Boundaries for the Honeycomb Code

Jeongwan Haah1 and Matthew B. Hastings1,2

1Microsoft Quantum and Microsoft Research, Redmond, WA 98052, USA
2Station Q, Microsoft Quantum, Santa Barbara, CA 93106-6105, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We introduce a simple construction of boundary conditions for the honeycomb code [1] that uses only pairwise checks and allows parallelogram geometries at the cost of modifying the bulk measurement sequence. We discuss small instances of the code.

► BibTeX data

► References

[1] M. B. Hastings and J. Haah, ``Dynamically generated logical qubits,'' arXiv preprint (2021), 2107.02194.

[2] A. Kitaev, ``Anyons in an exactly solved model and beyond,'' Annals of Physics 321, 2–111 (2006), cond-mat/​0506438.

[3] J. R. Wootton, ``A family of stabilizer codes for $D({\mathbb Z}_2)$ anyons and Majorana modes,'' J. Phys. A: Math. Theor. 48, 215302 (2015), arXiv:1501.07779.

[4] R. Chao, M. E. Beverland, N. Delfosse, and J. Haah, ``Optimization of the surface code design for majorana-based qubits,'' Quantum 4, 352 (2020), 2007.00307.

[5] C. Gidney, M. Newman, A. Fowler, and M. Broughton, ``A fault-tolerant honeycomb memory,'' arXiv:2108.10457.

[6] S. B. Bravyi and A. Y. Kitaev, ``Quantum codes on a lattice with boundary,'' quant-ph/​9811052.

[7] M. H. Freedman and D. A. Meyer, ``Projective plane and planar quantum codes,'' quant-ph/​9810055.

[8] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, ``Topological quantum memory,'' J. Math. Phys. 43, 4452–4505 (2002), quant-ph/​0110143.

[9] A. Paetznick et. al., in preparation.

[10] C. Vuillot, ``Planar floquet codes,'' arXiv:2110.05348.

[11] D. Gottesman, ``Fault-tolerant quantum computation with higher-dimensional systems,'' Chaos Solitons Fractals 10, 1749–1758 (1999), arXiv:quant-ph/​9802007.

[12] Y. Li, ``A magic state's fidelity can be superior to the operations that created it,'' New J. Phys. 17, 023037 (2015), 1410.7808.

[13] H. Bombin and M. A. Martin-Delgado, ``Topological quantum distillation,'' Physical review letters 97, 180501 (2006), quant-ph/​0605138.

[14] H. Bombín and M. A. Martin-Delgado, ``Optimal resources for topological two-dimensional stabilizer codes: Comparative study,'' Physical Review A 76, 012305 (2007), arXiv:quant-ph/​0703272.

Cited by

[1] Grace M. Sommers, David A. Huse, and Michael J. Gullans, "Crystalline Quantum Circuits", PRX Quantum 4 3, 030313 (2023).

[2] Adithya Sriram, Tibor Rakovszky, Vedika Khemani, and Matteo Ippoliti, "Topology, criticality, and dynamically generated qubits in a stochastic measurement-only Kitaev model", Physical Review B 108 9, 094304 (2023).

[3] Ali Lavasani, Zhu-Xi Luo, and Sagar Vijay, "Monitored quantum dynamics and the Kitaev spin liquid", Physical Review B 108 11, 115135 (2023).

[4] Zhehao Zhang, David Aasen, and Sagar Vijay, "X -cube Floquet code: A dynamical quantum error correcting code with a subextensive number of logical qubits", Physical Review B 108 20, 205116 (2023).

[5] Craig Gidney, "Stability Experiments: The Overlooked Dual of Memory Experiments", Quantum 6, 786 (2022).

[6] Margarita Davydova, Nathanan Tantivasadakarn, and Shankar Balasubramanian, "Floquet Codes without Parent Subsystem Codes", PRX Quantum 4 2, 020341 (2023).

[7] Ammar Jahin, Andy C. Y. Li, Thomas Iadecola, Peter P. Orth, Gabriel N. Perdue, Alexandru Macridin, M. Sohaib Alam, and Norm M. Tubman, "Fermionic approach to variational quantum simulation of Kitaev spin models", Physical Review A 106 2, 022434 (2022).

[8] Matt McEwen, Dave Bacon, and Craig Gidney, "Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics", Quantum 7, 1172 (2023).

[9] Basudha Srivastava, Anton Frisk Kockum, and Mats Granath, "The XYZ2 hexagonal stabilizer code", Quantum 6, 698 (2022).

[10] Joseph Sullivan, Rui Wen, and Andrew C. Potter, "Floquet codes and phases in twist-defect networks", Physical Review B 108 19, 195134 (2023).

[11] Craig Gidney, Michael Newman, and Matt McEwen, "Benchmarking the Planar Honeycomb Code", Quantum 6, 813 (2022).

[12] Tyler D. Ellison, Yu-An Chen, Arpit Dua, Wilbur Shirley, Nathanan Tantivasadakarn, and Dominic J. Williamson, "Pauli topological subsystem codes from Abelian anyon theories", Quantum 7, 1137 (2023).

[13] David Aasen, Zhenghan Wang, and Matthew B. Hastings, "Adiabatic paths of Hamiltonians, symmetries of topological order, and automorphism codes", Physical Review B 106 8, 085122 (2022).

[14] Andreas Bartschi and Stephan Eidenbenz, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 87 (2022) ISBN:978-1-6654-9113-6.

[15] David Aasen, Jeongwan Haah, Zhi Li, and Roger S. K. Mong, "Measurement Quantum Cellular Automata and Anomalies in Floquet Codes", arXiv:2304.01277, (2023).

[16] Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings, and Marcus P. da Silva, "Performance of Planar Floquet Codes with Majorana-Based Qubits", PRX Quantum 4 1, 010310 (2023).

[17] Linnea Grans-Samuelsson, Ryan V. Mishmash, David Aasen, Christina Knapp, Bela Bauer, Brad Lackey, Marcus P. da Silva, and Parsa Bonderson, "Improved Pairwise Measurement-Based Surface Code", arXiv:2310.12981, (2023).

[18] Ryohei Kobayashi and Guanyu Zhu, "Fault-tolerant logical gates via constant depth circuits and emergent symmetries on non-orientable topological stabilizer and Floquet codes", arXiv:2310.06917, (2023).

[19] Christophe Vuillot, "Planar Floquet Codes", arXiv:2110.05348, (2021).

[20] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton, "A Fault-Tolerant Honeycomb Memory", Quantum 5, 605 (2021).

[21] Moritz Lange, Pontus Havström, Basudha Srivastava, Valdemar Bergentall, Karl Hammar, Olivia Heuts, Evert van Nieuwenburg, and Mats Granath, "Data-driven decoding of quantum error correcting codes using graph neural networks", arXiv:2307.01241, (2023).

[22] Andreas Bärtschi and Stephan Eidenbenz, "Short-Depth Circuits for Dicke State Preparation", arXiv:2207.09998, (2022).

[23] Brenden Roberts, Sagar Vijay, and Arpit Dua, "Geometric phases in generalized radical Floquet dynamics", arXiv:2312.04500, (2023).

[24] David Aasen, Jeongwan Haah, Parsa Bonderson, Zhenghan Wang, and Matthew Hastings, "Fault-Tolerant Hastings-Haah Codes in the Presence of Dead Qubits", arXiv:2307.03715, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-02-26 11:05:07) and SAO/NASA ADS (last updated successfully 2024-02-26 11:05:08). The list may be incomplete as not all publishers provide suitable and complete citation data.