Eigenstate entanglement in integrable collective spin models

Meenu Kumari1 and Álvaro M. Alhambra2

1Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
2Max-Planck-Institut fur Quantenoptik, D-85748 Garching, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The average entanglement entropy (EE) of the energy eigenstates in non-vanishing partitions has been recently proposed as a diagnostic of integrability in quantum many-body systems. For it to be a faithful characterization of quantum integrability, it should distinguish quantum systems with a well-defined classical limit in the same way as the unequivocal classical integrability criteria. We examine the proposed diagnostic in the class of collective spin models characterized by permutation symmetry in the spins. The well-known Lipkin-Meshov-Glick (LMG) model is a paradigmatic integrable system in this class with a well-defined classical limit. Thus, this model is an excellent testbed for examining quantum integrability diagnostics. First, we calculate analytically the average EE of the Dicke basis $\{|j,m\rangle \}_{m=-j}^j$ in any non-vanishing bipartition, and show that in the thermodynamic limit, it converges to $1/2$ of the maximal EE in the corresponding bipartition. Using finite-size scaling, we numerically demonstrate that the aforementioned average EE in the thermodynamic limit is universal for all parameter values of the LMG model. Our analysis illustrates how a value of the average EE far away from the maximal in the thermodynamic limit could be a signature of integrability.

Classical systems can be categorized on the basis of their integrability. While integrable systems are perfectly predictable, nonintegrable systems often exhibit chaotic behaviour that renders the long-term evolution of such systems unpredictable. The distinction between integrable and nonintegrable systems is well-characterized in classical physics but this is a long-standing open problem in quantum physics. Every measure studied so far for such a characterization appears to fall short in some way.

A new perspective on this issue is given by quantum information, and in particular through the concept of entanglement entropy, which measures quantum correlations. It is widely believed that if the entanglement in a particular model is very close to maximal possible value, the model should be quantum chaotic. This leads to the question whether entanglement being far from maximal value could be associated with quantum integrability. Here, we analyse this through a model known to have a classically integrable limit making it an ideal candidate of a quantum integrable system. We show that the amount of entanglement that our model contains is very far from maximal, but also a universal quantity independent of the model’s coupling parameters. This exact value should thus be set by a fundamental feature of the model, that is, its integrability.

Our result shows how entanglement entropy is able to characterize when a quantum system is integrable or not, depending on the amount of quantum correlations between the different parts that form it. In doing so, we provide strong evidence that this concept can be crucial in solving the long-standing question of characterizing quantum integrability and chaos.

► BibTeX data

► References

[1] Vladimir Igorevich Arnol'd. ``Mathematical methods of classical mechanics''. Volume 60. Springer Science & Business Media. (2013).

[2] Olivier Babelon, Denis Bernard, and Michel Talon. ``Introduction to classical integrable systems''. Cambridge Monographs on Mathematical Physics. Cambridge University Press. (2003).

[3] Jean-Sébastien Caux and Jorn Mossel. ``Remarks on the notion of quantum integrability''. Journal of Statistical Mechanics: Theory and ExperimentPage P02023 (2011).

[4] R. J. Baxter. ``Exactly solved models in statistical mechanics''. Pages 5–63. World Scientific. (1985).

[5] Michel Gaudin. ``The bethe wavefunction''. Cambridge University Press. (2014).

[6] H. Bethe. ``Zur theorie der metalle''. Zeitschrift für Physik 71, 205–226 (1931).

[7] M. V. Berry and M. Tabor. ``Level clustering in the regular spectrum''. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 356, 375–394 (1977).

[8] R. J. Lewis-Swan, A. Safavi-Naini, A. M. Kaufman, and A. M. Rey. ``Dynamics of quantum information''. Nature Reviews Physics 1, 627–634 (2019).

[9] Gabriele De Chiara, Simone Montangero, Pasquale Calabrese, and Rosario Fazio. ``Entanglement entropy dynamics of heisenberg chains''. Journal of Statistical Mechanics: Theory and Experiment 2006, P03001 (2006).

[10] Lukasz Cincio, Jacek Dziarmaga, Marek M. Rams, and Wojciech H. Zurek. ``Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum ising model''. Phys. Rev. A 75, 052321 (2007).

[11] Maurizio Fagotti and Pasquale Calabrese. ``Evolution of entanglement entropy following a quantum quench: Analytic results for the $xy$ chain in a transverse magnetic field''. Phys. Rev. A 78, 010306 (2008).

[12] Hyungwon Kim and David A. Huse. ``Ballistic spreading of entanglement in a diffusive nonintegrable system''. Phys. Rev. Lett. 111, 127205 (2013).

[13] Olalla A. Castro-Alvaredo, Máté Lencsés, István M. Szécsényi, and Jacopo Viti. ``Entanglement oscillations near a quantum critical point''. Phys. Rev. Lett. 124, 230601 (2020).

[14] Jens H. Bardarson, Frank Pollmann, and Joel E. Moore. ``Unbounded growth of entanglement in models of many-body localization''. Phys. Rev. Lett. 109, 017202 (2012).

[15] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. ``Universal slow growth of entanglement in interacting strongly disordered systems''. Phys. Rev. Lett. 110, 260601 (2013).

[16] M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert. ``Many-body localization implies that eigenvectors are matrix-product states''. Phys. Rev. Lett. 114, 170505 (2015).

[17] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. ``Quantum scarred eigenstates in a rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations''. Phys. Rev. B 98, 155134 (2018).

[18] Wen Wei Ho, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. ``Periodic orbits, entanglement, and quantum many-body scars in constrained models: Matrix product state approach''. Phys. Rev. Lett. 122, 040603 (2019).

[19] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M. Rey. ``Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the dicke model''. Nature Communications 10, 1581 (2019).

[20] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S. Jessen. ``Quantum signatures of chaos in a kicked top''. Nature 461, 768–771 (2009).

[21] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, and et al. ``Ergodic dynamics and thermalization in an isolated quantum system''. Nature Physics 12, 1037–1041 (2016).

[22] Michael A. Nielsen and Isaac L. Chuang. ``Quantum computation and quantum information: 10th anniversary edition''. Cambridge University Press. (2010).

[23] W Beugeling, A Andreanov, and Masudul Haque. ``Global characteristics of all eigenstates of local many-body hamiltonians: participation ratio and entanglement entropy''. Journal of Statistical Mechanics: Theory and Experiment 2015, P02002 (2015).

[24] Lev Vidmar and Marcos Rigol. ``Entanglement entropy of eigenstates of quantum chaotic hamiltonians''. Phys. Rev. Lett. 119, 220603 (2017).

[25] Chaitanya Murthy and Mark Srednicki. ``Structure of chaotic eigenstates and their entanglement entropy''. Phys. Rev. E 100, 022131 (2019).

[26] Yichen Huang. ``Universal eigenstate entanglement of chaotic local hamiltonians''. Nuclear Physics B 938, 594–604 (2019).

[27] Don N. Page. ``Average entropy of a subsystem''. Phys. Rev. Lett. 71, 1291–1294 (1993).

[28] Lev Vidmar, Lucas Hackl, Eugenio Bianchi, and Marcos Rigol. ``Entanglement entropy of eigenstates of quadratic fermionic hamiltonians''. Phys. Rev. Lett. 119, 020601 (2017).

[29] Lucas Hackl, Lev Vidmar, Marcos Rigol, and Eugenio Bianchi. ``Average eigenstate entanglement entropy of the xy chain in a transverse field and its universality for translationally invariant quadratic fermionic models''. Phys. Rev. B 99, 075123 (2019).

[30] Patrycja Łydżba, Marcos Rigol, and Lev Vidmar. ``Eigenstate entanglement entropy in random quadratic hamiltonians''. Phys. Rev. Lett. 125, 180604 (2020).

[31] Tyler LeBlond, Krishnanand Mallayya, Lev Vidmar, and Marcos Rigol. ``Entanglement and matrix elements of observables in interacting integrable systems''. Phys. Rev. E 100, 062134 (2019).

[32] J. P. Keating, N. Linden, and H. J. Wells. ``Spectra and eigenstates of spin chain hamiltonians''. Communications in Mathematical Physics 338, 81–102 (2015).

[33] Bela Bauer and Chetan Nayak. ``Area laws in a many-body localized state and its implications for topological order''. Journal of Statistical Mechanics: Theory and Experiment 2013, P09005 (2013).

[34] M. Lombardi and A. Matzkin. ``Entanglement and chaos in the kicked top''. Phys. Rev. E 83, 016207 (2011).

[35] Vaibhav Madhok. ``Comment on ``entanglement and chaos in the kicked top''''. Phys. Rev. E 92, 036901 (2015).

[36] M. Lombardi and A. Matzkin. ``Reply to ``comment on `entanglement and chaos in the kicked top' ''''. Phys. Rev. E 92, 036902 (2015).

[37] Joshua B. Ruebeck, Jie Lin, and Arjendu K. Pattanayak. ``Entanglement and its relationship to classical dynamics''. Phys. Rev. E 95, 062222 (2017).

[38] Meenu Kumari and Shohini Ghose. ``Untangling entanglement and chaos''. Phys. Rev. A 99, 042311 (2019).

[39] Shruti Dogra, Vaibhav Madhok, and Arul Lakshminarayan. ``Quantum signatures of chaos, thermalization, and tunneling in the exactly solvable few-body kicked top''. Phys. Rev. E 99, 062217 (2019).

[40] Aram W. Harrow. ``The church of the symmetric subspace'' (2013). arXiv:1308.6595.

[41] John K. Stockton, J. M. Geremia, Andrew C. Doherty, and Hideo Mabuchi. ``Characterizing the entanglement of symmetric many-particle spin-$\frac{1}{2}$ systems''. Phys. Rev. A 67, 022112 (2003).

[42] H.J. Lipkin, N. Meshkov, and A.J. Glick. ``Validity of many-body approximation methods for a solvable model: (i). exact solutions and perturbation theory''. Nuclear Physics 62, 188–198 (1965).

[43] N. Meshkov, A.J. Glick, and H.J. Lipkin. ``Validity of many-body approximation methods for a solvable model: (ii). linearization procedures''. Nuclear Physics 62, 199–210 (1965).

[44] A.J. Glick, H.J. Lipkin, and N. Meshkov. ``Validity of many-body approximation methods for a solvable model: (iii). diagram summations''. Nuclear Physics 62, 211–224 (1965).

[45] Octavio Castaños, Ramón López-Peña, Jorge G. Hirsch, and Enrique López-Moreno. ``Classical and quantum phase transitions in the lipkin-meshkov-glick model''. Phys. Rev. B 74, 104118 (2006).

[46] Julien Vidal, Sébastien Dusuel, and Thomas Barthel. ``Entanglement entropy in collective models''. Journal of Statistical Mechanics: Theory and Experiment 2007, P01015 (2007).

[47] Manuel H. Muñoz Arias, Pablo M. Poggi, and Ivan H. Deutsch. ``Nonlinear dynamics and quantum chaos of a family of kicked $p$-spin models''. Phys. Rev. E 103, 052212 (2021).

[48] Manuel H. Muñoz Arias, Ivan H. Deutsch, Poul S. Jessen, and Pablo M. Poggi. ``Simulation of the complex dynamics of mean-field $p$-spin models using measurement-based quantum feedback control''. Phys. Rev. A 102, 022610 (2020).

[49] Sergio Lerma-Hernández, Jorge Chávez-Carlos, Miguel A Bastarrachea-Magnani, Lea F Santos, and Jorge G Hirsch. ``Analytical description of the survival probability of coherent states in regular regimes''. Journal of Physics A: Mathematical and Theoretical 51, 475302 (2018).

[50] Karthik Chinni, Pablo M. Poggi, and Ivan H. Deutsch. ``Effect of chaos on the simulation of quantum critical phenomena in analog quantum simulators''. Phys. Rev. Research 3, 033145 (2021).

[51] R.W. Richardson. ``A restricted class of exact eigenstates of the pairing-force hamiltonian''. Physics Letters 3, 277–279 (1963).

[52] R.W. Richardson and N. Sherman. ``Exact eigenstates of the pairing-force hamiltonian''. Nuclear Physics 52, 221–238 (1964).

[53] Patrycja Łydżba, Marcos Rigol, and Lev Vidmar. ``Entanglement in many-body eigenstates of quantum-chaotic quadratic hamiltonians''. Phys. Rev. B 103, 104206 (2021).

[54] Pedro Ribeiro, Julien Vidal, and Rémy Mosseri. ``Thermodynamical limit of the lipkin-meshkov-glick model''. Phys. Rev. Lett. 99, 050402 (2007).

[55] Pedro Ribeiro, Julien Vidal, and Rémy Mosseri. ``Exact spectrum of the lipkin-meshkov-glick model in the thermodynamic limit and finite-size corrections''. Phys. Rev. E 78, 021106 (2008).

[56] R. H. Dicke. ``Coherence in spontaneous radiation processes''. Phys. Rev. 93, 99–110 (1954).

[57] M. G. M. Moreno and Fernando Parisio. ``All bipartitions of arbitrary dicke states'' (2018). arXiv:1801.00762.

[58] José I. Latorre, Román Orús, Enrique Rico, and Julien Vidal. ``Entanglement entropy in the lipkin-meshkov-glick model''. Phys. Rev. A 71, 064101 (2005).

[59] Jacek Cichoń, Zbigniew Gołebiewski, Marcin Kardas, and Marek Klonowski. ``On delta-method of moments and probabilistic sums''. In 2013 Proceedings of the Tenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO). Pages 91–98. SIAM (2013).

[60] Lea F. Santos, Marco Távora, and Francisco Pérez-Bernal. ``Excited-state quantum phase transitions in many-body systems with infinite-range interaction: Localization, dynamics, and bifurcation''. Phys. Rev. A 94, 012113 (2016).

[61] Silvia Pappalardi, Angelo Russomanno, Bojan Žunkovič, Fernando Iemini, Alessandro Silva, and Rosario Fazio. ``Scrambling and entanglement spreading in long-range spin chains''. Phys. Rev. B 98, 134303 (2018).

[62] Pavel Cejnar, Pavel Stránský, Michal Macek, and Michal Kloc. ``Excited-state quantum phase transitions''. Journal of Physics A: Mathematical and Theoretical 54, 133001 (2021).

[63] D. J. Nader, C. A. González-Rodríguez, and S. Lerma-Hernández. ``Avoided crossings and dynamical tunneling close to excited-state quantum phase transitions''. Phys. Rev. E 104, 064116 (2021).

[64] Akshay Seshadri, Vaibhav Madhok, and Arul Lakshminarayan. ``Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos''. Phys. Rev. E 98, 052205 (2018).

[65] Meenu Kumari and Álvaro M. Alhambra. ``Eigenstate entanglement in nonintegrable collective spin models''. in preparation (2022).

[66] Saúl Pilatowsky-Cameo, Jorge Chávez-Carlos, Miguel A. Bastarrachea-Magnani, Pavel Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. ``Positive quantum lyapunov exponents in experimental systems with a regular classical limit''. Phys. Rev. E 101, 010202 (2020).

[67] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. ``Entanglement in quantum critical phenomena''. Phys. Rev. Lett. 90, 227902 (2003).

[68] P. He, M. A. Perlin, S. R. Muleady, R. J. Lewis-Swan, R. B. Hutson, J. Ye, and A. M. Rey. ``Engineering spin squeezing in a 3d optical lattice with interacting spin-orbit-coupled fermions''. Phys. Rev. Research 1, 033075 (2019).

[69] Manuel H. Muñoz Arias, Pablo M. Poggi, Poul S. Jessen, and Ivan H. Deutsch. ``Simulating nonlinear dynamics of collective spins via quantum measurement and feedback''. Phys. Rev. Lett. 124, 110503 (2020).

[70] Lukas M. Sieberer, Tobias Olsacher, Andreas Elben, Markus Heyl, Philipp Hauke, Fritz Haake, and Peter Zoller. ``Digital quantum simulation, trotter errors, and quantum chaos of the kicked top''. npj Quantum Information 5, 78 (2019).

[71] M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and Jun Ye. ``A quantum many-body spin system in an optical lattice clock''. Science 341, 632–636 (2013).

[72] X. Wang and K. Mølmer. ``Pairwise entanglement in symmetric multi-qubit systems''. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 18, 385–391 (2002).

[73] Meenu Kumari, Shohini Ghose, and Robert B. Mann. ``Sufficient condition for nonexistence of symmetric extension of qudits using bell inequalities''. Phys. Rev. A 96, 012128 (2017).

Cited by

[1] D. J. Nader, C. A. González-Rodríguez, and S. Lerma-Hernández, "Avoided crossings and dynamical tunneling close to excited-state quantum phase transitions", Physical Review E 104 6, 064116 (2021).

[2] Budhaditya Bhattacharjee, Pratik Nandy, and Tanay Pathak, "Eigenstate capacity and Page curve in fermionic Gaussian states", Physical Review B 104 21, 214306 (2021).

The above citations are from SAO/NASA ADS (last updated successfully 2022-05-28 19:13:39). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 19:13:37).