Quantum and Classical Bayesian Agents

John B. DeBrota1 and Peter J. Love

1Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We describe a general approach to modeling rational decision-making agents who adopt either quantum or classical mechanics based on the Quantum Bayesian (QBist) approach to quantum theory. With the additional ingredient of a scheme by which the properties of one agent may influence another, we arrive at a flexible framework for treating multiple interacting quantum and classical Bayesian agents. We present simulations in several settings to illustrate our construction: quantum and classical agents receiving signals from an exogenous source, two interacting classical agents, two interacting quantum agents, and interactions between classical and quantum agents. A consistent treatment of multiple interacting users of quantum theory may allow us to properly interpret existing multi-agent protocols and could suggest new approaches in other areas such as quantum algorithm design.

► BibTeX data

► References

[1] Eugene P. Wigner ``Remarks on the Mind-Body Question'' William Heinemann, Ltd. (1961).
https:/​/​doi.org/​10.1007/​978-3-642-78374-6_20

[2] Daniela Frauchigerand Renato Renner ``Quantum theory cannot consistently describe the use of itself'' Nature Communications 9, 3711 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-05739-8
arXiv:1604.07422

[3] Veronika Baumannand Časlav Brukner ``Wigner’s friend as a rational agent'' Quantum, probability, logic: the work and influence of Itamar Pitowsky (2020).
https:/​/​doi.org/​10.1007/​978-3-030-34316-3_4
arXiv:1901.11274

[4] Asher Peres ``Incompatible results of quantum measurements'' Physics Letters A 151, 107–108 (1990).
https:/​/​doi.org/​10.1016/​0375-9601(90)90172-K

[5] N. David Mermin ``Simple unified form for the major no-hidden-variables theorems'' Physical Review Letters 65, 3373–3376 (1990).
https:/​/​doi.org/​10.1103/​PhysRevLett.65.3373

[6] Alexei Yu Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi, ``Classical and Quantum Computation'' American Mathematical Society (2002).

[7] Thomas Vidick ``The Complexity of Entangled Games'' thesis (2013).
https:/​/​escholarship.org/​uc/​item/​5v49k1z2

[8] Myrto Arapinis, Nikolaos Lamprou, Elham Kashefi, and Anna Pappa, ``Definitions and Security of Quantum Electronic Voting'' ACM Transactions on Quantum Computing 2, 1–33 (2021).
https:/​/​doi.org/​10.1145/​3450144
arXiv:1810.05083

[9] E. T. Khabiboulline, J. S. Sandhu, M. U. Gambetta, M. D. Lukin, and J. Borregaard, ``Efficient Quantum Voting with Information-Theoretic Security'' (2021).
arXiv:2112.14242

[10] Christopher A. Fuchsand Blake C. Stacey ``QBism: Quantum Theory as a Hero's Handbook'' Proceedings of the International School of Physics "Enrico Fermi": Course 197, Foundations of Quantum Theory 133–202 (2019).
https:/​/​doi.org/​10.3254/​978-1-61499-937-9-133
arXiv:1612.07308

[11] Christopher A. Fuchs ``QBism, the Perimeter of Quantum Bayesianism'' (2010).
arXiv:1003.5209

[12] Christopher A. Fuchsand Rüdiger Schack ``Quantum-Bayesian coherence'' Reviews of Modern Physics 85, 1693–1715 (2013).
https:/​/​doi.org/​10.1103/​RevModPhys.85.1693
arXiv:0906.2187

[13] John B. DeBrota, Christopher A. Fuchs, and Rüdiger Schack, ``Respecting One’s Fellow: QBism’s Analysis of Wigner’s Friend'' Foundations of Physics (2020).
https:/​/​doi.org/​10.1007/​s10701-020-00369-x
arXiv:2008.03572

[14] José M. Bernardoand Adrian F. M. Smith ``Bayesian theory'' Wiley (2000).
https:/​/​doi.org/​10.1002/​9780470316870

[15] Paul J. H. Schoemaker ``Experiments on Decisions under Risk: The Expected Utility Hypothesis'' Springer Netherlands (1980).
https:/​/​doi.org/​10.1007/​978-94-017-5040-0

[16] Peter C. Fishburn ``Subjective expected utility: A review of normative theories'' Theory and Decision 13, 139–199 (1981).
https:/​/​doi.org/​10.1007/​BF00134215

[17] Bruno de Finetti ``La prévision: ses lois logiques, ses sources subjectives'' Annales de l'Institut Henri Poincaré 7, 1–68 (1937) Reprinted as `Foresight: Its Logical Laws, Its Subjective Sources' in Breakthroughs in Statistics (S. Kotz and N. L. Johnson, eds.). New York: Springer, 134–174, 1992.
https:/​/​doi.org/​10.1007/​978-1-4612-0919-5_10

[18] Carlton M. Caves, Christopher A. Fuchs, and Rüdiger Schack, ``Subjective probability and quantum certainty'' Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38, 255–274 (2007).
https:/​/​doi.org/​10.1016/​j.shpsb.2006.10.007

[19] Robin Blume-Kohoutand Patrick Hayden ``Accurate quantum state estimation via ``Keeping the experimentalist honest'''' (2006).

[20] R. Balescu ``Equilibrium and Nonequilibrium Statistical Mechanics'' Krieger Publishing Company (1991).

[21] John B. DeBrota, Christopher A. Fuchs, Jacques L. Pienaar, and Blake C. Stacey, ``Born's rule as a quantum extension of Bayesian coherence'' Phys. Rev. A 104, 022207 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.104.022207
arXiv:2012.14397

[22] Christopher Ferrieand Joseph Emerson ``Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations'' Journal of Physics A: Mathematical and Theoretical 41, 352001 (2008).
https:/​/​doi.org/​10.1088/​1751-8113/​41/​35/​352001
arXiv:0711.2658

[23] Christopher Ferrie, Ryan Morris, and Joseph Emerson, ``Necessity of negativity in quantum theory'' Physical Review A 82, 044103 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.82.044103
arXiv:0910.3198

[24] John B. DeBrota, Christopher A. Fuchs, and Blake C. Stacey, ``The Varieties of Minimal Tomographically Complete Measurements'' International Journal of Quantum Information 9, 445–507 (2020).
https:/​/​doi.org/​10.1142/​s0219749920400055
arXiv:1812.08762

[25] M. A. Nielsenand I. Chuang ``Quantum Computation and Quantum Information'' Cambridge University Press (2010).

[26] Mark Wilde ``Quantum information theory'' Cambridge University Press (2013).

[27] John B. DeBrotaand Blake C. Stacey ``Lüders channels and the existence of symmetric-informationally-complete measurements'' Physical Review A 100, 062327 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.100.062327
arXiv:1907.10999

[28] John B. DeBrota, Christopher A. Fuchs, and Blake C. Stacey, ``Symmetric Informationally Complete measurements identify the irreducible difference between classical and quantum systems'' Physical Review Research 2, 013074 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013074
arXiv:1805.08721

[29] John B. DeBrotaand Blake C. Stacey ``Discrete Wigner functions from informationally complete quantum measurements'' Physical Review A 102, 032221 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.102.032221
arXiv:1912.07554

[30] G. Zauner ``Quantendesigns. Grundzüge einer nichtkommutativen Design-theorie'' thesis (1999) Published in English translation: G. Zauner, "Quantum designs: foundations of a noncommutative design theory," International Journal of Quantum Information, vol. 9, pp. 445–508, 2011.
https:/​/​doi.org/​10.1142/​S0219749911006776

[31] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, ``Symmetric Informationally Complete Quantum Measurements'' Journal of Mathematical Physics 45, 2171–2180 (2004).
https:/​/​doi.org/​10.1063/​1.1737053

[32] C. A. Fuchs, M. C. Hoang, and B. C. Stacey, ``The SIC question: History and state of play'' Axioms 6, 21 (2017).
https:/​/​doi.org/​10.3390/​axioms6030021
arXiv:1703.07901

[33] Howard Barnum ``Information-disturbance tradeoff in quantum measurement on the uniform ensemble and on the mutually unbiased bases'' (2002).

[34] Paul Buschand Pekka Lahti ``Lüders Rule'' Springer Berlin Heidelberg (2009).
https:/​/​doi.org/​10.1007/​978-3-540-70626-7_110

[35] Markus Grassl (2021) In preparation.

[36] Robin Blume-Kohout ``Optimal, reliable estimation of quantum states'' New Journal of Physics 12, 043034 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​4/​043034

[37] Persi Diaconis, Susan Holmes, and Richard Montgomery, ``Dynamical Bias in the Coin Toss'' SIAM Review 49, 211–235 (2007).
https:/​/​doi.org/​10.1137/​S0036144504446436

[38] Rüdiger Schack, Todd A. Brun, and Carlton M. Caves, ``Quantum Bayes rule'' Physical Review A 64, 014305 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.014305

[39] R. L. Hudsonand G. R. Moody ``Locally normal symmetric states and an analogue of de Finetti's theorem'' Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 33, 343–351 (1976).
https:/​/​doi.org/​10.1007/​BF00534784

[40] Carlton M. Caves, Christopher A. Fuchs, and Rüdiger Schack, ``Unknown quantum states: The quantum de Finetti representation'' Journal of Mathematical Physics 43, 4537–4559 (2002).
https:/​/​doi.org/​10.1063/​1.1494475

[41] David A. Meyer ``Quantum Strategies'' Physical Review Letters 82, 1052–1055 (1999).
https:/​/​doi.org/​10.1103/​PhysRevLett.82.1052

[42] M. Allais ``Le Comportement de l'Homme Rationnel devant le Risque: Critique des Postulats et Axiomes de l'Ecole Americaine'' Econometrica 21, 503 (1953).
https:/​/​doi.org/​10.2307/​1907921

[43] Herbert A. Simon ``Administrative behavior: a study of decision-making processes in administrative organizations'' Free Press (1997).
https:/​/​doi.org/​10.1093/​oxfordhb/​9780199646135.013.22

[44] Richard H. Thalerand Cass R. Sunstein ``Nudge: improving decisions about health, wealth, and happiness'' Penguin Books (2009).

[45] Daniel Kahnemanand Amos Tversky ``Prospect Theory: An Analysis of Decision under Risk'' Econometrica 47, 263 (1979).
https:/​/​doi.org/​10.2307/​1914185

[46] Amos Tverskyand Daniel Kahneman ``Advances in prospect theory: Cumulative representation of uncertainty'' Journal of Risk and Uncertainty 5, 297–323 (1992).
https:/​/​doi.org/​10.1007/​BF00122574

[47] C. van Fraassen ``Belief and the Will'' The Journal of Philosophy 81, 235 (1984).
https:/​/​doi.org/​10.2307/​2026388

[48] Brian Skyrms ``Dynamic Coherence and Probability Kinematics'' Philosophy of Science 54, 1–20 (1987).
https:/​/​doi.org/​10.1086/​289350

[49] Michael Nielsenand Rush T. Stewart ``Persistent Disagreement and Polarization in a Bayesian Setting'' The British Journal for the Philosophy of Science 72, 51–78 (2021).
https:/​/​doi.org/​10.1093/​bjps/​axy056

[50] Christopher A. Fuchsand Rü̈diger Schack ``Priors in Quantum Bayesian Inference'' AIP Conference Proceedings 255–259 (2009).
https:/​/​doi.org/​10.1063/​1.3109948

[51] Robert J. Aumann ``Agreeing to Disagree'' The Annals of Statistics 4 (1976).
https:/​/​doi.org/​10.1214/​aos/​1176343654

[52] John D Geanakoplosand Heraklis M Polemarchakis ``We can't disagree forever'' Journal of Economic Theory 28, 192–200 (1982).
https:/​/​doi.org/​10.1016/​0022-0531(82)90099-0

[53] Scott Aaronson ``The complexity of agreement'' Proceedings of the thirty-seventh annual ACM symposium on Theory of computing - STOC '05 634 (2005).
https:/​/​doi.org/​10.1145/​1060590.1060686

[54] V.I. Yukalovand D. Sornette ``Quantum decision theory as quantum theory of measurement'' Physics Letters A 372, 6867–6871 (2008).
https:/​/​doi.org/​10.1016/​j.physleta.2008.09.053

[55] Andrei Khrennikov ``Quantum Bayesianism as the basis of general theory of decision-making'' Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, 20150245 (2016).
https:/​/​doi.org/​10.1098/​rsta.2015.0245

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-07-05 04:56:48). On SAO/NASA ADS no data on citing works was found (last attempt 2022-07-05 04:56:49).