη′ log [2πi(v′ηt− x− i0+)] up to constant shifts of
boson fields φ′η. Following from this, we have

〈φρ(t, x)φρ(0, 0)〉 = sin2 ζ

2 〈φ
′
−(t, x)φ′−(0, 0)〉+ cos2 ζ

2 〈φ
′
+(t, x)φ′+(0, 0)〉

〈φn(t, x)φn(0, 0)〉 = cos2 ζ

2 〈φ
′
−(t, x)φ′−(0, 0)〉+ sin2 ζ

2 〈φ
′
+(t, x)φ′+(0, 0)〉

(23)

and thus (noting that sin2 ζ
2 = 1−cos ζ

2 and cos2 ζ
2 = 1+cos ζ

2 )

Gρ(t, x) = 〈cρ(t, x)c†ρ(0, 0)〉 = 1
2πi

1
(v′−t− x− i0+) 1−cos ζ

2 (v′+t− x− i0+) 1+cos ζ
2

Gn(t, x) = 〈cn(t, x)c†n(0, 0)〉 = 1
2πi

1
(v′−t− x− i0+) 1+cos ζ

2 (v′+t− x− i0+) 1−cos ζ
2

.

(24)

From Eq. (17), we also have

〈φ1(t, x)φ1(0, 0)〉 = 2 + cos ζ −
√

3 sin ζ
12 〈φ′−(t, x)φ′−(0, 0)〉+ 2− cos ζ +

√
3 sin ζ

12 〈φ′+(t, x)φ′+(0, 0)〉

〈φ2(t, x)φ2(0, 0)〉 = 2− cos ζ +
√

3 sin ζ
4 〈φ′−(t, x)φ′−(0, 0)〉+ 2 + cos ζ −

√
3 sin ζ

4 〈φ′+(t, x)φ′+(0, 0)〉 ,
(25)

and thus the charge e
3 anyon χ = eiφ1 and the charge e electron ψ = eiφ2 have two-point functions

Gχ(t, x) = 〈χ(t, x)χ†(0, 0)〉 = 1
(2πi) 1

3

1
(v′−t− x− i0+) 2+cos ζ−

√
3 sin ζ

12 (v′+t− x− i0+) 2−cos ζ+
√

3 sin ζ
12

Gψ(t, x) = 〈ψ(t, x)ψ†(0, 0)〉 = 1
2πi

1
(v′−t− x− i0+) 2−cos ζ+

√
3 sin ζ

4 (v′+t− x− i0+) 2+cos ζ−
√

3 sin ζ
4

.

(26)

For charge and neutral fermons cρ and cn, and the original electron operator ψ = eiφ2 , we can work out their
retarded Green’s functions and spectral weight functions. To this end, we work in Euclidean spacetime with
imaginary time (τ = it) for calculation conveniences. Their Green’s function in momentum space is

Gα(iωτ , k) =
∫ ∞
−∞

dτe−iωττ
∫ ∞
−∞

dxe−ikx
1

2π (v′−τ − ix)−1+σα(v′+τ − ix)−σα

= − sin πσα
π

∫ ∞
−∞

dτe−iωττ
∫ v′1τ

v′2τ

dye−ky(y − v′−τ)−1+σα(v′+τ − y)−σα (y = ix)
(27)

where α = n, ρ, ψ. This integration can be further simplified to

= − sin (πσα)
π

∫ ∞
0

dy+y
−σα
+ e−k−y+

∫ ∞
0

dy−y
−1+σα
− e−k+y− = 1

(iωτ + v′−k)1−σα(iωτ + v′+k)σα (28)

by changing the variables of integration y− = y−v′−τ
v′+−v′−

and y+ = v′+τ−y
v′+−v′−

. We have k± = v′±k + iωτ and assume

Re k± > 0. Analytically continuing iωτ → −ω − i0+, we find the retarded Green’s function:

Gα,ret(ω, k) = 1
(v′−k − ω − i0+)1−σα(v′+k − ω − i0+)σα (29)
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The spectral weight is then

A(ω, k) = 2ImGα,ret(ω, k) =
2 sin (πσα)Θ(v′+k − ω)Θ(ω − v′−k)

(v′+k − ω)σα(ω − v′−k)1−σα
(30)

such that

1 =
∫ ∞
−∞

dω

2πA(ω, k) . (31)

For our cases, σρ = 1+cos ζ
2 , σn = 1−cos ζ

2 , and σψ = 2+cos ζ−
√

3 sin ζ
4 .

C Solvable point at vnρ = 0
C.1 Two-point functions for fermions with generic momentum difference p
When vnρ = 0, the neutral n and charge ρ fermions in Eq. (18) are completely decoupled. Let us define a new

fermion operator c′n = e
ipx

2 cn, such that our Hamiltonian density becomes position x independent:

H =
∫
dx[−ivρc†ρ∂xcρ − ivnc′†n∂xc′n −

J

2π (ic′n∂xc′n + h.c.) + vnp

2 c′†n c
′
n] . (32)

Fourier transforming to momentum space, we have

H =
∫ ∞
−∞

dk[vρkc†ρ(k)cρ(k) + vn(k + p

2)c′†n (k)c′n(k)− Jk

2π c
′
n(k)c′n(−k) + Jk

2π c
′†
n (k)c′†n (−k)] . (33)

We see that cρ is with linear dispersion relation ωρ = vρk. For the neutral fermion c′n, we can perform a
Bogoliubov transformation (

bn(k)
b†n(−k)

)
=
(
λk− λk+

−λk+ λk−

)(
c′n(k)
c′†n (−k)

)
(34)

with

λk± = 2Jk√
(2Jk)2 + (πvnp±

√
(2Jk)2 + (πvnp)2)2

(35)

which gives us the spectrum of the Bogoliubov fermion bn(k):

ωbn(k) = vnk + 1
2π
√

(2Jk)2 + (πvnp)2 . (36)

For two-point function calculation conveniences, let us work in Euclidean spacetime with imaginary time τ = it.
Since

c′n(k) = λk−bn(k)− λk+b
†
n(−k) , (37)

the imaginary time ordered two-point function is defined as

G′n(−iτ, k) = 〈Tc′n(τ, k)c′†n (0, k)〉 = |λk− |2〈Tbn(τ, k)b†n(0, k)〉+ |λk+ |2〈Tb†n(τ,−k)bn(0,−k)〉
= |λk− |2〈Tbn(τ, k)b†n(0, k)〉 − |λk+ |2〈Tbn(0,−k)b†n(τ,−k)〉
= |λk− |2Gb(−iτ, k)− |λk+ |2Gb(iτ,−k) ,

(38)

where T stands for time ordering. Fourier transforming the time direction gives us

G′n(iωτ , k) = |λk− |2Gb(iωτ , k)− |λk+ |2Gb(−iωτ ,−k)

=
|λk− |2

iωτ − vnk − 1
2π
√

(2Jk)2 + (πvnp)2
+

|λk+ |2

iωτ − vnk + 1
2π
√

(2Jk)2 + (πvnp)2

=
iωτ − vnk + vnp

2
(iωτ − vnk)2 − 1

4π2 [(2Jk)2 + (πvnp)2]
=

iωτ − vnk + vnp
2

(iωτ − vn+k)(iωτ − vn−k)− ( vnp2 )2 .

(39)

where we have used

Gb(iωτ , k) = 1
iωτ − ωbn(k) , |λk∓ |2 = 1

2

(
1± πvnp√

(2Jk)2 + (πvnp)2

)
. (40)
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The real space Green’s function is thus

G′n(−iτ, x) =
∫
dωτdk

(2π)2 e
iωττ+ikxG′n(iωτ , k) =

∫
dωτdk

(2π)2 e
iωττ+ikx iωτ − vnk + vnp

2
(iωτ − vn+k)(iωτ − vn−k)− ( vnp2 )2 . (41)

We can get the real-time Green’s function G′n(t, x) by analytically continuing −iτ → t and iωτ → −ω − i0+.

The Green’s function of cn = e−
ipx

2 c′n in the original basis is given by

Gn(t, x) = G′n(t, x)e−
ipx

2 . (42)

C.2 Two-point correlation functions for fermions and anyons at p = 0
In this subsection, we calculate explicitly the correlation functions of fermions and anyons when p = 0.

C.2.1 For fermions

At p = 0, the calculation of two-point functions for fermions are straightforward. Let us again start with
Euclidean spacetime for calculation conveniences. For fermions in charge sector, in momentum space, their
two-point function is given as

Gρ(iωτ , k) = 1
iωτ + kvρ

, (43)

Analytically continuing iωτ → −ω − i0+, we get the retarded Green’s function

Gρ,ret(ω, k) = 1
kvρ − ω − i0+ (44)

which gives us the spectral weight function

Aρ(ω, k) = 2ImGρ,ret(ω, k) = 2πδ(ω − kvρ) . (45)

Similarly, for fermions in neutral sector, we have the retarded Green function

Gn,ret(k, ω) = 1
2( 1
kvn+ − ω − i0+ + 1

kvn− − ω − i0+ ) (46)

where the velocities are given by vn± = vn ± J
2π . Then

An(k, ω) = π(δ(ω − kvn+) + δ(ω − kvn−)) (47)

signaling the appearance of two free Majorana fermions at p = 0. Fourier transforming back to real time domain,
we have

Gn(t, x) = 1
4πi (

1
vn+t− x− i0+ + 1

vn−t− x− i0+ ), Gρ(t, x) = 1
2πi

1
vρt− x− i0+ . (48)

C.2.2 For anyons

At p = 0, two-point correlation functions for the charge 2e
3 anyon χ′ = e2iφ1 = e

i(φn+ φρ√
3

)
can be readily

calculated

〈χ′(t, x)χ′†(0, 0)〉 = Gn(t, x)Gρ(t, x)1/3 = 1
2(2πi)4/3 ( 1

vn+t− x− i0+ + 1
vn−t− x− i0+ ) 1

(vρt− x− i0+) 1
3

(49)

For calculations of two-point correlation functions involving the charge e
3 anyon χ = eiφ1 and the charge e

electron ψ = eiφ2 , we adapt a similar strategy implemented in [28]. We first enlarge our Hilbert space by making
a duplicated copy of our ν = 4/3 Lagrangian density, after which the total Lagrangian reads

L2c = L(+) + L(−)

= − 1
4π
∑
η=±

[∂xφ(η)
ρ (∂t + vρ∂x)φ(η)

ρ + ∂xφ
(η)
n (∂t + vn∂x)φ(η)

n + 4πJ(e2iφ(η)
n + h.c.)] , (50)
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where for each copy η = ±, we are in the neutral-charge basis defined as

φ(η)
n = 3φ(η)

1 − φ(η)
2

2 , φ(η)
ρ =

√
3(φ(η)

1 + φ
(η)
2 )

2 (51)

Next, let us define new fermion variables fi = eiφ̃i such that

φ(η)
n = (φ̃1 − φ̃2) + η(φ̃3 − φ̃4)

2 , φ(η)
ρ = (φ̃1 + φ̃2) + η(φ̃3 + φ̃4)

2 . (52)

In literature [28, 43–48], this is known as the SO(8) triality transformation. Under this transformation, our
Lagrangian density becomes

L2c = − 1
4π (∂tφ̃T∂xφ̃+ ∂xφ̃

T Ṽ ∂xφ̃)− J(ei(φ̃1−φ̃2+φ̃3−φ̃4) + ei(φ̃1−φ̃2−φ̃3+φ̃4) + h.c.) (53)

with velocity matrix

Ṽ =


ũ+ ũ− 0 0
ũ− ũ+ 0 0
0 0 ũ+ ũ−
0 0 ũ− ũ+

 , (54)

ũ+ = vρ+vn
2 , ũ− = vρ−vn

2 and φ̃ = (φ̃1, φ̃2, φ̃3, φ̃4)T . In the fi fermion basis, the Lagrangian density is

L2c =
4∑
s=1

if†s (∂t + ũ+x)fs − 2πũ−(f†1f1f
†
2f2 + f†3f3f

†
4f4)− J(f†1f2 − f†2f1)(f†3f4 − f†4f3). (55)

This interacting fermion model can be further bosonized in a rotated fermion basis: d1,± = f1±if2√
2 = eiθ1,± ,

d2,± = f3±if4√
2 = eiθ2,± , such that all terms in the Lagrangian are bilinear in boson fields {θi,±}i=1,2.

L2c =
2∑
s=1

∑
η=±

id†s,η(∂t + ũ+∂x)ds,η − 2πũ−(d†1,+d1,+d
†
1,−d1,− + d†2,+d2,+d

†
2,−d2,−)

− J(d†1,+d1,+ − d†1,−d1,−)(d†2,+d2,+ − d†2,−d2,−)

= − 1
4π (∂tθT∂xθ + ∂xθ

TU∂xθ)

(56)

with

U =


ũ+ ũ−

J
2π − J

2π
ũ− ũ+ − J

2π
J
2π

J
2π − J

2π ũ+ ũ−
− J

2π
J
2π ũ− ũ+

 , (57)

and θ = (θ1,+, θ1,−, θ2,+, θ2,−)T . Finally, we can diagonalize our Lagrangian density by changing to a new basis

for boson fields: θ̃ηη′ = (θ1,+ + ηθ1,− + η′θ2,+ + ηη′θ2,−),

L2c = − 1
4π

∑
η,η′=±

∂xθ̃ηη′(∂t + uηη′∂x)θ̃ηη′ (58)

with velocities

u+± = ũ+ + ũ− = vρ, u−± = ũ+ − ũ− ±
J

π
= vn ±

J

π
= vn± , (59)

With the above exact mappings established, we have

〈eiφ̃1(t,x)e−iφ̃1(0,0)〉 = 〈f1f
†
1 〉 = 〈12(d1+d

†
1+ + d1−d

†
1−)〉 = 〈12(eiθ1,+e−iθ1,+ + eiθ1,−e−iθ1,−)〉

= 〈ei(θ̃1+θ̃2+θ̃3+θ̃4)/2e−i(θ̃1+θ̃2+θ̃3+θ̃4)/2〉 = 1
2πi

1
(vρt− x− i0+)1/2(vn,+t− x− i0+)1/4(vn,−t− x− i0+)1/4

(60)
Since the charge degrees of freedom is always a free theory, we have

〈eiφ
(i)
ρ (t,x)/2e−iφ

(i)
ρ (0,0)/2〉 = 1

2πi
1

(vρt− x− i0+)1/4 (61)
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From the fact that φ̃1 = φ(+)
n +φ(−)

n +φ(+)
ρ +φ(−)

ρ

2 , we have 〈e−iφ̃1eiφ̃1〉 =
(
〈eiφ(η)

n /2e−iφ
(η)
n /2〉〈eiφ

(η)
ρ /2e−iφ

(η)
ρ /2〉

)2
,

which leads to

〈eiφ
(η)
n (t,x)/2e−iφ

(η)
n (0,0)/2〉 =

√
〈eiφ̃1e−iφ̃1〉

〈eiφ
(η)
ρ /2e−iφ

(η)
ρ /2〉

= 1
(2πi)1/4

1
(vn+t− x− i0+)1/8(vn,−t− x− i0+)1/8 . (62)

Since φ1 = 1
2φ

(η)
n + 1

2
√

3φ
(η)
ρ and φ2 =

√
3

2 φ
(η)
ρ − 1

2φ
(η)
n , this gives us

Gχ(t, x) = 〈χ(t, x)χ†(0, 0)〉 = 〈ei(
1
2φ

(η)
n + 1

2
√

3
φ(η)
ρ )

e
−i( 1

2φ
(η)
n + 1

2
√

3
φ(η)
ρ )〉 = 〈ei 1

2φ
(η)
n e−i

1
2φ

(η)
n 〉〈ei

1
2
√

3
φ(η)
ρ e
−i 1

2
√

3
φ(η)
ρ 〉

= 1
(2πi)1/3

1
(vρt− x− i0+)1/12(vn+t− x− i0+)1/8(vn−t− x− i0+)1/8 ,

Gψ(t, x) = 〈ψ(t, x)ψ†(0, 0)〉 = 〈ei(− 1
2φ

(η)
n +

√
3

2 φ(η)
ρ )e−i(−

1
2φ

(η)
n +

√
3

2 φ(η)
ρ )〉 = 〈e−i 1

2φ
(η)
n ei

1
2φ

(η)
n 〉〈ei

√
3

2 φ(η)
ρ e−i

√
3

2 φ(η)
ρ 〉

= 1
2πi

1
(vρt− x− i0+)3/4(vn+t− x− i0+)1/8(vn−t− x− i0+)1/8 .

(63)

D Generic cases
In this section, we consider generic cases of edge theory (Eq. (16)) for the ν = 4/3 quantum Hall state with
J 6= 0 and vnρ 6= 0.

D.1 The extra phase from momentum difference p
The extra phase factor eipx in Eq. (16) can be eliminated by performing an unitary transformation on boson
fields such that we redefine them as

φ′n = φn + p

2x, φ′ρ = φρ −
vnp

2vnρ
x and c′n = ei

p
2xcn, c′ρ = e

−i vnp2vnρ xcρ . (64)

The price we pay is an additional chemical potential term ∂xφ
′
ρ with coefficient µρ =

(
vnvρ
vnρ
− vnρ

)
p for the

charge fermion c′ρ generated from the above transformation. Putting these together, our Lagrangian density
becomes

L = ic′†n (∂t + vn∂x)c′n + ic′†ρ (∂t + vρ∂x)c′ρ − µρc′†ρ c′ρ +
(
i
J

2π c
′
n∂xc

′
n + h.c.

)
− 2πvnρc′†n c′nc′†ρ c′ρ . (65)

Green’s functions of both the neutral n and charged ρ fermions acquire pure phase factors in the new basis as
a consequence:

G′n(t, x) = Gn(t, x)ei
px
2 , G′ρ(t, x) = Gρ(t, x)e−i

vnpx
2vnρ . (66)

This change does not alter results regarding level spacing statistics (LSS), and only shift the spectral weight
functions of n and ρ fermions by a constant momentum.

D.2 Discretization and exact diagonlization
In this subsection, we discuss discretization procedures and other technical details for our exact diagonlization
(ED) calculations for generic cases of our 4/3 FQH chiral edge theory.

We model our edge theory as a closed one dimensional chiral system with total length L and anti-periodic
boundary condition for fermion operators c′n and c′ρ. Imposing anti-periodic boundary condition is natural
when there is no flux inside the bulk. Under this set-up, we can Fourier transform the fermion operators to
momentum space:

c′α(x) = 1√
L

∑
k

eikxc′α(k), k ∈
2π(Z + 1

2 )
L

, (α = n, ρ) (67)

Our Hamiltonian in the real space is

H =
∫ L

0
dx[−ivnc′

†
n∂xc

′
n − ivρc′

†
ρ∂xc

′
ρ + µρc

′†
ρc
′
ρ −

J

2π (ic′n∂xc′n + ic′
†
n∂xc

′†
n) + 2πvnρc′

†
nc
′
nc
′†
ρc
′
ρ] . (68)
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Figure 4: Additional ED results for level spacing statistics (LSS) in various charge sectors at total momentum Ktot = 13.5
with J = 0.8π, vnρ = 0.4, vρ = 1.5, vn = 1, while the chemical potential µρ = 0. There is an additional particle-hole charge
ηP = ±1 in the subspace of charge Nρ = 0. (a)-(d) are plots for charge sectors with Nρ = 0, ηP = −1 and Nρ = 1, 2, 3,
respectively.
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Figure 6: More ED results up to total momentum Ktot = 13.5. We fix vρ = 1.5, vn = 1, µρ = 0, while the other parameters
are given by (a)-(c): J = 0.6π, vnρ = 0.4; (d)-(f): J = 0.8π, vnρ = 0.2. (a), (d) are the spectral weight of fermions ρ (thick
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Without loss of generality, we set L = 2π, such that the fermion momentum k ∈ Z + 1
2 . The Hamiltonian of

our edge theory in real space can be transformed to momentum space as

H =
∞∑

k=−∞

[
vnk

(
c′
†
n(k)c′n(k)− 1

2

)
+ (vρk + µρ)

(
c′
†
ρ(k)c′ρ(k)− 1

2

)
+ J

2π (kc′n(−k)c′n(k)− kc′†n(−k)c′†n(k))
]

+ vnρ

∞∑
k1,k2,k3,k4=−∞

δk1−k2+k3−k4,0

(
c′
†
n(k1)c′n(k2)− 1

2δk1,k2

)(
c′
†
ρ(k3)c′ρ(k4)− 1

2δk3,k4

)
.

(69)
Because of the following relations between an electron operator and a hole operator:

c′†α,e(k) = c′α,h(−k), c′α,e(k) = c′†α,h(−k) , (α = n, ρ) (70)

by rewriting fermion operators with negative momentum as their hole operators, we can convert all the mo-
mentum of fermion operators in the summand of Eq. (69) as positive. Thus, for a given total many-body
momentum Ktot > 0, the Hilbert space dimension is finite, allowing us to employ the ED method to obtain the
eigenstates and spectrum. To this end, the ground state of our Hamiltonian is the state with zero electrons and
holes for both neutral (n) and charge (ρ) sectors. To further reduce redundant calculations, we need to identify
symmetries of our Hamiltonian. We see three different conserved quantities: the total momentum Ktot, the
total charge of charge fermion Nρ and the fermion parity of neutral fermions (−1)Nn . Since Nn ≡ (2Ktot +Nρ)
mod 2, only two independent conserved quantities left and we can label states in our Hilbert space by which
(Ktot, Nρ) sector they belong. In the Nρ = 0 sectors, our model has an additional particle-hole symmetry P as
defined in Eq. (12), yielding another conserved charge ηP = ±1 (eigenvalues of P ). Our ED calculations for
the Nρ = 0 sector can thus be done for a global charge sector (Ktot, Nρ = 0, ηP ).

After we obtain the full spectrum, we can calculate the zero-temperature spectral weight function at a given
momentum k. It is defined as

Aα=n,ρ(ω, k) =
N−k∑
j=1
|〈−k, j|c′α(k)|0〉|2δ(ω + E−k,j) +

Nk∑
j=1
|〈0|c′α(k)|k, j〉|2δ(ω − Ek,j) , (71)

where |k, j〉 is the j-th many-body eigenstate (sorted in the order of increasing energy) of total momentum
Ktot = k sector of Eq. (69), which has energy Ek,j , and Nk is the Hilbert space dimension of the total
momentum k sector. It satisfies

1 =
∫ ∞
−∞

dω

2πAα=n,ρ(ω, k) . (72)

To plot the spectral weight, we used a Lorentizan function in places for a Dirac delta function as

δ(ω)→ 1
π

Im
1

ω + iη
, (73)

where we take η = 0.3 for all our plots.
We also plot the level spacing statistics (LSS) of conserved charge sectors in Fig. (4) here and in Fig. (2)

of the main text. For each conserved charge S = (Ktot, Nρ) sector (or S = (Ktot, Nρ = 0, ηP ) sector when
Nρ = 0), assume the energy levels are ES,j with j sorted in the energy increasing order. The LSS PLS(δE) is
then defined as the distribution of energy differences between consecutive energy levels

δEj = ES,j+1 − ES,j (74)

within sector S.
In addition to Fig. (2) of our main text, we plotted spectral weight functions, density of states and level

spacing statistics for more exmaples in Fig. (5) and Fig. (6) with various parameter settings. In Fig. (5), we
added nonzero chemical potentials. We notice that the effect of chemical potential term is dominantly shifting
the energy of the spectral weight of the ρ fermion. In Fig. (6), the results display behaviours between that of a
free boson theory and a free fermion theory.

The Hamiltonian for added nonlinear terms in momentum space is

Hnon =
∞∑

k=−∞
λk3

[(
c′†ρ (k)c′ρ(k)− 1

2

)
+
(
c′†n (k)c′n(k)− 1

2

)]
. (75)

Together with Eq. 69, our fermions have dispersion relations ωρ(k) = vρk + λk3 and ωn(k) = vnk + λk3.
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E Other Abelian bilayer fermionic FQH systems
Although we have focused on the 4/3 state for detailed analysis of its edge theory, there are many other Abelian
bilayer FQH states with two-by-two K-matrix that can be solved in a similar fashion using the method presented
in this paper. In this section, we present mathematical patterns of K-matrices of these states. We leave the
generalization to larger K matrices to the future studies.

We restrict ourselves in bilayer electronic systems, thus the K-matrix must have odd integers as diagonal
entries. The other condition we impose is that the system has one (and only one) leading interaction term
which describes electron hopping processes between the two chiral edges. Similar to Eq. (2) in main text, it
assumes a form

L1 = −J(x)eil·φ − h.c., J(x) = Jeipx (76)
where p again originates from the momentum differences between the two edge modes, and we require the
scaling dimension of eil·φ to be two, so that the coupling constant J is again dimensionless and non-negligible
at low energies. Besides, this electron hopping process has to be electrically neutral, namely, charge conserving.

To be more explicit, for a generic two-by-two matrix K =
(
a b
b c

)
with boson fields basis φ = (φ1, φ2), we

must have a, c ∈ 2Z>0−1, b ∈ Z≥0 and detK = ac−b2 > 0 (as ground state degeneracy must be positive). The
above conditions for the interaction term can be summarized as two equations for the two-component integer
vector l = (l1, l2):

1
2 l
TK−1l = al22 − 2bl1l2 + cl21

2 detK = 2, lTK−1q = (c− b)l1 + (a− b)l2
detK = 0 , (77)

where the first equation fixes its scaling dimension to be two and the second equation ensures the interaction
term is electrically neutral.

Putting on all these constraints, by an extensive search of solutions of Eq. (77), we find two classes of
K-matrices, one for filling balanced bilayer systems, and the other for the filling imbalanced case.

For the balanced case, for each n ∈ 2Z>0, at filling factor ν = 4
4+n2 , we have a series of K-matrix

{Kn
j =

(
n2

2 + j j

j n2

2 + j

)
}j∈Z>0 (78)

that satisfies the above characterizations with integer vector l = (±n,∓n)T describing the marginal interaction
term. We see that the (3, 3, 1)-state [54, 55] is the first member of this series.

The imbalanced case is more complicated, we find three different series of K-matrices. The first series occur
at filling factor ν = 4

8n−5 for n ∈ Z>0. There are two varieties,

{Kn
j =

(
2n+ 1 2n+ 3j + 1

2n+ 3j + 1 2n+ 4j2 + 6j + 1

)
}j∈Z>0 (79)

with integer vector l = (±3,±(4j + 3))T and

{Kn
j odd =

(
2n− 1 4n−j−3

24n−j−3
2 2n+ j2 + j − 1

)
}j≤4n−3, {Kn

j even =
(

2n− 1 4n+j−2
24n+j−2

2 2n+ j2 + j − 1

)
}j>0 (80)

with integer vector l = (±1,∓(2j + 1))T and l = (±1,±(2j + 1))T respectively. The (1, 7, 2)-state is the second
member (j = 2) of the n = 1 series.

The second series occurs at filling factor ν = 1
2n for n ∈ Z>0.

{Kn
j =

(
2n+ 1 2n+ 2j + 1

2n+ 2j + 1 2n+ 4j2 + 4j + 1

)
}j∈Z>0 (81)

with integer vector l = (±2,±(4j + 2))T .
The third series occurs at filling factor ν = 1

2n−1 for n ∈ Z>0.

{Kn
j =

(
2n+ 3 2n+ 4j + 3

2n+ 4j + 3 2n+ 4j2 + 8j + 3

)
}j∈Z>0 (82)

with integer vector l = (±4,±(4j + 4))T .
We note here that the patterns found in this section are not meant to be complete. Besides, many examples

followed from this pattern, taken as bilayer FQH systems, are not observed experimentally. This is partial due
to the fact that their filling factors for each layer is smaller than ν = 1

7 ∼
1

11 . In these cases, physically, an
energetically more dominant Wigner crystal phase or other competing phases may emerge.
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