Boundaries for the Honeycomb Code

Jeongwan Haah1 and Matthew B. Hastings1,2

1Microsoft Quantum and Microsoft Research, Redmond, WA 98052, USA
2Station Q, Microsoft Quantum, Santa Barbara, CA 93106-6105, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We introduce a simple construction of boundary conditions for the honeycomb code [1] that uses only pairwise checks and allows parallelogram geometries at the cost of modifying the bulk measurement sequence. We discuss small instances of the code.

► BibTeX data

► References

[1] M. B. Hastings and J. Haah, ``Dynamically generated logical qubits,'' arXiv preprint (2021), 2107.02194.

[2] A. Kitaev, ``Anyons in an exactly solved model and beyond,'' Annals of Physics 321, 2–111 (2006), cond-mat/​0506438.

[3] J. R. Wootton, ``A family of stabilizer codes for $D({\mathbb Z}_2)$ anyons and Majorana modes,'' J. Phys. A: Math. Theor. 48, 215302 (2015), arXiv:1501.07779.

[4] R. Chao, M. E. Beverland, N. Delfosse, and J. Haah, ``Optimization of the surface code design for majorana-based qubits,'' Quantum 4, 352 (2020), 2007.00307.

[5] C. Gidney, M. Newman, A. Fowler, and M. Broughton, ``A fault-tolerant honeycomb memory,'' arXiv:2108.10457.

[6] S. B. Bravyi and A. Y. Kitaev, ``Quantum codes on a lattice with boundary,'' quant-ph/​9811052.

[7] M. H. Freedman and D. A. Meyer, ``Projective plane and planar quantum codes,'' quant-ph/​9810055.

[8] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, ``Topological quantum memory,'' J. Math. Phys. 43, 4452–4505 (2002), quant-ph/​0110143.

[9] A. Paetznick et. al., in preparation.

[10] C. Vuillot, ``Planar floquet codes,'' arXiv:2110.05348.

[11] D. Gottesman, ``Fault-tolerant quantum computation with higher-dimensional systems,'' Chaos Solitons Fractals 10, 1749–1758 (1999), arXiv:quant-ph/​9802007.

[12] Y. Li, ``A magic state's fidelity can be superior to the operations that created it,'' New J. Phys. 17, 023037 (2015), 1410.7808.

[13] H. Bombin and M. A. Martin-Delgado, ``Topological quantum distillation,'' Physical review letters 97, 180501 (2006), quant-ph/​0605138.

[14] H. Bombín and M. A. Martin-Delgado, ``Optimal resources for topological two-dimensional stabilizer codes: Comparative study,'' Physical Review A 76, 012305 (2007), arXiv:quant-ph/​0703272.

Cited by

[1] Ammar Jahin, Andy C. Y. Li, Thomas Iadecola, Peter P. Orth, Gabriel N. Perdue, Alexandru Macridin, M. Sohaib Alam, and Norm M. Tubman, "Fermionic approach to variational quantum simulation of Kitaev spin models", Physical Review A 106 2, 022434 (2022).

[2] Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "The XYZ2 hexagonal stabilizer code", arXiv:2112.06036, Quantum 6, 698 (2022).

[3] Craig Gidney, Michael Newman, and Matt McEwen, "Benchmarking the Planar Honeycomb Code", Quantum 6, 813 (2022).

[4] David Aasen, Zhenghan Wang, and Matthew B. Hastings, "Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes", Physical Review B 106 8, 085122 (2022).

[5] Craig Gidney, "Stability Experiments: The Overlooked Dual of Memory Experiments", Quantum 6, 786 (2022).

[6] Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings, and Marcus P. da Silva, "Performance of planar Floquet codes with Majorana-based qubits", arXiv:2202.11829.

[7] Christophe Vuillot, "Planar Floquet Codes", arXiv:2110.05348.

[8] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton, "A Fault-Tolerant Honeycomb Memory", arXiv:2108.10457.

[9] Andreas Bärtschi and Stephan Eidenbenz, "Short-Depth Circuits for Dicke State Preparation", arXiv:2207.09998.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 18:02:12) and SAO/NASA ADS (last updated successfully 2022-10-04 18:02:13). The list may be incomplete as not all publishers provide suitable and complete citation data.