Boundaries for the Honeycomb Code
1Microsoft Quantum and Microsoft Research, Redmond, WA 98052, USA
2Station Q, Microsoft Quantum, Santa Barbara, CA 93106-6105, USA
Published: | 2022-04-21, volume 6, page 693 |
Eprint: | arXiv:2110.09545v2 |
Doi: | https://doi.org/10.22331/q-2022-04-21-693 |
Citation: | Quantum 6, 693 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We introduce a simple construction of boundary conditions for the honeycomb code [1] that uses only pairwise checks and allows parallelogram geometries at the cost of modifying the bulk measurement sequence. We discuss small instances of the code.
► BibTeX data
► References
[1] M. B. Hastings and J. Haah, ``Dynamically generated logical qubits,'' arXiv preprint (2021), 2107.02194.
https://doi.org/10.22331/q-2021-10-19-564
arXiv:2107.02194
[2] A. Kitaev, ``Anyons in an exactly solved model and beyond,'' Annals of Physics 321, 2–111 (2006), cond-mat/0506438.
https://doi.org/10.1016/j.aop.2005.10.005
arXiv:cond-mat/0506438
[3] J. R. Wootton, ``A family of stabilizer codes for $D({\mathbb Z}_2)$ anyons and Majorana modes,'' J. Phys. A: Math. Theor. 48, 215302 (2015), arXiv:1501.07779.
https://doi.org/10.1088/1751-8113/48/21/215302
arXiv:1501.07779
[4] R. Chao, M. E. Beverland, N. Delfosse, and J. Haah, ``Optimization of the surface code design for majorana-based qubits,'' Quantum 4, 352 (2020), 2007.00307.
https://doi.org/10.22331/q-2020-10-28-352
arXiv:2007.00307
[5] C. Gidney, M. Newman, A. Fowler, and M. Broughton, ``A fault-tolerant honeycomb memory,'' arXiv:2108.10457.
https://doi.org/10.22331/q-2021-12-20-605
arXiv:2108.10457
[6] S. B. Bravyi and A. Y. Kitaev, ``Quantum codes on a lattice with boundary,'' quant-ph/9811052.
arXiv:quant-ph/9811052
[7] M. H. Freedman and D. A. Meyer, ``Projective plane and planar quantum codes,'' quant-ph/9810055.
arXiv:quant-ph/9810055
[8] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, ``Topological quantum memory,'' J. Math. Phys. 43, 4452–4505 (2002), quant-ph/0110143.
https://doi.org/10.1063/1.1499754
arXiv:quant-ph/0110143
[9] A. Paetznick et. al., in preparation.
[10] C. Vuillot, ``Planar floquet codes,'' arXiv:2110.05348.
arXiv:2110.05348
[11] D. Gottesman, ``Fault-tolerant quantum computation with higher-dimensional systems,'' Chaos Solitons Fractals 10, 1749–1758 (1999), arXiv:quant-ph/9802007.
https://doi.org/10.1016/S0960-0779(98)00218-5
arXiv:quant-ph/9802007
[12] Y. Li, ``A magic state's fidelity can be superior to the operations that created it,'' New J. Phys. 17, 023037 (2015), 1410.7808.
https://doi.org/10.1088/1367-2630/17/2/023037
arXiv:1410.7808
[13] H. Bombin and M. A. Martin-Delgado, ``Topological quantum distillation,'' Physical review letters 97, 180501 (2006), quant-ph/0605138.
https://doi.org/10.1103/PhysRevLett.97.180501
arXiv:quant-ph/0605138
[14] H. Bombín and M. A. Martin-Delgado, ``Optimal resources for topological two-dimensional stabilizer codes: Comparative study,'' Physical Review A 76, 012305 (2007), arXiv:quant-ph/0703272.
https://doi.org/10.1103/PhysRevA.76.012305
arXiv:quant-ph/0703272
Cited by
[1] Grace M. Sommers, David A. Huse, and Michael J. Gullans, "Crystalline Quantum Circuits", PRX Quantum 4 3, 030313 (2023).
[2] Adithya Sriram, Tibor Rakovszky, Vedika Khemani, and Matteo Ippoliti, "Topology, criticality, and dynamically generated qubits in a stochastic measurement-only Kitaev model", Physical Review B 108 9, 094304 (2023).
[3] Ali Lavasani, Zhu-Xi Luo, and Sagar Vijay, "Monitored quantum dynamics and the Kitaev spin liquid", Physical Review B 108 11, 115135 (2023).
[4] Zhehao Zhang, David Aasen, and Sagar Vijay, "X -cube Floquet code: A dynamical quantum error correcting code with a subextensive number of logical qubits", Physical Review B 108 20, 205116 (2023).
[5] Craig Gidney, "Stability Experiments: The Overlooked Dual of Memory Experiments", Quantum 6, 786 (2022).
[6] Margarita Davydova, Nathanan Tantivasadakarn, and Shankar Balasubramanian, "Floquet Codes without Parent Subsystem Codes", PRX Quantum 4 2, 020341 (2023).
[7] Ammar Jahin, Andy C. Y. Li, Thomas Iadecola, Peter P. Orth, Gabriel N. Perdue, Alexandru Macridin, M. Sohaib Alam, and Norm M. Tubman, "Fermionic approach to variational quantum simulation of Kitaev spin models", Physical Review A 106 2, 022434 (2022).
[8] Matt McEwen, Dave Bacon, and Craig Gidney, "Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics", Quantum 7, 1172 (2023).
[9] Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "The XYZ2 hexagonal stabilizer code", Quantum 6, 698 (2022).
[10] Joseph Sullivan, Rui Wen, and Andrew C. Potter, "Floquet codes and phases in twist-defect networks", Physical Review B 108 19, 195134 (2023).
[11] Craig Gidney, Michael Newman, and Matt McEwen, "Benchmarking the Planar Honeycomb Code", Quantum 6, 813 (2022).
[12] Tyler D. Ellison, Yu-An Chen, Arpit Dua, Wilbur Shirley, Nathanan Tantivasadakarn, and Dominic J. Williamson, "Pauli topological subsystem codes from Abelian anyon theories", Quantum 7, 1137 (2023).
[13] David Aasen, Zhenghan Wang, and Matthew B. Hastings, "Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes", Physical Review B 106 8, 085122 (2022).
[14] Andreas Bartschi and Stephan Eidenbenz, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 87 (2022) ISBN:978-1-6654-9113-6.
[15] David Aasen, Jeongwan Haah, Zhi Li, and Roger S. K. Mong, "Measurement Quantum Cellular Automata and Anomalies in Floquet Codes", arXiv:2304.01277, (2023).
[16] Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings, and Marcus P. da Silva, "Performance of Planar Floquet Codes with Majorana-Based Qubits", PRX Quantum 4 1, 010310 (2023).
[17] Linnea Grans-Samuelsson, Ryan V. Mishmash, David Aasen, Christina Knapp, Bela Bauer, Brad Lackey, Marcus P. da Silva, and Parsa Bonderson, "Improved Pairwise Measurement-Based Surface Code", arXiv:2310.12981, (2023).
[18] Moritz Lange, Pontus Havström, Basudha Srivastava, Valdemar Bergentall, Karl Hammar, Olivia Heuts, Evert van Nieuwenburg, and Mats Granath, "Data-driven decoding of quantum error correcting codes using graph neural networks", arXiv:2307.01241, (2023).
[19] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton, "A Fault-Tolerant Honeycomb Memory", Quantum 5, 605 (2021).
[20] Christophe Vuillot, "Planar Floquet Codes", arXiv:2110.05348, (2021).
[21] Andreas Bärtschi and Stephan Eidenbenz, "Short-Depth Circuits for Dicke State Preparation", arXiv:2207.09998, (2022).
[22] Ryohei Kobayashi and Guanyu Zhu, "Fault-tolerant logical gates via constant depth circuits and emergent symmetries on non-orientable topological stabilizer and Floquet codes", arXiv:2310.06917, (2023).
[23] David Aasen, Jeongwan Haah, Parsa Bonderson, Zhenghan Wang, and Matthew Hastings, "Fault-Tolerant Hastings-Haah Codes in the Presence of Dead Qubits", arXiv:2307.03715, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-11-29 05:24:01) and SAO/NASA ADS (last updated successfully 2023-11-29 05:24:02). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.