The XYZ$^2$ hexagonal stabilizer code

Basudha Srivastava1, Anton Frisk Kockum2, and Mats Granath1

1Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
2Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We consider a topological stabilizer code on a honeycomb grid, the "XYZ$^2$" code. The code is inspired by the Kitaev honeycomb model and is a simple realization of a "matching code" discussed by Wootton [J. Phys. A: Math. Theor. 48, 215302 (2015)], with a specific implementation of the boundary. It utilizes weight-six ($XYZXYZ$) plaquette stabilizers and weight-two ($XX$) link stabilizers on a planar hexagonal grid composed of $2d^2$ qubits for code distance $d$, with weight-three stabilizers at the boundary, stabilizing one logical qubit. We study the properties of the code using maximum-likelihood decoding, assuming perfect stabilizer measurements. For pure $X$, $Y$, or $Z$ noise, we can solve for the logical failure rate analytically, giving a threshold of 50%. In contrast to the rotated surface code and the XZZX code, which have code distance $d^2$ only for pure $Y$ noise, here the code distance is $2d^2$ for both pure $Z$ and pure $Y$ noise. Thresholds for noise with finite $Z$ bias are similar to the XZZX code, but with markedly lower sub-threshold logical failure rates. The code possesses distinctive syndrome properties with unidirectional pairs of plaquette defects along the three directions of the triangular lattice for isolated errors, which may be useful for efficient matching-based or other approximate decoding.

Quantum computers are more sensitive to noise than their classical digital counterparts. For the latter, errors are bit-flip errors (0 flipped to 1, or vice versa), whereas for the former, phase-flip errors (e.g. 0+1 flipped to 0-1) are also an issue since quantum bits (qubits) can be in a superposition of 0 and 1. Topological stabilizer codes are quantum error-correcting codes that store quantum information in logical qubits, consisting of groups of physical qubits, and protect against errors by repeated local measurements. For biased noise, for example, if phase-flip errors are more likely than bit-flip errors, these stabilizer measurements can be modified to increase the threshold of the code, that is, the physical error rate below which the logical error rate decreases by increasing the number of physical qubits in the code. We propose a stabilizer code implemented on a hexagonal (honeycomb) grid of physical qubits and show that, under the assumption of perfect measurements, the code possesses high threshold values for highly biased noise. Building a quantum computer with a high connectivity that allows for measuring the six qubits of a hexagon may thus provide an advantage over lower-connectivity structures such as a square lattice.

► BibTeX data

► References

[1] James R Wootton. ``A family of stabilizer codes for $D({{\mathbb{Z}}_{2}})$ anyons and Majorana modes''. Journal of Physics A: Mathematical and Theoretical 48, 215302 (2015).

[2] Michael A. Nielsen and Isaac L. Chuang. ``Quantum Computation and Quantum Information''. Cambridge University Press. Cambridge (2010).

[3] I.M. Georgescu, S. Ashhab, and Franco Nori. ``Quantum simulation''. Reviews of Modern Physics 86, 153–185 (2014).

[4] Ashley Montanaro. ``Quantum algorithms: an overview''. npj Quantum Information 2, 15023 (2016).

[5] G Wendin. ``Quantum information processing with superconducting circuits: a review''. Reports on Progress in Physics 80, 106001 (2017).

[6] John Preskill. ``Quantum Computing in the NISQ era and beyond''. Quantum 2, 79 (2018).

[7] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. ``Quantum computational chemistry''. Reviews of Modern Physics 92, 015003 (2020).

[8] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. ``Quantum Algorithms for Quantum Chemistry and Quantum Materials Science''. Chemical Reviews 120, 12685–12717 (2020).

[9] Román Orús, Samuel Mugel, and Enrique Lizaso. ``Quantum computing for finance: Overview and prospects''. Reviews in Physics 4, 100028 (2019).

[10] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. ``Variational quantum algorithms''. Nature Reviews Physics 3, 625–644 (2021).

[11] Peter W. Shor. ``Scheme for reducing decoherence in quantum computer memory''. Physical Review A 52, R2493–R2496 (1995).

[12] A. M. Steane. ``Error Correcting Codes in Quantum Theory''. Physical Review Letters 77, 793–797 (1996).

[13] Daniel Gottesman. ``Stabilizer Codes and Quantum Error Correction'' (1997). arXiv:quant-ph/​9705052.

[14] Barbara M. Terhal. ``Quantum error correction for quantum memories''. Reviews of Modern Physics 87, 307–346 (2015).

[15] Steven M. Girvin. ``Introduction to quantum error correction and fault tolerance'' (2021). arXiv:2111.08894.

[16] S. B. Bravyi and A. Yu. Kitaev. ``Quantum codes on a lattice with boundary'' (1998). arXiv:quant-ph/​9811052.

[17] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. ``Topological quantum memory''. Journal of Mathematical Physics 43, 4452–4505 (2002).

[18] A.Yu. Kitaev. ``Fault-tolerant quantum computation by anyons''. Annals of Physics 303, 2–30 (2003).

[19] Robert Raussendorf and Jim Harrington. ``Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions''. Physical Review Letters 98, 190504 (2007).

[20] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. ``Surface codes: Towards practical large-scale quantum computation''. Physical Review A 86, 032324 (2012).

[21] P.W. Shor. ``Fault-tolerant quantum computation''. In Proceedings of 37th Conference on Foundations of Computer Science. Pages 56–65. IEEE Comput. Soc. Press (1996).

[22] Emanuel Knill, Raymond Laflamme, and Wojciech H. Zurek. ``Resilient Quantum Computation''. Science 279, 342–345 (1998).

[23] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis. ``State preservation by repetitive error detection in a superconducting quantum circuit''. Nature 519, 66–69 (2015).

[24] Maika Takita, Andrew W. Cross, A. D. Córcoles, Jerry M. Chow, and Jay M. Gambetta. ``Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits''. Physical Review Letters 119, 180501 (2017).

[25] Christian Kraglund Andersen, Ants Remm, Stefania Lazar, Sebastian Krinner, Nathan Lacroix, Graham J. Norris, Mihai Gabureac, Christopher Eichler, and Andreas Wallraff. ``Repeated quantum error detection in a surface code''. Nature Physics 16, 875–880 (2020).

[26] K. J. Satzinger et al. ``Realizing topologically ordered states on a quantum processor''. Science 374, 1237 (2021).

[27] Laird Egan, Dripto M. Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R. Brown, Marko Cetina, and Christopher Monroe. ``Fault-tolerant control of an error-corrected qubit''. Nature 598, 281–286 (2021).

[28] Zijun Chen et al. ``Exponential suppression of bit or phase errors with cyclic error correction''. Nature 595, 383–387 (2021).

[29] Alexander Erhard, Hendrik Poulsen Nautrup, Michael Meth, Lukas Postler, Roman Stricker, Martin Stadler, Vlad Negnevitsky, Martin Ringbauer, Philipp Schindler, Hans J. Briegel, Rainer Blatt, Nicolai Friis, and Thomas Monz. ``Entangling logical qubits with lattice surgery''. Nature 589, 220–224 (2021).

[30] Ming Gong, Xiao Yuan, Shiyu Wang, Yulin Wu, Youwei Zhao, Chen Zha, Shaowei Li, Zhen Zhang, Qi Zhao, Yunchao Liu, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, He Lu, Simon C Benjamin, Cheng-Zhi Peng, Xiongfeng Ma, Yu-Ao Chen, Xiaobo Zhu, and Jian-Wei Pan. ``Experimental exploration of five-qubit quantum error correcting code with superconducting qubits''. National Science ReviewPage nwab011 (2021).

[31] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz. ``Realization of real-time fault-tolerant quantum error correction''. Phys. Rev. X 11, 041058 (2021).

[32] J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, A. Bruno, B. M. Terhal, and L. DiCarlo. ``Logical-qubit operations in an error-detecting surface code''. Nature Physics 18, 80–86 (2021).

[33] Lukas Postler, Sascha Heußen, Ivan Pogorelov, Manuel Rispler, Thomas Feldker, Michael Meth, Christian D. Marciniak, Roman Stricker, Martin Ringbauer, Rainer Blatt, Philipp Schindler, Markus Müller, and Thomas Monz. ``Demonstration of fault-tolerant universal quantum gate operations'' (2021). arXiv:2111.12654.

[34] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois, Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann, Graham J. Norris, Christian Kraglund Andersen, Markus Müller, Alexandre Blais, Christopher Eichler, and Andreas Wallraff. ``Realizing Repeated Quantum Error Correction in a Distance-Three Surface Code'' (2021). arXiv:2112.03708.

[35] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. ``A quantum processor based on coherent transport of entangled atom arrays''. Nature 604, 451–456 (2022).

[36] J. Pablo Bonilla Ataides, David K. Tuckett, Stephen D. Bartlett, Steven T. Flammia, and Benjamin J. Brown. ``The XZZX surface code''. Nature Communications 12, 2172 (2021).

[37] H. Bombin and M. A. Martin-Delgado. ``Optimal resources for topological two-dimensional stabilizer codes: Comparative study''. Physical Review A 76, 012305 (2007).

[38] David K. Tuckett, Andrew S. Darmawan, Christopher T. Chubb, Sergey Bravyi, Stephen D. Bartlett, and Steven T. Flammia. ``Tailoring Surface Codes for Highly Biased Noise''. Physical Review X 9, 041031 (2019).

[39] K. Lalumière, J. M. Gambetta, and A. Blais. ``Tunable joint measurements in the dispersive regime of cavity QED''. Physical Review A 81, 040301 (2010).

[40] A. F. Kockum, L. Tornberg, and G. Johansson. ``Undoing measurement-induced dephasing in circuit QED''. Physical Review A 85, 052318 (2012).

[41] D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Y. M. Blanter, K. W. Lehnert, R. N. Schouten, and L. DiCarlo. ``Deterministic entanglement of superconducting qubits by parity measurement and feedback''. Nature 502, 350 (2013).

[42] William P. Livingston, Machiel S. Blok, Emmanuel Flurin, Justin Dressel, Andrew N. Jordan, and Irfan Siddiqi. ``Experimental demonstration of continuous quantum error correction'' (2021). arXiv:2107.11398.

[43] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton. ``A fault-tolerant honeycomb memory''. Quantum 5, 605 (2021).

[44] Alexei Kitaev. ``Anyons in an exactly solved model and beyond''. Annals of Physics 321, 2–111 (2006).

[45] Maria Hermanns, Itamar Kimchi, and Johannes Knolle. ``Physics of the Kitaev model: Fractionalization, dynamic correlations, and material connections''. Annual Review of Condensed Matter Physics 9, 17–33 (2018).

[46] David Poulin. ``Stabilizer Formalism for Operator Quantum Error Correction''. Physical Review Letters 95, 230504 (2005).

[47] Martin Suchara, Sergey Bravyi, and Barbara Terhal. ``Constructions and noise threshold of topological subsystem codes''. Journal of Physics A: Mathematical and Theoretical 44, 155301 (2011).

[48] Yi-Chan Lee, Courtney G Brell, and Steven T Flammia. ``Topological quantum error correction in the Kitaev honeycomb model''. Journal of Statistical Mechanics: Theory and Experiment 2017, 083106 (2017).

[49] Matthew B. Hastings and Jeongwan Haah. ``Dynamically Generated Logical Qubits''. Quantum 5, 564 (2021).

[50] Jeongwan Haah and Matthew B. Hastings. ``Boundaries for the Honeycomb Code'' (2021). arXiv:2110.09545.

[51] James R Wootton. ``Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment''. Quantum Science and Technology 2, 015006 (2017).

[52] James R. Wootton. ``Hexagonal matching codes with 2-body measurements'' (2021). arXiv:2109.13308.

[53] Alexei Kitaev and Chris Laumann. ``Topological phases and quantum computation'' (2009). arXiv:0904.2771.

[54] Julien Vidal, Kai Phillip Schmidt, and Sébastien Dusuel. ``Perturbative approach to an exactly solved problem: Kitaev honeycomb model''. Physical Review B 78, 245121 (2008).

[55] Xiao-Gang Wen. ``Quantum Orders in an Exact Soluble Model''. Physical Review Letters 90, 016803 (2003).

[56] Alastair Kay. ``Capabilities of a Perturbed Toric Code as a Quantum Memory''. Physical Review Letters 107, 270502 (2011).

[57] Benjamin J Brown, Wonmin Son, Christina V Kraus, Rosario Fazio, and Vlatko Vedral. ``Generating topological order from a two-dimensional cluster state using a duality mapping''. New Journal of Physics 13, 065010 (2011).

[58] David K. Tuckett, Stephen D. Bartlett, and Steven T. Flammia. ``Ultrahigh Error Threshold for Surface Codes with Biased Noise''. Physical Review Letters 120, 050505 (2018).

[59] Sergey Bravyi, Martin Suchara, and Alexander Vargo. ``Efficient algorithms for maximum likelihood decoding in the surface code''. Physical Review A 90, 032326 (2014).

[60] James R. Wootton and Daniel Loss. ``High Threshold Error Correction for the Surface Code''. Physical Review Letters 109, 160503 (2012).

[61] Adrian Hutter, James R. Wootton, and Daniel Loss. ``Efficient Markov chain Monte Carlo algorithm for the surface code''. Physical Review A 89, 022326 (2014).

[62] Karl Hammar, Alexei Orekhov, Patrik Wallin Hybelius, Anna Katariina Wisakanto, Basudha Srivastava, Anton Frisk Kockum, and Mats Granath. ``Error-rate-agnostic decoding of topological stabilizer codes'' (2021). arXiv:2112.01977.

[63] David Kingsley Tuckett. ``Tailoring surface codes: Improvements in quantum error correction with biased noise''. PhD thesis. University of Sydney. (2020).

[64] David Poulin. ``Optimal and efficient decoding of concatenated quantum block codes''. Physical Review A 74, 052333 (2006).

[65] Ben Criger and Imran Ashraf. ``Multi-path summation for decoding 2D topological codes''. Quantum 2, 102 (2018).

[66] Andrew S. Darmawan, Benjamin J. Brown, Arne L. Grimsmo, David K. Tuckett, and Shruti Puri. ``Practical Quantum Error Correction with the XZZX Code and Kerr-Cat Qubits''. PRX Quantum 2, 030345 (2021).

[67] EWD-QEC. code: QEC-project-2020/​EWD-QEC.

Cited by

[1] Jonathan F. San Miguel, Dominic J. Williamson, and Benjamin J. Brown, "A cellular automaton decoder for a noise-bias tailored color code", arXiv:2203.16534.

[2] Karl Hammar, Alexei Orekhov, Patrik Wallin Hybelius, Anna Katariina Wisakanto, Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "Error-rate-agnostic decoding of topological stabilizer codes", Physical Review A 105 4, 042616 (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2022-05-28 18:53:12). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 18:53:11).