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We consider a topological stabilizer code
on a honeycomb grid, the “XYZ2?” code.
The code is inspired by the Kitaev hon-
eycomb model and is a simple realiza-
tion of a “matching code” discussed by
Wootton [1], with a specific implementa-
tion of the boundary. It utilizes weight-
six (XYZXYZ) plaquette stabilizers and
weight-two (X X) link stabilizers on a pla-
nar hexagonal grid composed of 2d> qubits
for code distance d, with weight-three sta-
bilizers at the boundary, stabilizing one
logical qubit. We study the properties of
the code using maximum-likelihood decod-
ing, assuming perfect stabilizer measure-
ments. For pure X, Y, or Z noise, we
can solve for the logical failure rate ana-
lytically, giving a threshold of 50%. In
contrast to the rotated surface code and
the XZZX code, which have code distance
d’> only for pure Y noise, here the code
distance is 2d’? for both pure Z and pure
Y noise. Thresholds for noise with finite
Z bias are similar to the XZZX code, but
with markedly lower sub-threshold logical
failure rates. The code possesses distinc-
tive syndrome properties with unidirec-
tional pairs of plaquette defects along the
three directions of the triangular lattice for
isolated errors, which may be useful for
efficient matching-based or other approxi-
mate decoding.

1 Introduction

In quantum computing, quantum bits, or qubits,
are the basic unit of information. Whereas a clas-
sical computer acts on a single bit string, i.e., a
list of 0’s and 1’s, a quantum computer can ad-
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dress states that are superpositions of bit strings,
or even non-classical entangled bit strings. While
this enhanced representability gives quantum al-
gorithms the potential for significant speed-up
compared to classical algorithms [2, 3, 4, 5, 6, 7,
8,9, 10|, it also makes quantum computing much
more difficult to implement in practice. Whereas
unavoidable errors due to noise in a classical com-
puter are discrete bit flips, errors in a quantum
computer are continuous, corresponding to arbi-
trary rotations on a unit (Bloch) sphere.

One way to cope with errors is to implement
error correction [11, 12, 13, 14, 15]. In quan-
tum computing, this can be done using sta-
bilizer codes. These codes are quantum algo-
rithms that turn a collection of noisy qubits
into a single logical qubit which is less error-
prone [2]. The stabilizers of the code correspond
to a set of commuting measurements on groups
of qubits that project continuous errors to dis-
crete errors on the code, which can be represented
by Pauli X, Y, or Z operations on individual
qubits. Topological codes, such as Kitaev’s sur-
face code [16, 17, 18, 19, 20|, are particularly at-
tractive for practical purposes since they use sta-
bilizers consisting of geometrically local qubit op-
erations on a two-dimensional grid. At the same
time, logical errors are exponentially suppressed
with increasing linear dimension of the code, pro-
vided the error rate is below the error threshold of
the code [21, 22, 17]. Several stabilizer codes, in-
cluding topological codes, have been experimen-
tally implemented recently [23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35].

In this paper, we study a topological stabi-
lizer code defined on a finite honeycomb grid. As
shown in Fig. 1, the code has weight-six stabi-
lizers on the hexagonal plaquettes of the form
XYZXYZ, and weight-two X X stabilizers on
“vertical” links. The code is the simplest exam-
ple in the set of “matching codes” introduced by
Wootton [1]. For concreteness, we will refer to
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Figure 1: The XYZ? code for distance d = 5. The sta-
bilizers of the code are weight-six XY ZXY Z on each
hexagonal plaquette, weight-two X X on each vertical
link, and weight-three XY Z on the boundary. Also
shown are the unidirectional syndromes (red) for isolated
X, Y, and Z errors.

it as the XYZ2 code, based on the structure of
the plaquette and link stabilizers. We introduce
boundaries with half-plaquette stabilizers, which
yields a [[2d?, 1, d]] code, i.e., it has code distance
d and one logical qubit for 2d? data qubits.

We study the basic properties of this code un-
der the assumption of perfect stabilizer measure-
ments and maximum-likelihood decoding. In par-
ticular, we compare the XYZ? code to the re-
cently discussed XZZX code [36]. The latter is a
modification of the surface code [37, 38|, where
the original pure X or pure Z weight-four sta-
bilizers are replaced by mixed X ZZ X stabilizers
on each plaquette of the square lattice. Similarly,
the XYZ? code can be derived through a suitable
set of single-qubit transformations on the rotated
surface code, followed by a doubling of each qubit
stabilized by weight-two operators.

For depolarizing noise, up to the accuracy of
our maximum-likelihood decoder, we find that
the logical failure rate of these three codes depend

in a similar way on the number of data qubits
and the code distance. However, analogously to
the XZZX code, but in contrast to the rotated
surface code, the XYZ? code has very favourable
properties for biased noise, with a threshold that
increases with bias, reaching 50 % for pure noise.
In fact, for phase-biased noise, the XYZ? code
has lower sub-threshold logical failure rates, for
the same number of data qubits, even though the
two codes have the same threshold. The reason
for the suppressed failure rate is that for pure Z
noise, the XYZ? code has code distance 2d? while
the XZZX code has code distance d.

Another interesting property of the XYZ? code
is its distinct syndrome signatures (see Fig. 1),
which follow from the mixed plaquette stabiliz-
ers and the triangular structure. For isolated X,
Y, and Z errors, there are pairs of plaquette de-
fects created, with unique orientations. We antic-
ipate that this property may be used for approx-
imate but efficient minimum-weight matching or
clustering-type decoders.

Although these results suggest that there are
potential benefits of the XYZ? code compared to
surface-type codes on a square grid, a potential
disadvantage is that it requires high qubit connec-
tivity to measure the weight-six stabilizers, which
could make it more susceptible to measurement
noise. On the other hand, this downside may be
compensated by the fact that it also has weight-
two stabilizers that may be possible to measure
without ancilla qubits [39, 40, 41, 42, 43]. For
similar number of data qubits, the XYZ? code has
approximately half as many high-weight (plaque-
tte) stabilizers as the XZZX code.

This article is structured as follows. In Sec. 2,
we first provide a more detailed account of the
works and ideas leading up to the XYZ? code.
Then we define the XYZ? code and some of its
variations, and show how it can be constructed
by a transformation of the rotated surface code.
After explaining the methods used for error simu-
lations and decoding in Sec. 3, we present results
in Sec. 4, comparing the logical failure rates and
thresholds of the XYZ? and XZZX codes for dif-
ferent types of biased noise. We conclude and
give an outlook for future work in Sec. 5.

Accepted in { Yuantum 2022-04-18, click title to verify. Published under CC-BY 4.0. 2



2  The XYZ2 code

2.1 Background

The XYZ? code can be traced back to the Ki-
taev honeycomb model, which is an archetypical
model for spin-liquid physics and topological or-
der [44, 45]. The model has spin-half degrees of
freedom on every site of a honeycomb lattice with
Ising-type interactions on links, but with a spin
quantization axis that depends on the orientation
of the link. The product of link operators around
each hexagonal plaquette of the lattice commutes
with the Hamiltonian, thus presenting a set of
conserved quantities that can serve as stabilizers
for an error-correcting code.

The most direct way to formulate an error-
correcting code based on the Kitaev honeycomb
model is to use the links as gauge operators of a
subsystem code [46, 47|]. The centralizer of the
gauge group, i.e., all group elements that com-
mute with all elements in the group, make up the
stabilizers of the code. Measuring the link opera-
tors thus preserves the code space, corresponding
to the stabilized subspace of the Hilbert space.
As the stabilizers are part of the gauge group,
these measurement outcomes can be constructed
from link measurements. However, in order for
the subsystem code to have any logical qubits,
there has to be a set of logical operators that
commute with the gauge group but that are not
part of the gauge group. The link measurements
must not change the logical state, but the mea-
surements must also not measure the logical op-
erators, since this would project the logical code
word. Unfortunately, the subsystem code based
on the link gauge operators can be shown to not
have any logical qubits, so it is not directly useful
as a quantum memory [47, 48|.

Nevertheless, as shown recently by Hastings
and Haah [49, 50|, it is possible to dynamically
generate logical qubits by a careful implementa-
tion of the cycle of measurements of link opera-
tors. This type of code has been found in simu-
lations to be competitive with the surface code,
especially for systems where the two-qubit link
measurements do not require an additional an-
cilla qubit, thus reducing the detrimental effects
of the large number of measurements [43].

Another alternative, presented by Wootton [1,
51, 52|, is to formulate a stabilizer code on the
hexagonal lattice by, in addition to the plaque-

ttes, including as stabilizers strings of link opera-
tors between pairs of vertices, where each vertex
is uniquely matched to a single other vertex. The
simplest version of such “matching codes” is to
match adjacent pairs of vertices along one direc-
tion, i.e., using one of the three link operators as
a stabilizer. This is the XYZ? code, where our
standard choice is to use the X X links as stabi-
lizers (but YY or ZZ links can be used instead,
as discussed below).

As shown in Refs. [1, 51], introducing defects,
by measuring a different link operator, logical
qubits can be introduced and elegantly braided
to perform logical operations. However, as dis-
cussed in the introduction, we will in this article
only consider the properties of the code as a quan-
tum memory, introducing boundaries and bound-
ary stabilizers to construct a set of [[2d2,1,d]|
codes. Furthermore, we only consider the ideal
properties of these codes, assuming perfect sta-
bilizer measurements. Even though this is not
a realistic assumption for a real implementation
of the code, using maximum-likelihood decoding
and ideal measurements provides a baseline for
the performance of the code. This baseline can
be compared to that of other codes, independent
of different schemes for modelling and decoding
circuit-level noise.

2.2  Construction of the code

As shown in Fig. 1, the XYZ? code is constructed
by placing 2d? qubits on a hexagonal grid with
a diamond-shaped boundary such that the setup
contains (d — 1) plaquettes (XY ZXY Z stabiliz-
ers) and d? “vertical” links (X X stabilizers). As
we will see, the integer d corresponds to the code
distance, i.e., the minimum number of single-
qubit operations required to perform a logical op-
eration on a code word. We also introduce the
notation d,, with 0 = X, Y or Z, to denote the
distance of the code for a chain of only X, Y,
or Z operators. The qubits at the boundary are
stabilized by an additional set of 2d — 2 weight-
three half-plaquette XY Z stabilizers, which are
chosen such that no isolated single-qubit errors
can go undetected. All together, these stabilizers
make up the 2d? — 1 constraints needed to encode
a single logical qubit in 2d? physical qubits. We
note that the code can be truncated by removing
qubits at the top and bottom of the grid, result-
ing in similar properties, but in this article, we
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only consider the full code as presented here. We
also only consider odd d > 3, as the properties
for even d (as for the surface code) are different.

The logical operators of a stabilizer code are
the set of operators that commute with the sta-
bilizers but are not part of the stabilizer group.
These operators can thus operate on the code
space without the corresponding changes being
detectable by the stabilizer measurements. Any
set of three anticommuting operators Xy, Y7, and
Zr,, defined up to deformations with stabilizers,
provide the logical Pauli group. In the XYZ?
code, the shortest chain of single-qubit operators
that commutes with all stabilizers is the horizon-
tal chain of d X's through the center of the grid
[see Fig. 2(a)]. We designate this logical opera-
tor Xy, and infer from its existence that the code
distance is d. As this chain of Xs lies on d qubits
which are part of XX wvertical link stabilizers,
the logical operator can be deformed by applying
these d stabilizers, giving a total of 2¢ possible
distance-d pure X, operators. In addition, there
is a large number of longer X, operators of mixed
type, generated by acting with other stabilizers.

We define the logical Z operator Z;, as the ver-
tical chain of ZY/Y Z link operators on the 2d
qubits through the center of the grid, as shown
in Fig. 2(b). This chain can be deformed using
adjacent stabilizers to form a mixed chain on the
boundary of the code consisting of X, Y, and Z
errors. We note, however, that there is no rep-
resentation of Z; which only has a single type
of Pauli operator. Thus, for highly biased noise,
this operator is unlikely to be generated through
a random set of single-qubit errors.

The logical Y operator Y7, can be expressed as
a product of any representation of Z; and Xj.
However, it turns out that we can deform this
operator using plaquette and link stabilizers to
create a pure-Y logical operator that acts on all
2d? qubits [Fig. 2(c)]. To see this, we note that
the vertical links are made up of XX stabiliz-
ers, which means that to construct a commuting
operator made of only Y's, we need either a YY
or an II (I = Identity) operator on each verti-
cal link. However, due to the plaquette and half-
plaquette stabilizers consisting of X's, Vs, and Zs
in a cyclic configuration, one needs a Y'Y on each
link (or no link, but then it is trivial) in order for
the logical operator to commute with each stabi-
lizer. This argument works in a similar manner

for a logical operator consisting of only Z errors.
In fact, these two logical operators are equivalent
and can be transformed into each other by acting
with all link stabilizers. In conclusion, a logical
operator consisting of only Z or Y errors would
need a chain of length 2d? qubits. Hence the dis-
tance of the XYZ? code under pure Z or Y noise
is dz = dy = 2d°.

While we have chosen the vertical links to be
X X in this work, and hereafter assume this in all
results shown unless stated otherwise, the code
can be transformed into one using ZZ or Y'Y link
stabilizers by acting on the qubits with appro-
priate rotations. The logical operators will then
transform accordingly as well. We show the dif-
ferent variations of the XYZ? code for distance 3
in Fig. 3.

Similar to the XZZX code, the mixed nature
and the uniformity of the plaquette stabilizers in
the XYZ? code give rise to the desirable prop-
erty that X or Z errors on single qubits result in
syndromes in single, distinct directions. For the
XZ7Z7X code, which lies on a square grid, these
directions are the two diagonal directions. How-
ever, in the XYZ? code, this property is extended
to cover Y errors as well: X, Y, and Z errors
give rise to syndromes along their unique individ-
ual directions, as shown in Fig. 1. For the XZZX
code, this property was exploited by Ataides et
al [36] to build an efficient matching-based de-
coder. It would be interesting to explore whether
the tri-directional nature of the syndromes for the
XYZ? code can be similarly exploited to imple-
ment an efficient decoder. However, in contrast to
the XZZX code and the surface code, where syn-
drome bits (except at the boundary) always ap-
pear in pairs, this is not the case for the link sta-
bilizers of the XYZ? code, which means they are
not directly amenable to minimum-weight match-
ing. This is also in contrast to the honeycomb
code, for which only the static stabilizer space,
corresponding to plaquette stabilizers, is decoded
[49, 43].

2.3 Transformation of the rotated surface code
to the XYZ? code

As shown in Refs. [44, 53, 54| the low-energy sec-
tor of the honeycomb lattice model in the limit
of large ZZ coupling, replacing each such link by
a single effective spin, is equivalent to the Wen
model [55, 56, 57| with YZZY interactions on
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Figure 2: Logical operators on a distance-3 XYZ? code. (a) A pure logical X operator X, formed by X's horizontally
through the centre of the grid. This weight-d operator is the shortest logical operator on the code and hence
determines the code distance: dx = d. (b) A logical Z operator Z;, that goes vertically through the center of
the grid. As this operator consists of both Zs and Ys, it is not a pure logical operator. (c) Left: A chain of Z
operators applied on every qubit in the code constitutes a pure logical Y operator Y. As this is the only pure
operator consisting of Zs, it determines the code distance for pure Z noise to be d; = 2d2. Right: we can transform
this operator by applying all X X link stabilizers to obtain an operator consisting of Y's on all qubits. Thus we have
dy = dy = 2d>.

(a) (b) ()

Figure 3: Variations of the XYZ? code for distance 3 with (a) XX, (b) ZZ, and (c) YY link stabilizers.
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a square lattice. This model can then be trans-
formed to the toric code by applying individual
rotations on the spins. Here we perform similar
transformations within the stabilizer formalism
in reverse order, to show how the rotated surface
code, the XZZX code, and the XYZ? code can be
transformed into each other.

The rotated surface code is defined on a square
lattice with alternating X X X X and ZZZZ pla-
quette stabilizers in the bulk and half-plaquette
XX and ZZ stabilizers on the boundaries of the
code. The shortest logical operators on this code
are “horizontal” chains of X's that go across each
column and ‘“vertical” Z chains that go across
each row. In addition to these logical operators,
there exist a pure-X and a pure-Z logical oper-
ator on each diagonal of the square grid. The
only pure-Y logical operator on the rotated sur-
face code is the operator which acts on each of
the d? qubits with a Y. This effectively makes
the distance of the code d under pure X or Z
noise and d? under pure Y noise.

The XZZX code can be obtained from the ro-
tated surface code by applying a Hadamard rota-
tion on every other qubit. This operation modi-
fies both the XX XX and ZZZZ plaquette sta-
bilizers of the rotated surface code to identi-
cal XZZX stabilizers on each plaquette of the
square lattice. As a consequence of the rotation,
the shortest logical operators of the rotated sur-
face code are transformed from pure X and pure
Z chains to mixed chains, containing both X and
Z, going across horizontal and vertical dimen-
sions of the grid. The two diagonal logical op-
erators are exceptions, and still remain chains of
pure X or pure Z errors. These last logical oper-
ators thus keep the code distance under pure X
or Z noise d. The distance under pure Y noise is
d?, as for the rotated surface code.

To transform to the XYZ? code, we start by
doubling the number of qubits, with each pair
stabilized by XX. The code space stabilized
by this operator is spanned by |[++) and |——),
where |£) = (]0) +|1))/v/2. We make the choice
of mapping the original single-qubit state |0) to
|[++) and |1) to |[——). With this choice, the ac-
tion of the Pauli operators on the single qubits is,

— —>

=1 =1

@ E @
@
(b) ?i ©
Figure 4: Transforming XXX X (and ZZZZ) plaque-
tte stabilizers of the rotated surface code to variations of
the XYZ? code. (a) Transforming to the YZZY code by
rotations and subsequently to the XYZ2 code with ver-
tical X X link stabilizers by replacing each data qubit in
the YZZY plaquette with two qubits stabilized by X X.
(b) Transforming to the YZZY code by rotations and
subsequently to the XYZ? code with vertical ZZ link

stabilizers by replacing each data qubit in the YZZY
plaquette with two qubits stabilized by ZZ.

in the two-qubit basis, mapped to

X 27 or YY, (1)
Y =-YZor ZY, (2)
Z — XI or IX. (3)

Now, starting from a slightly modified ver-
sion of the XZZX code, with Y ZZY plaquettes,
this mapping results in the plaquette becoming
a weight-six stabilizer (XY ZXY Z), as shown in
Fig. 4(a). Scaling this transformation up to the
entire code gives us the XYZ? code [see Fig. 3(a)].
The shortest horizontal and vertical logical op-
erators on the YZZY code now become mixed
chains containing X, Y, and Z, extending from
one side to another. The diagonal weight-d pure-
Z logical operator becomes a pure X chain of
length d, with 2 degeneracy [Fig. 2(a)], whereas
the orthogonal diagonal operator transforms to
a Y Z logical operator of length 2d [Fig. 2(b)].
The pure-X logical operator of the YZZY code
acting on all qubits is mapped to pure Z or Y
using Eq. (1) [Fig. 2(c)-(d)]. This ensures that
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while the distance of the XYZ? code under pure
X noise remains d, under pure Y or Z noise it
becomes 2d?.

To obtain the variation of the XYZ? code
shown in Fig. 3(b), where the vertical link sta-
bilizers are ZZ instead of X X, a similar trans-
formation can be applied, as shown in Fig. 4(b).
In this case, plaquettes from the rotated surface
code are transformed into Y ZZY plaquettes and
then further into XY Z XY Z hexagonal plaquette
stabilizers and ZZ vertical link stabilizers by re-
placing each data qubit in the YZZY plaquette
by a pair of qubits stabilized by ZZ, such that
|0) is represented by |00) and |1) is represented
by [11).

3 Methods

In order to characterize quantum error-correcting
codes, we need to mimic, to an extent, the actual
noisy conditions of an experiment. To do so, we
simulate the code under various different noise
models and observe its performance. In this work,
we assume perfect stabilizer measurements and
ancilla readouts, and focus only on single-qubit
errors that may occur on the data qubits.

The error model we use is the standard asym-
metric depolarizing channel,

p— (L=p)p+p XpX +pyYpY +p.ZpZ, (4)

where p = p, + py + p. is the total error proba-
bility per qubit per syndrome measurement cycle
and p is the density matrix describing the state
of the code. This error channel introduces an X
error on a qubit with probability p,, a Y error
with probability p,, and a Z error with proba-
bility p,. If the probabilities of X, Y, and Z er-
rors occurring is equal, we call the error channel
a symmetric depolarizing channel, and the noise
simply depolarizing noise.
For phase-biased noise, we define

Dz

Uy (Pz = py) (5)
following Refs. [58, 38, 36]. The limit n — oo
corresponds to pure Z noise and = 0.5 to de-
polarizing noise. We can correspondingly define
bit-flip-biased (X-biased) or Y-biased noise. We
note that X-biased noise for our standard version
of the XYZ? code with X X link stabilizers corre-
sponds to Z-biased noise for the version with ZZ
link stabilizers.

In practice, for simulating the code, we do not
need to consider the full density matrix, but only
generate sets of single-qubit errors, so-called error
chains, by sampling from the error distribution.
From a single such chain, one chain in each of
four equivalence classes of chains is generated by
acting with each of the logical operators and the
identity operator. These four chains are then de-
formed by acting with random stabilizers to pre-
serve only the syndrome of the initial chain. A
maximum-likelihood decoder [17, 59, 60, 61, 62]
(MLD) then calculates which of the four equiva-
lence classes of chains is most likely to correspond
to the syndrome. The event is counted as a suc-
cessful error correction if the initial chain is in
this most likely class, and a failed error correc-
tion otherwise. By sampling a large number of
random initial chains, the logical failure rate of
the code for a given error rate and noise bias is
approximated.

Any practical MLD is approximate, since a full
count of all errors consistent with a random syn-
drome grows exponentially with the number of
stabilizers and thus is infeasible to evaluate ex-
actly for anything but very low error rates or very
small codes. In this work, we use the decoder re-
cently presented in Ref. [62], the “effective weight
and degeneracy” (EWD) decoder, which is based
on Monte Carlo sampling of error configurations
using the Metropolis algorithm. This decoder is
essentially a more efficient, simplified version of
the Markov-chain Monte Carlo decoder formu-
lated in Refs. [61, 60|, which we have adapted
to the XYZ? code and biased noise. As discussed
in Ref. [62], the EWD requires the tuning of a
hyperparameter, corresponding to the error rate
Dsample (Which acts as an effective temperature)
of the Metropolis sampling, to minimize the log-
ical failure rate for a given physical error rate p.
There is thus some systematic uncertainty in the
results, in the sense that the results provide upper
bounds on the failure rate. For the XZZX code,
we use the matrix-product-state (MPS) decoder
as implemented in Ref. [63]. As shown in [62],
the two methods give almost identical results for
the XZZX code for moderate code distances.

4 Results

Here we present results that compare the logi-
cal failure rates and the corresponding thresh-
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olds of the XYZ? and XZZX codes under the as-
sumption of perfect stabilizer measurements and
maximum-likelihood decoding, for biased noise.
When comparing the results for these codes, it is
important to keep in mind that while the rotated
surface code and the XZZX code utilize d? data
qubits and d? —1 ancilla qubits placed in a square
grid for a code of distance d, the XYZ? code uses
twice the amount of data qubits, 2d?, and the
same amount of ancilla qubits, d?> — 1, to achieve
the same distance (although this requires a trian-
gular lattice of qubits, where an ancilla qubits sits
at the centre of each hexagonal plaquette in Fig. 1
and connects to all its nearest neighbours). Nev-
ertheless, we will see that the XYZ? code matches
the threshold values of the XZZX code, while hav-
ing lower sub-threshold failure rates for phase-
biased noise for similar numbers of data qubits.

We begin by deriving exact expressions for log-
ical failure rates for pure X, Y, and Z noise, and
compare those to the corresponding expressions
for the XZZX code. This provides a good foun-
dation for understanding the later observations
using a finite bias. We also present results for
depolarizing noise.

4.1 Analytical expressions for pure X, Y, and
Z noise

We consider the version of the XYZ? code with
XX link stabilizers, N = 2d? qubits, and the
code distance d odd. Pure Z noise and pure Y
noise are then equivalent, as discussed in Sec. 2.2.
There is only one pure-Z operator that com-
mutes with all the stabilizers: the weight-N op-
erator over all qubits [see Fig. 2(c)]. Thus,
for a syndrome corresponding to any pure-Z er-
ror chain, there is only one additional, com-
plementary, chain that has the same syndrome.
Maximum-likelihood decoding implies that for
any syndrome, the most likely of the two will pro-
vide the correction chain. In other words, when-
ever an error chain with more than N/2 errors oc-
curs, the error correction will fail. The marginal
case, N/2 errors, fails with 50 % probability.

The logical failure rate, considering all possible
error chains for pure Z or Y noise with error rate

p < 0.5, is thus

N
Prz(p)= > <Z>p”(1p)N_”

n=N/2
“3(app)rra-p o

The total probability of the chains for which
the error correction will succeed is given by the
complementary sum, which can be rewritten as
Py(p) = P¢(1 — p). Thus, given that P¢(p) +
Ps(p) = 1, we find, independently of the size of
the code, that Pf(p = 0.5) = 0.5. This is the
maximal failure rate for pure noise. Since it is
independent of code distance, 50% is also the
threshold error rate. For low error rates,

2
Pj g ~pN? =pt (7)

reflecting the code distance 2d? for pure Z or YV
noise. Both the surface code and the XZZX code
have these same properties for pure Y noise (for
d odd), for which there is only a single logical
operator, which consists of a Y on all N = d?
qubits. The expression for the failure rate is the
same as in Eq. (6), except that the last term is
missing and the sum runs from [N/2] to N.

For pure X noise, the story is somewhat more
complicated. As discussed in Sec. 2.2, there are
2¢ weight-d pure-X logical operators along the
central stabilizer row of the code [see Fig. 2(a)],
with the degeneracy corresponding to acting with
the X X link operators on this central row. To
find out which chains will lead to logical failure,
we first note that we can group chains by the
parity of errors on each link: the probability of
no error or two errors (even parity) on a link is pe,
and the probability of a single error (odd parity)
is p,, with

pe = (1 —p)* +p?,
po=2p(1 —p). (8)

Acting with a logical operator changes the parity
on each central link. Thus all of the chains which
have the same parity of errors on each link are in
the same equivalence class.

Given the syndrome, maximum-likelihood de-
coding corresponds to picking an arbitrary cor-
rection chain in the most likely equivalence class.
For p < 0.5, p, < pe, which means that for a
given syndrome, the set of chains that are in the
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equivalence class with more than d/2 odd-parity
errors on the central row will fail. Whatever the
error configuration is outside the central row is
irrelevant, since these will be equivalent for the
two equivalence classes. The failure rate for pure
X noise is thus given by

P _ d d n_d—n
f:X(p) - Z n pope . (9)

n=[d/2]

with p,/. given by Eq. (8). Just as for pure Z
and Y noise above, P¢(0.5) = 0.5, meaning that
p = 0.5 is the threshold also for pure X noise.
For low error rates,

P x ~pl¥?, (10)

as expected for code distance d.

For the surface code, there is no simple analyti-
cal expression for either pure X or Z noise known.
This lack of analytics is due to the fact that there
is a large number of pure logical operators corre-
sponding to the pure-X and -Z stabilizers. For
the XZZX code, on the other hand, there is only a
single pure logical operator of each type, of length
d, such that the failure rate is given by Eq. (9),
with p, = p and p. = 1—p, for both pure X noise
and pure Z noise.

In Fig. 5, we plot the pure-noise logical failure
rates for a few low-d code distances to visual-
ize the differences between the XYZ? and XZZX
codes. As shown above, both these codes have
a 50 % error threshold for pure noise, where the
logical failure rate Py(p = 0.5) = 0.5 is the max-
imal error rate given that there are only two rel-
evant equivalence classes. For pure bit-flip noise,
even though the code distance is dx = d for both
codes, the XYZ? code is clearly inferior to the
XZZX code, which is a consequence of the 2¢-
fold degeneracy of the logical X, operator for the
former. For pure phase-flip noise, the roles are re-
versed: here the dy = 2d? code distance of the
XYZ? code yields logical fail rates that are sig-
nificantly lower than those of the dy = d XZZX
code. Finally, for pure Y noise, the two codes
are equivalent (both to each other and to the ro-
tated surface code), in the sense that the code dis-
tance is given by the total number of data qubits.
Thus, e.g., the d = 5 XYZ? code and the d = 7
XZ7ZX code overlap within the resolution of the
plot. However, we note that, as discussed at the
beginning of this section, for a given number of
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Figure 5: Comparison of the logical failure rate Pf
for the XYZ? code (solid curves) and the XZZX code
(dashed curves) as a function of the physical error rate
p for different code distances d for (a) pure X, (b) pure
Z, and (c) pure Y noise, plotted using analytical expres-
sions, given in Eqgs. (6) and (9) for the XYZ? code.
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Figure 6: Logical failure rates as a function of physical
error rates for different code distances d of the XYZ?2
(solid curves) and XZZX (dashed curves) codes for =
0.5 (depolarizing noise). Each data point is evaluated
using 10,000 syndromes for each code, code distance,
and physical error rate, using the EWD decoder for the
XYZ? code and the MPS decoder for the XZZX code.
The inset shows the logical failure rate as a function of
code distance for a few error rates below the threshold
p =~ 0.18. The solid and dashed curves are a guide to the
eye, connecting subsequent data points. Error bars indi-
cate the statistical error (one standard deviation) based
on the number of sampled syndromes and the mean log-
ical failure rate. We attribute larger-than-error-bar vari-
ations of the EWD decoder for large physical error rates
to difficulties with optimizing the decoder’s sampling er-
ror rate [62)].

data qubits, the XYZ? code requires fewer an-
cilla qubits for stabilizer measurements than the
XZ7ZX code.

4.2 Depolarizing noise

Before considering how the lessons from study-
ing the model for pure noise translate to finite
noise bias, we here compare the performance of
the XYZ? and XZZX codes for depolarizing noise.
Logical failure rates for depolarizing noise on the
two codes are shown as a function of the physi-
cal error rate in Fig. 6 for code distances between
d =3 and d = 11. The results for the XYZ? code
are obtained using the EWD decoder (see Sec. 3)
with sampling error rate psample increasing with
p and in the range 0.05 to 0.6, while the results
for the XZZX code are obtained using the MPS
decoder.

Up to the accuracy of our decoders, we ob-
serve the same threshold, around 18 %, for the

two codes. The logical failure rate is found to
be a function of the number of data qubits above
the threshold (for example, the lines for d = 5 for
the XYZ?2 code is here close to the line for d = 7
for the XZZX, since this corresponds to almost
the same number of data qubits) while for low
error rates (inset of Fig. 6) the logical failure rate

instead scales with the code distance.

4.3 Biased noise, n = 10

We now explore finite-bias noise with n = 10,
which corresponds to one dominant error chan-
nel, ten times more likely than the other two er-
ror channels combined. The logical failure rates
for the XYZ? and XZZX codes under the three
possible such noise biases are shown in Fig. 7.
Results for the XYZ? code use the EWD decoder
(with psample € [0.14, 0.37] for X-biased noise and
Psample € [0.26,0.41] for Z- and Y-biased noise).

For Z-biased noise, the case shown in Fig. 7(a),
the threshold is about 28 % for both the XYZ?
code and the XZZX code. However, we note that
the logical failure rates below this threshold are
highly suppressed for the XYZ? code compared
to the XZZX code in this case. Comparing the
results for an equivalent number of qubits instead
of by code distance [inset in Fig. 7(a)], we observe
still lower logical failure rates of the XYZ? code
below the threshold.

In Fig. 7(b), which shows the results for bit-
flip-biased noise, the roles of the two codes are
reversed: they exhibit similar thresholds, but the
logical failure rates are significantly higher for the
XYZ? code, consistent with a naive extrapolation
from the pure-noise limit.

For Y-biased noise [Fig. 7(c)|, the results for
the XYZ? code are the same as for the case of Z-
biased noise in Fig. 7(a), while the logical failure
rates for the XZZX code are suppressed below
threshold compared to that case. As shown in
the inset of Fig. 7(c), the failure rate scales with
the number of data qubits, again consistent with
an extrapolation from pure noise. Thus, in sum-
mary, the results for n = 10 show that the basic
distinctions and similarities between the codes,
based on the effective code distance for pure noise
in Sec. 4.1, survive also for moderate finite bias.
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Figure 7: Logical failure rates as a function of physical
error rates comparing equivalent code distances of the
XYZ? code (solid curves) and the XZZX code (dashed
curves) for n = 10 for (a) Z-biased noise, (b) X-biased
noise, and (c) Y-biased noise. The insets display the
logical failure rates as a function of the number of data
qubits for a few different sub-threshold error rates. For
the XYZ?2 code, the same data is used in panels (a) and
(c), since the code operates identically for Z- and Y-
biased noise, and correspondingly for the XZZX code in
panels (a) and (b). The number of syndromes used and
the meaning of the error bars are the same as in Fig. 6.

5 Conclusion

We have studied a [[2d?, 1, d]] stabilizer code, the
“XYZ?" code, defined on a honeycomb lattice
with specific boundary conditions. The code can
be derived as a concatenation of the surface code
and a two-qubit phase-error-detection code, with
suitable single-qubit rotations, and is the sim-
plest realization of a “matching code” proposed by
Wootton [1]. The XYZ? code consists of weight-
six XY ZXY Z stabilizers on hexagonal plaque-
ttes, X X link stabilizers on the vertical links, and
XY Z half-plaquette stabilizers on the boundary.
Because of the hexagonal structure and the cor-
responding mixed-type stabilizers, the code has
a remarkable syndrome signature, where isolated
X, Y, and Z errors have pairs of defects with
three different respective orientations.

We studied the logical fidelity of the XYZ? code
assuming perfect stabilizer measurements and
maximum-likelihood decoding, and compared the
results to those of the rotated surface code and
the XZZX code. We found that the XYZ? code
has high thresholds for biased-noise error models
that far surpass those of the rotated surface code
and matches the thresholds demonstrated by the
XZ7ZX code. In contrast to those two codes, the
XYZ? code also has a quadratic code distance,
2d2, for both pure Z and pure Y noise. This dis-
tinction survives also for phase-biased noise with
finite bias, where the XYZ? code has significantly
lower sub-threshold logical failure rates for the
same number of data qubits. We also noted that
the XYZ? code requires fewer ancilla qubits per
data qubits than the XZZX and rotated surface
codes to carry out the stabilizer measurements,
although this assumes higher connectivity: a tri-
angular lattice of qubits instead of a square grid.

In order for these apparent advantages of the
XYZ? code compared to the XZZX code to be
of practical value, it will be necessary to device
an efficient approximate decoder, potentially ex-
ploiting the tri-directional syndrome properties
of the XYZ? code, while at the same time deal-
ing with the fact that link stabilizers do not give
rise to paired syndrome bits. A possible way
to address the latter, which we are currently ex-
ploring, is to treat the XYZ? code as a concate-
nated code of two-qubit blocks [64]. A minimum-
weight matching scheme could incorporate edges
weighted by conditional probabilities based on
the link syndrome [65]. Something that also
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needs to be explored is the detrimental effects of
the weight-six stabilizer on circuit-level noise [52],
while taking into account that this may be par-
tially offset by the fact that approximately half of
the stabilizers are instead weight-two. In short,
a complete analysis of the XYZ? code should be
undertaken that relaxes the assumptions of per-
fect stabilizer measurements used in the present
work. Furthermore, since the XYZ? code is es-
pecially apt at addressing biased noise, it would
also be interesting to explore how the code would
perform compared to the XZZX code as a con-
catenated code with Kerr-cat continuous-variable
qubits [66].
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