Back to sources – the role of losses and coherence in super-resolution imaging revisited

Stanislaw Kurdzialek

Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Photon losses are intrinsic for any translationally invariant optical imaging system with a non-trivial Point Spread Function, and the relation between the transmission factor and the coherence properties of an imaged object is universal – we demonstrate the rigorous proof of this statement, based on the principles of quantum mechanics. The fundamental limit on the precision of estimating separation between two partially coherent sources is then derived. The careful study of the role of photon losses allows to resolve conflicting claims present in previous works. We compute the Quantum Fisher Information for the generic model of optical 4f imaging system, and use prior considerations to validate the result for a general, translationally invariant imaging apparatus. We prove that the spatial-mode demultiplexing (SPADE) measurement, optimal for non-coherent sources, remains optimal for an arbitrary degree of coherence. Moreover, we show that some approximations, omnipresent in theoretical works about optical imaging, inevitably lead to unphysical, zero-transmission models, resulting in misleading claims regarding fundamental resolution limits.

► BibTeX data

► References

[1] E. Bettens, D. Van Dyck, A.J. den Dekker, J. Sijbers, and A. van den Bos. ``Model-based two-object resolution from observations having counting statistics''. Ultramicroscopy 77, 37–48 (1999).

[2] Sripad Ram, E. Sally Ward, and Raimund J. Ober. ``Beyond rayleigh’s criterion: A resolution measure with application to single-molecule microscopy''. Proceedings of the National Academy of Sciences 103, 4457–4462 (2006).

[3] Mankei Tsang, Ranjith Nair, and Xiao-Ming Lu. ``Quantum theory of superresolution for two incoherent optical point sources''. Phys. Rev. X 6, 031033 (2016).

[4] Mankei Tsang. ``Resolving starlight: a quantum perspective''. Contemporary Physics 60, 279–298 (2019).

[5] Cosmo Lupo and Stefano Pirandola. ``Ultimate precision bound of quantum and subwavelength imaging''. Phys. Rev. Lett. 117, 190802 (2016).

[6] Ranjith Nair and Mankei Tsang. ``Far-field superresolution of thermal electromagnetic sources at the quantum limit''. Phys. Rev. Lett. 117, 190801 (2016).

[7] Yink Loong Len, Chandan Datta, Michał Parniak, and Konrad Banaszek. ``Resolution limits of spatial mode demultiplexing with noisy detection''. International Journal of Quantum Information 18, 1941015 (2020).

[8] Changhun Oh, Sisi Zhou, Yat Wong, and Liang Jiang. ``Quantum limits of superresolution in a noisy environment''. Phys. Rev. Lett. 126, 120502 (2021).

[9] Sisi Zhou and Liang Jiang. ``Modern description of rayleigh's criterion''. Phys. Rev. A 99, 013808 (2019).

[10] F. Albarelli, M. Barbieri, M.G. Genoni, and I. Gianani. ``A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging''. Physics Letters A 384, 126311 (2020).

[11] Mankei Tsang. ``Semiparametric estimation for incoherent optical imaging''. Phys. Rev. Research 1, 033006 (2019).

[12] Walker Larson and Bahaa E. A. Saleh. ``Resurgence of rayleigh’s curse in the presence of partial coherence''. Optica 5, 1382–1389 (2018).

[13] Mankei Tsang and Ranjith Nair. ``Resurgence of rayleigh's curse in the presence of partial coherence: comment''. Optica 6, 400–401 (2019).

[14] Walker Larson and Bahaa E. A. Saleh. ``Resurgence of rayleigh's curse in the presence of partial coherence: reply''. Optica 6, 402–403 (2019).

[15] Zdeněk Hradil, Jaroslav Řeháček, Luis Sánchez-Soto, and Berthold-Georg Englert. ``Quantum fisher information with coherence''. Optica 6, 1437–1440 (2019).

[16] Kwan K. Lee and Amit Ashok. ``Surpassing rayleigh limit: Fisher information analysis of partially coherent source(s)''. SPIE. (2019).

[17] Kevin Liang, S. A. Wadood, and A. N. Vamivakas. ``Coherence effects on estimating two-point separation''. Optica 8, 243–248 (2021).

[18] S. A. Wadood, Kevin Liang, Yiyu Zhou, Jing Yang, M. A. Alonso, X.-F. Qian, T. Malhotra, S. M. Hashemi Rafsanjani, Andrew N. Jordan, Robert W. Boyd, and et al. ``Experimental demonstration of superresolution of partially coherent light sources using parity sorting''. Optics Express 29, 22034 (2021).

[19] H.H. Barrett and K.J. Myers. ``Foundations of image science''. Wiley Series in Pure and Applied Optics. Wiley. (2004). url:​books?id=pHBTAAAAMAAJ.

[20] Mankei Tsang. ``Subdiffraction incoherent optical imaging via spatial-mode demultiplexing''. New Journal of Physics 19, 023054 (2017).

[21] E. Wolf. ``New spectral representation of random sources and of the partially coherent fields that they generate''. Optics Communications 38, 3–6 (1981).

[22] CARL W. HELSTROM. ``Estimation of object parameters by a quantum-limited optical system''. Journal of the Optical Society of America 60, 233 (1970).

[23] Mankei Tsang. ``Quantum limits to optical point-source localization''. Optica 2, 646–653 (2015).

[24] Mankei Tsang. ``Semiparametric estimation for incoherent optical imaging''. Phys. Rev. Research 1, 033006 (2019).

[25] Mankei Tsang. ``Quantum limit to subdiffraction incoherent optical imaging''. Phys. Rev. A 99, 012305 (2019).

[26] Mankei Tsang. ``Quantum limit to subdiffraction incoherent optical imaging. ii. a parametric-submodel approach''. Phys. Rev. A 104, 052411 (2021).

[27] Mankei Tsang. ``Poisson quantum information''. Quantum 5, 527 (2021).

[28] Zdeněk Hradil, Dominik Koutný, and Jaroslav Řeháček. ``Exploring the ultimate limits: super-resolution enhanced by partial coherence''. Optics Letters 46, 1728 (2021).

Cited by

[1] Mankei Tsang, "Poisson Quantum Information", arXiv:2103.08532.

[2] Giacomo Sorelli, Manuel Gessner, Mattia Walschaers, and Nicolas Treps, "Gaussian quantum metrology for mode-encoded parameters: general theory and imaging applications", arXiv:2202.10355.

[3] Kevin Liang, S. A. Wadood, and A. N. Vamivakas, "Coherence effects on estimating general sub-Rayleigh object distribution moments", Physical Review A 104 2, 022220 (2021).

[4] Ilya Karuseichyk, Giacomo Sorelli, Manuel Gessner, Mattia Walschaers, and Nicolas Treps, "Resolving Mutually Coherent Bright Point-Sources", arXiv:2111.02233.

[5] Konstantin Katamadze, Boris Bantysh, Andrey Chernyavskiy, Yurii Bogdanov, and Sergei Kulik, "Breaking Rayleigh's curse for multi-parameter objects using BLESS technique", arXiv:2112.13244.

[6] Giacomo Sorelli, Manuel Gessner, Mattia Walschaers, and Nicolas Treps, "Quantum limits for resolving Gaussian sources", arXiv:2205.04258.

The above citations are from SAO/NASA ADS (last updated successfully 2022-05-28 18:31:14). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 18:31:13).