Receiver-Device-Independent Quantum Key Distribution

Marie Ioannou1, Maria Ana Pereira1, Davide Rusca1, Fadri Grünenfelder1, Alberto Boaron1, Matthieu Perrenoud1, Alastair A. Abbott1,2, Pavel Sekatski1, Jean-Daniel Bancal1,3, Nicolas Maring1, Hugo Zbinden1, and Nicolas Brunner1

1Department of Applied Physics University of Geneva, 1211 Geneva, Switzerland
2Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
3Université Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91191, Gif-sur-Yvette, France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We present protocols for quantum key distribution in a prepare-and-measure setup with an asymmetric level of trust. While the device of the sender (Alice) is partially characterized, the receiver's (Bob's) device is treated as a black-box. The security of the protocols is based on the assumption that Alice's prepared states have limited overlaps, but no explicit bound on the Hilbert space dimension is required. The protocols are immune to attacks on the receiver's device, such as blinding attacks. The users can establish a secret key while continuously monitoring the correct functioning of their devices through observed statistics. We report a proof-of-principle demonstration, involving mostly off-the-shelf equipment, as well as a high-efficiency superconducting nanowire detector. A positive key rate is demonstrated over a 4.8 km low-loss optical fiber with finite-key analysis. The prospects of implementing these protocols over longer distances is discussed.

► BibTeX data

► References

[1] Eleni Diamanti, Hoi-Kwong Lo, Bing Qi, and Zhiliang Yuan. ``Practical challenges in quantum key distribution''. npj Quantum Inf. 2, 16025 (2016).

[2] Feihu Xu, Xiongfeng Ma, Qiang Zhang, Hoi-Kwong Lo, and Jian-Wei Pan. ``Secure quantum key distribution with realistic devices''. Rev. Mod. Phys. 92, 025002 (2020).

[3] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. ``Advances in quantum cryptography''. Adv. Opt. Photon. 12, 1012–1236 (2020).

[4] Alberto Boaron, Gianluca Boso, Davide Rusca, Cédric Vulliez, Claire Autebert, Misael Caloz, Matthieu Perrenoud, Gaëtan Gras, Félix Bussières, Ming-Jun Li, Daniel Nolan, Anthony Martin, and Hugo Zbinden. ``Secure quantum key distribution over 421 km of optical fiber''. Phys. Rev. Lett. 121, 190502 (2018).

[5] Juan Yin, Yu-Huai Li, Sheng-Kai Liao, Meng Yang, Yuan Cao, Liang Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Shuang-Lin Li, Rong Shu, Yong-Mei Huang, Lei Deng, Li Li, Qiang Zhang, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Xiang-Bin Wang, Feihu Xu, Jian-Yu Wang, Cheng-Zhi Peng, Artur K. Ekert, and Jian-Wei Pan. ``Entanglement-based secure quantum cryptography over 1,120 kilometres''. Nature 582, 501–505 (2020).

[6] Jiu-Peng Chen, Chi Zhang, Yang Liu, Cong Jiang, Weijun Zhang, Xiao-Long Hu, Jian-Yu Guan, Zong-Wen Yu, Hai Xu, Jin Lin, Ming-Jun Li, Hao Chen, Hao Li, Lixing You, Zhen Wang, Xiang-Bin Wang, Qiang Zhang, and Jian-Wei Pan. ``Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km''. Phys. Rev. Lett. 124, 070501 (2020).

[7] ID Quantique SA Switzerland.

[8] Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, Stefano Pironio, and Valerio Scarani. ``Device-independent security of quantum cryptography against collective attacks''. Phys. Rev. Lett. 98, 230501 (2007).

[9] Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani. ``Device-independent quantum key distribution secure against collective attacks''. New J. Phys. 11, 045021 (2009).

[10] Umesh Vazirani and Thomas Vidick. ``Fully device-independent quantum key distribution''. Phys. Rev. Lett. 113, 140501 (2014).

[11] Rotem Arnon-Friedman, Frédéric Dupuis, Omar Fawzi, Renato Renner, and Thomas Vidick. ``Practical device-independent quantum cryptography via entropy accumulation''. Nature Commun. 9, 459 (2018).

[12] Artur Ekert and Renato Renner. ``The ultimate physical limits of privacy''. Nature 507, 443–447 (2014).

[13] Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser, Johannes Skaar, and Vadim Makarov. ``Hacking commercial quantum cryptography systems by tailored bright illumination''. Nature Photonics 4, 686–689 (2010).

[14] Ilja Gerhardt, Qin Liu, Antía Lamas-Linares, Johannes Skaar, Christian Kurtsiefer, and Vadim Makarov. ``Full-field implementation of a perfect eavesdropper on a quantum cryptography system''. Nature Commun. 2, 349 (2011).

[15] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y-Z. Tan, P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and J-D. Bancal. ``Device-independent quantum key distribution'' (2021). arXiv:2109.14600.

[16] Wei Zhang, Tim van Leent, Kai Redeker, Robert Garthoff, Rene Schwonnek, Florian Fertig, Sebastian Eppelt, Valerio Scarani, Charles C. W. Lim, and Harald Weinfurter. ``Experimental device-independent quantum key distribution between distant users'' (2021). arXiv:2110.00575.

[17] Wen-Zhao Liu, Yu-Zhe Zhang, Yi-Zheng Zhen, Ming-Han Li, Yang Liu, Jingyun Fan, Feihu Xu, Qiang Zhang, and Jian-Wei Pan. ``High-speed device-independent quantum key distribution against collective attacks'' (2021). arXiv:2110.01480.

[18] Hoi-Kwong Lo, Marcos Curty, and Bing Qi. ``Measurement-device-independent quantum key distribution''. Phys. Rev. Lett. 108, 130503 (2012).

[19] Samuel L. Braunstein and Stefano Pirandola. ``Side-channel-free quantum key distribution''. Phys. Rev. Lett. 108, 130502 (2012).

[20] Marco Tomamichel and Renato Renner. ``Uncertainty relation for smooth entropies''. Phys. Rev. Lett. 106, 110506 (2011).

[21] Marco Tomamichel, Charles Ci Wen Lim, Nicolas Gisin, and Renato Renner. ``Tight finite-key analysis for quantum cryptography''. Nature Communications 3, 634 (2012).

[22] Marco Tomamichel and Anthony Leverrier. ``A largely self-contained and complete security proof for quantum key distribution''. Quantum 1, 14 (2017).

[23] Antonio Acín, Daniel Cavalcanti, Elsa Passaro, Stefano Pironio, and Paul Skrzypczyk. ``Necessary detection efficiencies for secure quantum key distribution and bound randomness''. Phys. Rev. A 93, 012319 (2016).

[24] Cyril Branciard, Eric G. Cavalcanti, Stephen P. Walborn, Valerio Scarani, and Howard M. Wiseman. ``One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering''. Phys. Rev. A 85, 010301 (2012).

[25] J B Brask, A Martin, W Esposito, R Houlmann, J Bowles, H Zbinden, and N Brunner. ``Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination''. Phys. Rev. Applied 7, 054018 (2017).

[26] T Van Himbeeck, E Woodhead, N J Cerf, R García-Patrón, and S Pironio. ``Semi-device-independent framework based on natural physical assumptions''. Quantum 1, 33 (2017).

[27] D Rusca, T van Himbeeck, A Martin, J B Brask, W Shi, S Pironio, N Brunner, and H Zbinden. ``Practical self-testing quantum random number generator based on a energy bound''. Phys. Rev. A 100, 062338 (2019).

[28] Yukun Wang, Ignatius William Primaatmaja, Emilien Lavie, Antonios Varvitsiotis, and Charles Ci Wen Lim. ``Characterising the correlations of prepare-and-measure quantum networks''. npj Quantum Inf. 5, 17 (2019).

[29] M Pawłowski and N Brunner. ``Semi-device-independent security of one-way quantum key distribution''. Phys. Rev. A 84, 010302(R) (2011).

[30] Erik Woodhead and Stefano Pironio. ``Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound''. Phys. Rev. Lett. 115, 150501 (2015).

[31] X. Ma and N. Lutkenhaus. ``Improved data post-processing in quantum key distribution and application to loss thresholds in device independent qkd''. Quantum Inf. Comput. 12, 3 (2011).

[32] M. Ho, P. Sekatski, E. Y.-Z. Tan, R. Renner, J.-D. Bancal, and N. Sangouard. ``Noisy preprocessing facilitates a photonic realization of device-independent quantum key distribution''. Phys. Rev. Lett. 124, 230502 (2020).

[33] Rene Schwonnek, Koon Tong Goh, Ignatius W. Primaatmaja, Ernest Y.-Z. Tan, Ramona Wolf, Valerio Scarani, and Charles C.-W. Lim. ``Device-independent quantum key distribution with random key basis''. Nature Commun. 12, 2880 (2021).

[34] Erik Woodhead, Antonio Acín, and Stefano Pironio. ``Device-independent quantum key distribution with asymmetric CHSH inequalities''. Quantum 5, 443 (2021).

[35] Pavel Sekatski, Jean-Daniel Bancal, Xavier Valcarce, Ernest Y.-Z. Tan, Renato Renner, and Nicolas Sangouard. ``Device-independent quantum key distribution from generalized CHSH inequalities''. Quantum 5, 444 (2021).

[36] Renato Renner. ``Symmetry of large physical systems implies independence of subsystems''. Nature Physics 3, 645–649 (2007).

[37] Frederic Dupuis, Omar Fawzi, and Renato Renner. ``Entropy accumulation''. Commn. Math. Phys. 379, 867–913 (2020).

[38] Charles H. Bennett. ``Quantum cryptography using any two nonorthogonal states''. Phys. Rev. Lett. 68, 3121–3124 (1992).

[39] Marie Ioannou, Pavel Sekatski, Alastair A. Abbott, Denis Rosset, Jean-Daniel Bancal, and Nicolas Brunner. ``Receiver-device-independent quantum key distribution protocols'' (2021). arXiv:2110.00575.

[40] Igor Devetak and Andreas Winter. ``Distillation of secret key and entanglement from quantum states''. Proc. Roy. Soc. A461, 207–235 (2005).

[41] Hamza Fawzi, James Saunderson, and Pablo A. Parrilo. ``Semidefinite approximations of the matrix logarithm''. Found. Comput. Math. 19, 259 (2018).

[42] Fadri Grünenfelder, Alberto Boaron, Davide Rusca, Anthony Martin, and Hugo Zbinden. ``Performance and security of 5 ghz repetition rate polarization-based quantum key distribution''. Appl. Phys. Lett. 117, 144003 (2020).

[43] Abraham Charnes and William W Cooper. ``Programming with linear fractional functionals''. Naval Research logistics quarterly 9, 181–186 (1962).

[44] Pei-Sheng Lin, Denis Rosset, Yanbao Zhang, Jean-Daniel Bancal, and Yeong-Cherng Liang. ``Device-independent point estimation from finite data and its application to device-independent property estimation''. Phys. Rev. A 97, 032309 (2018).

[45] Jean-Daniel Bancal, Kai Redeker, Pavel Sekatski, Wenjamin Rosenfeld, and Nicolas Sangouard. ``Self-testing with finite statistics enabling the certification of a quantum network link''. Quantum 5, 401 (2021).

Cited by

[1] Ignatius W. Primaatmaja, Koon Tong Goh, Ernest Y.-Z. Tan, John T.-F. Khoo, Shouvik Ghorai, and Charles C.-W. Lim, "Security of device-independent quantum key distribution protocols: a review", Quantum 7, 932 (2023).

[2] Mohammed Y. Al-Darwbi, Ali A. Ghorbani, and Arash Habibi Lashkari, "QKeyShield: A Practical Receiver-Device-Independent Entanglement-Swapping-Based Quantum Key Distribution", IEEE Access 10, 107685 (2022).

[3] Isadora Veeren, Martin Plávala, Leevi Leppäjärvi, and Roope Uola, "Semi-device-independent certification of the number of measurements", Physical Review A 109 6, 062203 (2024).

[4] Marie Ioannou, Pavel Sekatski, Alastair A. Abbott, Denis Rosset, Jean-Daniel Bancal, and Nicolas Brunner, "Receiver-device-independent quantum key distribution protocols", New Journal of Physics 24 6, 063006 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 01:19:16) and SAO/NASA ADS (last updated successfully 2024-06-22 01:19:16). The list may be incomplete as not all publishers provide suitable and complete citation data.