Understanding and Improving Critical Metrology. Quenching Superradiant Light-Matter Systems Beyond the Critical Point

Karol Gietka, Lewis Ruks, and Thomas Busch

Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We carefully examine critical metrology and present an improved critical quantum metrology protocol which relies on quenching a system exhibiting a superradiant quantum phase transition beyond its critical point. We show that this approach can lead to an exponential increase of the quantum Fisher information in time with respect to existing critical quantum metrology protocols relying on quenching close to the critical point and observing power law behaviour. We demonstrate that the Cramér-Rao bound can be saturated in our protocol through the standard homodyne detection scheme. We explicitly show its advantage using the archetypal setting of the Dicke model and explore a quantum gas coupled to a single-mode cavity field as a potential platform. In this case an additional exponential enhancement of the quantum Fisher information can in practice be observed with the number of atoms $N$ in the cavity, even in the absence of $N$-body coupling terms.

Quantum metrology makes use of non-classical correlations in order to make ultra precise measurements beyond the standard quantum limit. For example, operating state-of-the-art optical lattices at the ultimate Heisenberg limit of precision, one could keep time with an error of hundreds of milliseconds over the entire age of the universe.

Systems exhibiting quantum phase transitions have been the recent subject of intense focus due to their extreme sensitivity in the vicinity of the critical point. However, preparation of the critical ground state must be performed over long time scales in order to avoid excitations, which has so far resulted in sub-optimal scaling of sensitivity with time accounted for as a resource.

In our work, we depart from the traditional notion of metrology near a critical point, instead showing that sensitivity can be enhanced exponentially in a dynamical protocol by quenching past the critical point. We mathematically prove in the paradigmatic setting of cavity QED that a sensitivity exponentially growing in time can be obtained by quenching through a superradiant phase transition. We show that this is associated with a macroscopic occupation of the photonic mode, and that a basic homodyne detection scheme then yields the optimal measurement. Our result offers an exponential speed-up in time over existing protocols acting near the critical point in a general class of superradiant systems, and opens a new avenue for dynamical quantum metrology in critical systems.

► BibTeX data

► References

[1] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quantum interface between light and atomic ensembles, Rev. Mod. Phys. 82, 1041 (2010).

[2] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold atoms in cavity-generated dynamical optical potentials, Rev. Mod. Phys. 85, 553 (2013).

[3] F. Mivehvar, F. Piazza, T. Donner, and H. Ritsch, Cavity QED with quantum gases: new paradigms in many-body physics, Advances in Physics 70, 1 (2021).

[4] D. Vitali, S. Kuhr, M. Brune, and J.-M. Raimond, A cavity-QED scheme for Heisenberg-limited interferometry, J. Mod. Opt. 54, 1551 (2007).

[5] S. Gammelmark and K. Mølmer, Phase transitions and Heisenberg limited metrology in an Ising chain interacting with a single-mode cavity field, New J. Phys. 13, 053035 (2011).

[6] Z.-P. Liu, J. Zhang, B. Özdemir, Ş. K.and Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-x. Liu, Metrology with $\mathcal{PT}$-Symmetric Cavities: Enhanced Sensitivity near the $\mathcal{PT}$-Phase Transition, Phys. Rev. Lett. 117, 110802 (2016).

[7] K. Gietka, T. Wasak, J. Chwedeńczuk, F. Piazza, and H. Ritsch, Quantum-enhanced interferometry with cavity QED-generated non-classical light, Eur. Phys. J. D 71, 273 (2017).

[8] W. Cheng, S. C. Hou, Z. Wang, and X. X. Yi, Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup, Phys. Rev. A 100, 053825 (2019).

[9] K. Gietka, F. Mivehvar, and H. Ritsch, Supersolid-Based Gravimeter in a Ring Cavity, Phys. Rev. Lett. 122, 190801 (2019).

[10] R. J. Lewis-Swan, D. Barberena, J. A. Muniz, J. R. K. Cline, D. Young, J. K. Thompson, and A. M. Rey, Protocol for Precise Field Sensing in the Optical Domain with Cold Atoms in a Cavity, Phys. Rev. Lett. 124, 193602 (2020).

[11] K. Gietka, F. Mivehvar, and T. Busch, Cavity-enhanced magnetometer with a spinor Bose–Einstein condensate, New J. Phys. 23, 043020 (2021a).

[12] A. Chu, P. He, J. K. Thompson, and A. M. Rey, Quantum Enhanced Cavity QED Interferometer with Partially Delocalized Atoms in Lattices, Phys. Rev. Lett. 127, 210401 (2021a).

[13] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit, Science 306, 1330 (2004).

[14] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology, Phys. Rev. Lett. 96, 010401 (2006).

[15] O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Quantum parameter estimation using general single-mode Gaussian states, Phys. Rev. A 88, 040102 (2013).

[16] L. Pezzé and A. Smerzi, Entanglement, Nonlinear Dynamics, and the Heisenberg Limit, Phys. Rev. Lett. 102, 100401 (2009).

[17] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Generalized Limits for Single-Parameter Quantum Estimation, Phys. Rev. Lett. 98, 090401 (2007).

[18] S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).

[19] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[20] E. Polino, M. Valeri, N. Spagnolo, and F. Sciarrino, Photonic quantum metrology, AVS Quantum Science 2, 024703 (2020).

[21] S. Pang and A. N. Jordan, Optimal adaptive control for quantum metrology with time-dependent Hamiltonians, Nat. Commun. 8, 14695 (2017).

[22] Z. Hou, Y. Jin, H. Chen, J.-F. Tang, C.-J. Huang, H. Yuan, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, ``super-Heisenberg'' and Heisenberg Scalings Achieved Simultaneously in the Estimation of a Rotating Field, Phys. Rev. Lett. 126, 070503 (2021).

[23] S. M. Roy and S. L. Braunstein, Exponentially Enhanced Quantum Metrology, Phys. Rev. Lett. 100, 220501 (2008).

[24] C. D. Marciniak, T. Feldker, I. Pogorelov, R. Kaubruegger, D. V. Vasilyev, R. van Bijnen, P. Schindler, P. Zoller, R. Blatt, and T. Monz, Optimal metrology with programmable quantum sensors, Nature 603, 604 (2022).

[25] M. A. C. Rossi, F. Albarelli, D. Tamascelli, and M. G. Genoni, Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement, Phys. Rev. Lett. 125, 200505 (2020).

[26] K. Gietka, F. Metz, T. Keller, and J. Li, Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied, Quantum 5, 489 (2021b).

[27] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W. Mitchell, and S. Pirandola, Quantum-enhanced measurements without entanglement, Rev. Mod. Phys. 90, 035006 (2018).

[28] P. Zanardi, M. G. A. Paris, and L. Campos Venuti, Quantum criticality as a resource for quantum estimation, Phys. Rev. A 78, 042105 (2008).

[29] C. Invernizzi, M. Korbman, L. Campos Venuti, and M. G. A. Paris, Optimal quantum estimation in spin systems at criticality, Phys. Rev. A 78, 042106 (2008).

[30] P. A. Ivanov and D. Porras, Adiabatic quantum metrology with strongly correlated quantum optical systems, Phys. Rev. A 88, 023803 (2013).

[31] M. Tsang, Quantum transition-edge detectors, Phys. Rev. A 88, 021801 (2013).

[32] G. Salvatori, A. Mandarino, and M. G. A. Paris, Quantum metrology in Lipkin-Meshkov-Glick critical systems, Phys. Rev. A 90, 022111 (2014).

[33] K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Garrahan, Dynamical phase transitions as a resource for quantum enhanced metrology, Phys. Rev. A 93, 022103 (2016).

[34] M. Bina, I. Amelio, and M. G. A. Paris, Dicke coupling by feasible local measurements at the superradiant quantum phase transition, Phys. Rev. E 93, 052118 (2016).

[35] S. Fernández-Lorenzo and D. Porras, Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources, Phys. Rev. A 96, 013817 (2017).

[36] T. L. Heugel, M. Biondi, O. Zilberberg, and R. Chitra, Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition, Phys. Rev. Lett. 123, 173601 (2019).

[37] L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti, Critical Quantum Metrology with a Finite-Component Quantum Phase Transition, Phys. Rev. Lett. 124, 120504 (2020).

[38] M. Salado-Mejía, R. Román-Ancheyta, F. Soto-Eguibar, and H. M. Moya-Cessa, Spectroscopy and critical quantum thermometry in the ultrastrong coupling regime, Quantum Sci. Technol. 6, 025010 (2021).

[39] T. Hatomura, A. Yoshinaga, Y. Matsuzaki, and M. Tatsuta, Quantum metrology based on symmetry-protected adiabatic transformation: imperfection, finite time duration, and dephasing, New J. Phys. 24, 033005 (2022).

[40] T. Ilias, D. Yang, S. F. Huelga, and M. B. Plenio, Criticality-Enhanced Quantum Sensing via Continuous Measurement, PRX Quantum 3, 010354 (2022).

[41] L. Garbe, O. Abah, S. Felicetti, and R. Puebla, Critical Quantum Metrology with Fully-Connected Models: From Heisenberg to Kibble-Zurek Scaling (2021), arXiv:2110.04144 [quant-ph].

[42] K. Gietka, Squeezing by Critical Speeding-up: Applications in Quantum Metrology (2021), arXiv:2111.12206 [quant-ph].

[43] S. Sachdev, Quantum phase transitions, Handbook of Magnetism and Advanced Magnetic Materials 10.1002/​9780470022184 (2007).

[44] W.-L. You, Y.-W. Li, and S.-J. Gu, Fidelity, dynamic structure factor, and susceptibility in critical phenomena, Phys. Rev. E 76, 022101 (2007).

[45] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys. 51, 165 (1928).

[46] M. M. Rams, P. Sierant, O. Dutta, P. Horodecki, and J. Zakrzewski, At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited, Phys. Rev. X 8, 021022 (2018).

[47] Y. Chu, S. Zhang, B. Yu, and J. Cai, Dynamic Framework for Criticality-Enhanced Quantum Sensing, Phys. Rev. Lett. 126, 010502 (2021b).

[48] K. Gietka and T. Busch, Inverted harmonic oscillator dynamics of the nonequilibrium phase transition in the Dicke model, Phys. Rev. E 104, 034132 (2021).

[49] M. Perarnau-Llobet, D. Malz, and J. I. Cirac, Weakly invasive metrology: quantum advantage and physical implementations, Quantum 5, 446 (2021).

[50] S. Felicetti and A. Le Boité, Universal Spectral Features of Ultrastrongly Coupled Systems, Phys. Rev. Lett. 124, 040404 (2020).

[51] J. Larson and E. K. Irish, Some remarks on `superradiant' phase transitions in light-matter systems, J. Phys. A Math 50, 174002 (2017).

[52] J. Peng, E. Rico, J. Zhong, E. Solano, and I. L. Egusquiza, Unified superradiant phase transitions, Phys. Rev. A 100, 063820 (2019).

[53] M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum Phase Transition and Universal Dynamics in the Rabi Model, Phys. Rev. Lett. 115, 180404 (2015).

[54] S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer–Wolff transformation for quantum many-body systems, Ann. Physics 326, 2793 (2011).

[55] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012).

[56] D. F. Walls, Squeezed states of light, Nature 306, 141 (1983).

[57] S. Pang and T. A. Brun, Quantum metrology for a general Hamiltonian parameter, Phys. Rev. A 90, 022117 (2014).

[58] A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73, 033821 (2006).

[59] C. Oh, C. Lee, C. Rockstuhl, H. Jeong, J. Kim, H. Nha, and S.-Y. Lee, Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology, npj Quantum Inf. 5, 10 (2019).

[60] A. A. Berni, T. Gehring, B. M. Nielsen, V. Händchen, M. G. A. Paris, and U. L. Andersen, Ab initio quantum-enhanced optical phase estimation using real-time feedback control, Nat. Photonics 9, 577 (2015).

[61] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).

[62] A. Hentschel and B. C. Sanders, Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes, Phys. Rev. Lett. 107, 233601 (2011).

[63] R. Demkowicz-Dobrzański, J. Czajkowski, and P. Sekatski, Adaptive Quantum Metrology under General Markovian Noise, Phys. Rev. X 7, 041009 (2017).

[64] L. Pezzè and A. Smerzi, Quantum Phase Estimation Algorithm with Gaussian Spin States, PRX Quantum 2, 040301 (2021).

[65] D. Šafránek, Estimation of Gaussian quantum states, J. Phys. A Math 52, 035304 (2018).

[66] L. Bakmou, M. Daoud, and R. ahl laamara, Multiparameter quantum estimation theory in quantum Gaussian states, J. Phys. A Math 53, 385301 (2020).

[67] A. T. Black, H. W. Chan, and V. Vuletić, Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering, Phys. Rev. Lett. 91, 203001 (2003).

[68] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature 464, 1301 (2010).

[69] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity, Phys. Rev. Lett. 104, 130401 (2010).

[70] P. Domokos and H. Ritsch, Collective Cooling and Self-Organization of Atoms in a Cavity, Phys. Rev. Lett. 89, 253003 (2002).

[71] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich, Dynamical phase transition in the open Dicke model, PNAS 112, 3290 (2015).

[72] M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D. Barrett, Realization of the Dicke Model Using Cavity-Assisted Raman Transitions, Phys. Rev. Lett. 113, 020408 (2014).

[73] R. M. Kroeze, Y. Guo, V. D. Vaidya, J. Keeling, and B. L. Lev, Spinor Self-Ordering of a Quantum Gas in a Cavity, Phys. Rev. Lett. 121, 163601 (2018).

[74] H. Keßler, P. Kongkhambut, C. Georges, L. Mathey, J. G. Cosme, and A. Hemmerich, Observation of a Dissipative Time Crystal, Phys. Rev. Lett. 127, 043602 (2021).

[75] A. Dareau, Y. Meng, P. Schneeweiss, and A. Rauschenbeutel, Observation of Ultrastrong Spin-Motion Coupling for Cold Atoms in Optical Microtraps, Phys. Rev. Lett. 121, 253603 (2018).

[76] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Ultrastrong coupling regimes of light-matter interaction, Rev. Mod. Phys. 91, 025005 (2019).

[77] A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nat. Rev. Phys 1, 19 (2019).

[78] C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, and P. Engels, Dicke-type phase transition in a spin-orbit-coupled Bose–Einstein condensate, Nat. Commun. 5, 4023 (2014).

[79] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner, K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey, and J. J. Bollinger, Verification of a Many-Ion Simulator of the Dicke Model Through Slow Quenches across a Phase Transition, Phys. Rev. Lett. 121, 040503 (2018).

[80] F. M. Gambetta, I. Lesanovsky, and W. Li, Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator, Phys. Rev. A 100, 022513 (2019).

[81] K. M. Yunusova, D. Konstantinov, H. Bouchiat, and A. D. Chepelianskii, Coupling between Rydberg States and Landau levels of Electrons Trapped on Liquid Helium, Phys. Rev. Lett. 122, 176802 (2019).

[82] S. Krämer, D. Plankensteiner, L. Ostermann, and H. Ritsch, QuantumOptics.jl: A Julia framework for simulating open quantum systems, Comput. Phys. Commun 227, 109 (2018).

Cited by

[1] Zu-Jian Ying, Simone Felicetti, Gang Liu, and Daniel Braak, "Critical Quantum Metrology in the Non-Linear Quantum Rabi Model", Entropy 24 8, 1015 (2022).

[2] Louis Garbe, Obinna Abah, Simone Felicetti, and Ricardo Puebla, "Exponential precision by reaching a quantum critical point", arXiv:2112.11264.

[3] Louis Garbe, Obinna Abah, Simone Felicetti, and Ricardo Puebla, "Critical quantum metrology with fully-connected models: from Heisenberg to Kibble-Zurek scaling", Quantum Science and Technology 7 3, 035010 (2022).

[4] Karol Gietka, "Squeezing by critical speeding up: Applications in quantum metrology", Physical Review A 105 4, 042620 (2022).

[5] Fabrizio Minganti, Louis Garbe, Alexandre Le Boité, and Simone Felicetti, "Non-Gaussian superradiant transition via three-body ultrastrong coupling", arXiv:2204.03520.

[6] Enrico Rinaldi, Roberto Di Candia, Simone Felicetti, and Fabrizio Minganti, "Dispersive qubit readout with machine learning", arXiv:2112.05332.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 09:43:36) and SAO/NASA ADS (last updated successfully 2022-10-04 09:43:36). The list may be incomplete as not all publishers provide suitable and complete citation data.