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Atom-Mechanical Hong-Ou-Mandel Interference
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Quantum coupling between mechanical
oscillators and atomic gases generating en-
tanglement has been recently experimen-
tally demonstrated using their subsequent
interaction with light. The next step is to
build a hybrid atom-mechanical quantum
gate showing bosonic interference effects
of single quanta in the atoms and oscil-
lators. We propose an experimental test
of Hong-Ou-Mandel interference between
single phononic excitation and single col-
lective excitation of atoms using the opti-
cal connection between them. A single op-
tical pulse is sufficient to build a hybrid
quantum-nondemolition gate to observe
the bunching of such different quanta. The
output atomic-mechanical state exhibits a
probability of a hybrid bunching effect that
proves its nonclassical aspects. This pro-
posal opens a feasible road to broadly test
such advanced quantum bunching phenom-
ena in hybrid systems with different spe-
cific couplings.

1 Introduction

Hybridization of matter quantum platforms us-
ing light as an intermediary is currently growing
in directions in quantum technology. The aim of
this development is to understand the compatibil-
ity of different experimental platforms and com-
bine the advantages and capabilities of different
parts into one hybrid system. A pioneering road
connects atomic ensembles with mechanical oscil-
lators of optomechanical cavities [1]. The out-
standing degree of quantum control over atoms
makes them an excellent platform for quantum
information [2-9|, quantum memory [10]|, and
quantum simulations [11]. Mechanical oscillators,
having huge quality factors [12-16], appear suit-
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able for quantum sensing [17-20] and fundamen-
tal physics tests [21-23|. Importantly, mechanical
systems offer an access to quantum nonlinearities
in continuous-variable regime |16, 24, 25| not eas-
ily accessible in atomic systems. Recently, cou-
pling between mechanical oscillators and atoms
reached a new phase of experimental develop-
ment.

The most recent experiments show that a spin
mode of the warm atomic ensemble can inter-
act with a mechanical mode of a distant op-
tomechanical cavity using light as a mediator.
In [26], the authors reported Einstein-Podolsky-
Rosen-type (EPR) correlations in a hybrid sys-
tem consisting of a mechanical oscillator and a
spin oscillator. A vibrational mode of a highly
stressed dielectric membrane, which was embed-
ded in a free-space optical cavity, constituted the
mechanical oscillator. The spin oscillator had
been prepared in a warm ensemble of optically
pumped atoms confined in a spin-preserving mi-
crocell. The two oscillators were coupled to an
itinerant light in a cascaded fashion, that is the
light interacted with the mechanics between its
two interactions with atoms. The authors have
shown 5.5 dB of two-mode squeezing of thermal
fluctuations in both oscillators which is an impor-
tant step towards quantum EPR-type entangle-
ment.

In [27], the authors realized a similar long-
distance interaction using a laser beam in a loop
geometry. Free-space laser beam coupled a col-
lective atomic spin and a micromechanical mem-
brane, both in room-temperature environment.
Through the loop the systems could exchange
light photons, realizing a bidirectional interaction.
The loop led to an interference of quantum noise
introduced by the light field — for any system
that couples to the light twice and with opposite
phase, quantum noise interferes destructively and
associated decoherence is suppressed. The ver-
satility of light-mediated interactions is demon-
strated this way. The authors engineered a beam-
splitter and a parametric-gain coupling between
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atoms and mechanics and could switch from these
couplings to a dissipative one by applying a phase
shift to the light field between the systems. In
both works, the distance between atomic ensem-
ble and mechanics was of the order of one meter.
Thus, the basic possibility to couple atomic en-
semble with a mechanical mode is conclusively
proven.

The next step is to turn the hybrid entangling
coupling to the pulsed hybrid gate and test its
performance. Pulsed operation brings a number
of advantages, including working with modern
tools of quantum optics [28] and, compared to a
continuous-wave driving, a possibility to get rid
of thermal decoherence by operating on shorter
timescales. For the applications, it is advan-
tageous to build a hybrid quantum nondemoli-
tion gate that allows to use geometric phase ef-
fects [29, 30]. Quantum nondemolition gate is
basic continuous-variable gate capable to build
not only all up-to-quadratic nonlinearities [31]
but also higher-order nonlinearities [32]. Such hy-
brid gates need to be tested at the level of single
quanta before they will be used. They can ma-
terialize new hybrid bunching between phononic
and atomic excitations. A phonon of mechan-
ical oscillations can change its nature and add
to an atomic excitation, and simultaneously, an
atomic excitation can be transferred and increase
the number of phonons. These two effects can
superpose as it happens in the optical Hong-Ou-
Mandel experiment for a pair of photons interfer-
ing at a balanced beam-splitter [33, 34]. Hong-
Ou-Mandel interference effect rises despite the
phase insensitive nature of single photons. The
ideal bunching superposes the photon pairs at one
or either output with a probability that will never
appear for classical phase-insensitive states [35].
This proves that bunching for nonclassical states
goes beyond the interference effects known for
classical continuous waves and emphasizes truly
quantum nature of excitations.

At the moment, numerous proposals are put
forward to test the Hong-Ou-Mandel effect with
different platforms besides optical photons. Some
of these are already implemented experimentally.
It is worth mentioning such bosonic platforms as
surface plasmon polaritons, i.e. the quanta of the
surface plasma waves [36, 37|; phonons, the quan-
tized excitation of mechanical motion [38, 39]; col-
lective atomic excitations, where the HOM effect

is obtained using the Rydberg blockade [40]. Mas-
sive particles such as atoms also are able to pro-
vide two-particle interferences [41-44]. Besides,
the HOM effect has been proposed using quantum
memory cell instead of a beam-splitter [45]. Fi-
nally, not only bosons but also fermions, namely,
electrons can interfere in an HOM-like arrange-
ment [46], and the anti-HOM effect by interfering
bosonic and fermionic wavefunctions of entangled
photons has been recently experimentally demon-
strated [47, 48]. The Hong-Ou-Mandel effect it-
self can be used for applications like quantum
metrology and sensing [49]. Two-photon output
states emerging from the HOM interferometer are
an example of NOON states known for their ca-
pability of achieving metrological sensitivity su-
perior to classical states [50].

This paper proposes a feasible atom-
mechanical Hong-Ou-Mandel experiment capable
of proving such a nonclassical interference regime
for the hybrid quantum nondemolition gate.
This hybrid gate uses a single pulse of squeezed
light interacting sequentially with atoms and
mechanical oscillator. The pulse is subsequently
measured by homodyne detection whose output
controls the atomic state. First, we analyze
nonclassical atom-optical and optomechanical
Hong-Ou-Mandel effects separately. We propose
experiments to demonstrate them on current
experimental platforms. Finally, we present their
combination in the atom-mechanical gate and
derive conditions for a successful demonstration
of nonclassical atom-phonon bunching. An exper-
imental test of our proposal will prove the new
level of quantum control for hybrid systems and
stimulate proposals and verifications of hybrid
bunching between other bosonic platforms.

2 Results

In this article, we demonstrate the possibil-
ity to observe an analogue of the Hong-Ou-
Mandel (HOM) interference using a quantum
nondemolition (QND) gate between a cloud of
atoms and a mechanical mode of an optomechan-
ical cavity. The schematic diagram of the setup
that allows realization of the gate is shown in
the Fig. 1 and is considered in detail in [51].
Note that such an atomic-mechanical system con-
sists of two parts, which in turn perform QND
gates coupling the mediating optical mode to the
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atomic or to the mechanical mode. We will show
that each of the three gates (atom-optical, op-
tomechanical, and atom-mechanical) is capable
of providing the HOM effect given feasible exper-
imental parameters.

atom-light gate optomechanical gate
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Figure 1: HOM effect via QND gate between an atomic
ensemble and a mechanical oscillator excited by single
quanta |[1)4 and |1)u. A quantum light pulse with a rect-
angular temporal profile sequentially passes the atomic
ensemble in a cavity and then the optomechanical cavity
and then goes to the homodyne detector (HD). Routing
of the pulse is enabled by the circulators C; 2. Within
the cavities the optical pulse is coupled to atoms and
mechanics respectively via QND interactions enabled by
strong classical optical pumps. The homodyne detection
data are used to control the optical feedforward proce-
dure after the detection to shift the atomic quadratures.
The homodyne measurement and magnetic feedforward
control via magnetic field phase shifter are optimized to
perform the atom-mechanical QND interaction and the
squeezed light is used to achieve large entangling power.

For its operation and observation of the HOM
interference, the gate requires the physical param-
eters (including the coupling rates and cavities
linewidths) that are within reach from the ones
used in [26, 27]. In both these works, the atoms
are in free space, however, the presence of an
atomic cavity is not essential for our treatment.
Very same results can be obtained with atoms in
free space, and we assume a presence of the cav-
ity for atoms for the convenience of single-mode
description. Two specifics are critical for the ob-
servation of HOM effect in the hybrid system [51].
First, both interactions are of QND type (in [27],
another type of interaction was implemented for
the optomechanical part). Another important re-
quirement is cooling and isolation of the mechan-
ical mode from its thermal environment since the
thermal noises can totally destroy the HOM in-
terference. In [26], mechanics is at the room tem-
perature, however cooling of a membrane oscilla-

tor [52-54] and operation at low temperatures, in
particular, in cryogenic environment [55, 56| has
been reported previously.

We consider the HOM effect as a bunching
of two excitations, initially in two different in-
teracting subsystems, in one of them. Our aim
is to demonstrate the nonclassical HOM effect,
i.e. the buildup of the bunched state via the
second-order interference not achievable by phase-
randomized classical waves after the same inter-
action. As in optical HOM effect at the beam-
splitter, we assume incoherent mixture of ground
(vacuum) and single-boson states at the input of
the QND gate, investigate the dependences of
the HOM matrix element of the bunched state
on the parameters of the gate and compare it
to the HOM element corresponding to the clas-
sical phase-random coherent cases. For classical
phase-stabilized states the bunching can be ob-
tained in part via the first-order phase-sensitive
interference between the amplitudes. It has been
shown that the classical states are capable of pro-
ducing nearly perfect visibility of two-photon in-
terference [57, 58|. To eliminate this phase effect
(which is not available to single-boson states as
not posessing a well-defined phase) we use phase
randomized coherent states to determine the clas-
sical thresholds.

2.1 Atom-Light Hong-Ou-Mandel Interference

We first examine a system comprising a pulse of
traveling light and an atomic ensemble for the
capability to demonstrate a HOM effect via a
QND coupling. This coupling can be naturally
observed in such systems as has been reported
in [59, 60]. We briefly reiterate the strategy to
achieve a QND coupling in the system and then
derive the input-output relations using which we
evaluate the output statistics of light and atoms.

The basic principle to realize the QND gate be-
tween an atomic ensemble and light is the follow-
ing [61]. A pulse of quantum signal field, accom-
panied by the classical driving, passes through
the atomic ensemble, located in the cavity with
optical decay rate k,. Both fields are the pulses
with rectangular time profiles, of duration 7. The
time profiles of the light fields can be consid-
ered as an additional degree of freedom that al-
lows to control the gain more subtly and en-
hance the overall coupling efficiency [6]. In this
manuscript, we use rectangular pulse shapes for
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simplicity. To describe the atomic subsystem
we consider the state of an ensemble of atoms
at room temperature, each having two stable
ground states. We assume a strong magnetic
driving along the Z-axis for the atomic ensemble
that allows us to apply the Holstein-Primakoff
transformation and consider normalized collec-
tive spins (XA, P A) as very long-lived canonical
atomic variables ({XA,ISA} = 2i). The phase
of the driving is chosen in a way that the effec-
tive Hamiltonian for the atom-light interaction
is fILA = thXAﬁC, where g, is the coupling
strength and p. is the canonical phase quadra-
ture of the intracavity light. The light-matter
coupling thus interfaces a single quantum mode
of atomic ensemble to a single quantum mode
of light. This marks a departure from the tradi-
tional HOM effect where the mode structure of
input photons can be complicated and directly
influence the visibility of interference. The single-
mode character of the light-matter coupling is
typical for single-rail encoding in linear-optical
quantum information processing [62]. After the
interaction with atoms, the signal leaves the
atomic cavity and at the output can be derived
using the input-output relations. At this stage we
also take into account the loss that occurs during
the coupling process.

After the interaction, the initial quadratures
(X9, PY, X0 PYHT transform to the final quadra-
tures (XQut, Pout Xout pout)T a5 follows:

sz = Xg + NXA’ (
Pt =P — G,PY + Np,, (
Xout = T, X% 4+ G, X% + Ny, , (3
lﬁout = TLIA)E —+ NPL, (

where (X(L), 158) are the canonical quadratures of
the signal light pulse. Transfer factor T, and
the excess noises N. are complex functions of the
physical parameters of the system — the gate ef-
ficiency 7, the coupling constant g,, the pulse du-
ration 7, and the decay rate of the atomic cavity
ka. The interaction gains G, and G, characterize
the coupling strength between the atomic oscilla-
tor and the light:

2T
G, = — 5
A gA /{A7 ( )
2T 1 — e FAT
G = ga mx\fnll_W] (6)

It should be noted that the pre-factors of the ad-
mixed quadratures, Xg and f’g in Egs. (3,4), are
unequal (G, # Gp). Therefore, such a transfor-
mation is, in general, not symmetrical. It is only
in the limit of a perfect efficiency n = 1 and suf-
ficiently long pulses k47 > 1 that we can charac-
terise the gate with only a single gain parameter
G. For a fixed 7k, this parameter is determined
mostly by the coupling strength g,.

Let us examine this non-ideal QND gate and
calculate the probability of detecting two ex-
citations at one output of the gate and zero
at the other (the success probability). Such
success appears already in a short-time evo-
lution of ideal QND gate applied on two
quanta. This probability equals the HOM ma-
trix element (HOM|pous|HOM), where [HOM) =
(12),10), —10),12),) /v/2. The choice of such a
definition of the HOM-state is worth explaining.
Our goal is to compare the HOM interference ob-
tained via the QND gate with the well known
HOM effect obtained via the beam-splitter. For
a beam-splitter, this HOM state definition pro-
vides the maximum of the (HOM|pout|[HOM). An-
other definition, taken with a different sign, i.e.
HOM,) = (|2}, [0}, + [0), [2),) /v/2, would lead
to the zero HOM matrix element of the output
state. Same proved to be true for the QND trans-
formation, and therefore, such an approach al-
lows us to compare the HOM effect by the beam-
splitter and the QND gate in the most appropri-
ate way.

To evaluate the bunching of the output exci-
tations and to determine whether it is caused
by a truly non-classical interference of bosons,
we define certain thresholds that correspond to
the performance of classical coherent states af-
ter the same QND interaction. We define the
output threshold as the value of this element for
two arbitrary coherent states at the output of
the gates. Such interaction-independent thresh-
old shows the maximal value of HOM element
attainable by any bipartite state with positive
Glauber-Sudarshan P-function and as such is a
fundamental boundary of nonclassicality of the
output state of the gate (for details, see Meth-
ods and Supplementary). In addition, we define
the input threshold, as the highest possible value
of the HOM element after the same interaction
for the case when both input modes were initially
in phase-randomized coherent states, as a lower
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interaction-dependent nonclassicality threshold.
In order to devise a threshold for the output
states produced from the input Fock states which
do not posess well-defined phases and hence are
incapable to exhibit the first-order interference,
we wish to have a threshold based on classical
states that are rid of the capability to exhibit
the first-order interference as well. Without this
phase randomization classical states have been
shown to exhibit a nearly-perfect visibility of
HOM interference [57, 58|. It is phase randomiza-
tion that allows to rule out the first-order interfer-
ence from the input coherent states. The thresh-
old, thereby, shows the bunching achievable by
classical states only due to the higher-order inter-
ference. We assume that the HOM interference
with nonclassical input states takes place if the
corresponding input threshold is surpassed.

Figure 2(a) demonstrates the dependence of
the HOM element at the output of the QND gate
on its coupling strength. We consider a realistic
incoherent mixture of vacuum and single-boson
states at each input port of the gate, assuming
parameter p as the fraction of the latter in the
mixture, that is, the state p = pa ® pr with
pi = pI1Y(1], + (1= p) |0)(0], for i = AL (see
Sec. 3 for details). For simplicity, we assume
equal contribution of excitations (that is, equal
p) in each subsystem. For p = 1 both atomic and
light modes are initially in a pure single-boson
state |1)|1). Single boson (polariton) states are
already achievable in the experiments for the dif-
ferent atomic systems [63-65].

For a fixed pulse duration and efficiency, the
HOM element, as a function of the coupling
strength, has a well pronounced maximum that
decreases with decreasing p. For 7k, = 100 and
n = 0.9 (i.e. parameters providing the gate per-
formance close to the best possible) the maximum
of the HOM element located at g, = 0.06k, de-
creases from 0.25 at p = 1 to 1/e? at p ~ 0.78,
which corresponds to the output threshold. At
p ~ 0.55 the HOM element already crosses the
input threshold. Note that the input threshold is
determined only by the parameters of the gate, so
p, as the parameter of the input state, does not
affect it. This threshold, shown by blue, is the
same for the entire set of p.

For the input states with high p (p > 0.8), the
HOM element surpasses the corresponding input
threshold even for a very low efficiency n = 0.1.

Thus the Hong-Ou-Mandel interference can be ob-
served for a gate of a low quality if the input
state was close to the pure one-boson state. More-
over, for the high p the HOM element satisfies a
more stringent condition and lies above even the
output threshold for a wide range of efficiencies
(up to n > 0.2) if the pulse duration and cou-
pling strength are optimized. However, for the
low p, the HOM element cannot surpass the in-
put threshold even in the case of an ideal gate
with n = 1 and both optimal 7 and g,.

The pulse duration, as an argument of the in-
teraction gains G, 1, also deserves attention. The
dependence of the HOM element on 7 for dif-
ferent p accompanied with their common input
threshold are shown on the inset of the Fig. 2(a).
These curves also have pronounced maxima, that
is, there is an optimal pulse duration for each
fixed coupling.

For this type of the gate, the longer the pulse,
the higher the HOM element we can get and the
smaller coupling is required, however for 7k, >
100 the advantage is already insignificant.

For any QND gate, the parity of the total num-
ber of excitations is preserved, and hence an odd
number of excitations at the input will never turn
into an even number at the output. Thus, if p =0
for one subsystem and p = 1 for the other (for
the light-atom gate it corresponds to |0),|1), or
|1)4|0)r, inputs), it will lead to the zero HOM ele-
ment of the output state, i.e. no HOM effect. In
case of p = 0 for both subsystems, the input state
is a pure vacuum state and the total number of
excitations is even. The HOM element of the out-
put state is non-zero, but has a maximum that is
lower but still well pronounced, so the bunching
of excitations that are created during the interac-
tion is present.

2.2 Optomechanical Hong-Ou-Mandel Interfer-
ence

It is also possible to show the effect of bunching of
optical photons and mechanical phonons in an op-
tomechanical system. Optomechanical QND gate
between an incident light pulse and the mechani-
cal oscillator can be realized using e.g. appropri-
ately modulated classical drive [66, 67]. To de-
scribe the mechanical part of the system we use
quadratures (Xy, Yy) that refer to the dimen-
sionless position and momentum of the mechani-
cal oscillator. In optomechanics, single phonons
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Figure 2: Matrix element (HOM|po,t|[HOM) of the output states of the light-atom and optomechanical gates. The
element is plotted as a function of the coupling strength for the pulse duration 76, = 100 and efficiency n = 0.9. At
the input we consider the mixture (p |1){(1] + (1 —p) |0)(0])am ® (p |1)(1] + (1 — p) |0){0]).: a) Light-atom QND
gate. Dependence on the coupling strength ga for p =1, 0.78, 0.55. A well pronounced maximum decreases with
decreasing p. The inset demonstrates the HOM element as the function of the pulse duration Tx,. b) Optomechanical
QND gate. Dependence on the coupling strength gy for p = 1, 0.78, 0.55 using two values of the rethermalization
rate each provides its own input threshold (thick for I'yy = 10~*ky and thin for I’y = 1073k, ). For both (a) and
(b), the dashed gray line is the output threshold and the blue curves of the corresponding thickness are the input

thresholds (phase randomized).

can be generated by optomechanical parametric
down-conversion [68] or swapped to the mechani-
cal mode from light [69, 70].

Let us consider coupling of the same pair of
quadratures and use the following effective lin-
earized Hamiltonian for the optomechanical in-
teraction Hyy = thXMﬁC [71], where p. is
the canonical quadrature of the intracavity light.
Same as with the atom-light interaction, the op-
tomechanical interaction is single-mode, it cou-
ples only one mode of the cavity to a single me-
chanical mode. The single-mode character of
the coupling in practice requires negligible spatial
and spectral overlap of other mechanical modes
with the interacting one. These conditions are
standardly met with exceptional precision in most
optomechanical experiments [1]. After the QND-
type interaction with the coupling strength gy,
the quadratures of light and mechanics transform
as:

Xy = X% + Ny, (7)
Y=Y - GyY’+Np,, (8)
Xout = T, X% 4+ 6,X9 + Ny, , (9)
YO =T, Y? + Np,, (10)

where canonical quadratures (X, Y0) of the sig-
nal and the transfer factors T; are defined as in
the previous subsection, while the noises N,, and

their correlation relations (characterized by the
physical parameters of the system) are different.
Their exact definitions are cumbersome and thus
are in the Supplementary Materials. Along with
the cavity linewidth xy and coupling rate gy,
other important parameters of the optomechan-
ical gate are the gate efficiency 1 and the me-
chanical damping coefficient 7y that shows how
good the mechanics is isolated from thermal bath
with average phonon number ny, (the two latter
parameters are combined in the reheating rate
'y = 'YMnth)-
with the corresponding gains in the Eq. 6 with
an evident subscript replacement A +— M. Thus,
as in the previous, atom-light case, this gate is
asymmetric, i.e. Gy # Gp, and the main role of
the gain is similarly determined by the coupling
strength gy;.

Interaction gains Gy ;, coincide

Despite very different physical nature, both
atom-light and optomechanical gates are de-
scribed by very similar equations with the only
apparent difference of the mechanical oscillator
being coupled to the environment with possibly
very high occupation. This makes the rethermal-
ization of the mechanics the critical difference be-
tween the two gates. Qualitatively, the behavior
of the HOM element with respect to the efficiency
and coupling strength is similar to the atom-light
case, so we will focus on the rethermalization rate.
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Expectedly, the rethermalization rate I'y; is the
most significant physical parameter, severely lim-
iting the value of attainable (HOM|pou:|HOM):
the lower the rethermalization rate, the higher
the HOM element. Figure 2(b) shows the depen-
dence of the HOM element and the corresponding
thresholds on the coupling strength for the two
rethermalization rates.

The rethermalization strongly affects the val-
ues of the HOM elements, but very slightly af-
fects the input threshold. To demonstrate it we
chose T'y; = 1073ky,, that is quite feasible (see,
e.g., Refs [12-14]), and compared the result with
'y = 107%ky that is attainable at the moment
in the experiment. The HOM curves differ a lot,
but not the thresholds. For the smaller values of
I'y; the plots look very similar to the case in the
previous section where there is no rethermaliza-
tion. That is, Ty = 10 %k is a type of a border
and lower rethermalization does not significantly
increase the maximum of the HOM element.

Note that, in contrast to the atom-light case,
the pulse duration has an optimal value yielding
the highest possible value of the HOM element,
e.g. for the low rethermalization rate and high
efficiency, gy = 0.06ky; for 7Ky = 100 are the op-
timal parameters to observe the Hong-Ou-Mandel
interference. The existence of this optimal pulse
length is dictated by the non-negligible reheating
rate that admixes to the mechanics thermal noise
with variance increasing with the pulse duration.

2.3 Atom-Mechanical Hong-Ou-Mandel Inter-
ference

In this subsection, following our treatment in [51]
we consider a hybrid QND gate between an
atomic ensemble and a mechanical oscillator con-
sidered in a previous subsections. Specifically, we
investigate bunching of excitations in such sys-
tem.

To establish the gate we connect the
atomic and optomechanical cavities introduced
in Sec. 2.1 and 2.2 in such a way that the light
passes them sequentially, interacting first with
atoms and then with mechanics. At the moment,
such systems have already been physically imple-
mented. For example, the works [27] and [26]
both describe the systems that theoretically allow
observing the HOM effect if the parameters are
properly coordinated. In both works, the atoms
are located in free space, which, however, does

not affect the idea, since it is important to en-
sure the interaction of the QND type that could
be done both ways, with or without the atomic
cavity. In addition, we emphasize that to observe
the effect, it is critical to ensure a low rethermal-
ization rate, therefore, the optomechanical cavity
should be appropriately cooled.

We choose the phases of the drivings in a
way that the effective Hamiltonians for the atom-
light and mechanical-light interactions are H, =
_thfD AZe and I:ILM = ﬁgMXMﬁC, correspond-
ingly. Afterward the X quadrature of the pulse
is homodyned and the output of the detection is
used to displace the atoms in the phase space.
The choice of different types of Hamiltonians
for the atomic-light and optomechanical parts
of the scheme is dictated by the goal to couple
the P,-quadrature of the atomic part with the
Xu-quadrature of the mechanics, that is, to pro-
vide an effective Hamiltonian H « Xy P,. For
the hybrid atom-mechanical gate, we also con-
sider squeezing of the mediating light as a re-
source since for a QND coupling matter with light,
squeezing can effectively enhance the interaction
gain [72, 73| which, in the gate, might enhance
the HOM effect. Strictly speaking, the squeez-
ing could be beneficial also for the gates consid-
ered earlier, but for those cases the advantage
is small, while for an atom-mechanical gate it is
more noticeable. Additionally, squeezing the in-
put state for a HOM-like interferometry would
cause an unwanted emphasis shift to the input
state preparation which does not translate to the
atom-mechanical case where squeezing of input
state is dramatically more challenging. Let us
emphasize once again the important difference of
this gate from those considered earlier — here,
the light is only a mediator coupling two systems,
it does not serve as a signal as it was for the atom-
light and optomechanical ones.

The built QND gate relates the quantum
state of the atoms and mechanics after the
interactions with their initial states and the
noises and transforms the initial quadratures
ri? = (X9, PY X9 PY)T to the final quadratures

out — .. __ T .
r =r = (anpAavapM> as:

za =X =%,X? - 6,X% + Ny,,
Ty = X&ut = SMX& + NXM,

Pa = lsiut = ‘IA]?)Q + NPA,

pu =P =%, PY + 6P + Np,,,
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where the controllable gains &, \;, the transfer
factors T, \; and the excess noises N. are compli-
cated functions of the interaction, loss and noise
parameters of the system (see Supplementary for
the full definitions). For the atom-mechanical
gate it is experimentally well justified to put
Ta = Ty = 1. The system has several parameters
affecting the process: the pulse duration 7, the
coupling strengths g, and gy, the initial squeez-
ing of the mediator pulse S, the energy loss 7,
the optical damping rates x, and ky of the cav-
ities (for simplicity here we take kK, = Ky = K,
but the difference can, in principle, serve as an
additional degree of freedom), and the rethermal-
ization rate I'y;. The feedforward procedure is
carried out in a way that ensures &, = &, i.e.
this gate is symmetric unlike the atom-light and
mechanical-light cases:

2 2
TV e~ 2 (1

—KT
KT )

S = guga
(15)
Note again that this interaction, same as the
atom-optical and optomechanical, is a single-
mode interaction that addresses only one atomic
and one mechanical mode. The input states to
our HOM analogue are thus purely single-mode
bosons attenuated by vacuum, in contrast to
the usual multimode (spectrally, temporally etc.)
character of the input states of optical HOM ex-
periments.

Let us calculate the matrix element
(HOM|pout|[HOM) for the output state of
the atom-mechanical QND gate assuming

single-boson states at each subsystem’s input
(single-polariton for the atomic subsystem and
single-phonon for the mechanics). The gain &
is defined by the pulse duration 7 and by the
product of the coupling strengths of the light-
atom ¢, and optomechanical ¢, interactions.
Figure 3(a) demonstrates the dependence of the
HOM elements and the corresponding input
coherent thresholds on the value of the coupling
rate for the different p, assuming equal coupling
ga = gu = ¢ for atoms and mechanics. The
gate parameters were chosen close to the optimal
ones, i.e. providing the highest possible value of
the HOM element, so the picture is similar to
the previously considered gates. However if the
efficiency is too low, the HOM element cannot
surpass the input threshold even for p = 1 in
contrast to the atom-light and mechanical-light

gates.

The main part of the Fig. 3(b) demonstrates
the dependence of the HOM element on the pulse
duration for the fixed S and g and the inset shows
the dependence of this element on the coupling
for the fixed S and 7. These figures demonstrate
that, similarly to the previously considered gates,
to obtain the highest possible value of the HOM
element one has to find the optimal values of
both g and 7. Note that squeezing S itself is
a parameter that has the optimal value, but op-
timal squeezing is not very high regardless of all
other parameters, and does not exceed 10dB. For
S = 7dB, high efficiency and low rethermalization
the optimum is provided by 7k =~ 90, g =~ 0.07x.

There is a monotonic dependence on the two re-
maining parameters, efficiency 1 and the reheat-
ing rate I'y;,. Maximum of the HOM element is
delivered by highest efficiency and lowest reheat-
ing rate. There is always a threshold value for the
rethermalization T'y;, that is for I'y/k > 0.01 no
effect can be observed even with perfect other pa-
rameters like n = 1 (no optical losses) and p = 1
(ideally prepared initial state). Threshold for n
strongly depends on the values of the other pa-
rameters.

3 Methods

In this paper we investigate the possibility of
observing an analogue of the HOM effect using
a quantum nondemolition (QND) gate by eval-
uating the HOM matrix element of the corre-
sponding output quantum state. We compare
the performance of the gate with the one of a
beam-splitter. In our scheme, the input single
bosons (phonons and polaritons) are excitations
of strictly single-mode quantum oscillators ulnike
multimode photons in the usual optical HOM ex-
periment. Therefore, our main focus is on the
comparison of these two quantum maps (QND
and beam-splitter). In this section we elaborate
on the definitions and the methods we use to per-
form the necessary computations.

A beam-splitter (BS) transforma-
tion, defined by the wunitary operator
Ugs = exp {@ (aTb - bTa)], describes an

evolution of two quantum oscillators with
annihilation operators, respectively, a and b.
The only parameter of this transformation is
the transmittance coefficient T = cos?2©. A
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Figure 3: Matrix element (HOM|pout|HOM) of the output state for the non-adiabatic atom-mechanical QND gate
with the mixture (p [1)(1| + (1 — p) |0){0))a ® (p |1){1]| + (1 — p) |0)(0])m at the input. a) dependence on coupling
strength for the different p = 1, 0.93, 0.67, 0.63. b) dependence on pulse duration for the different g (thickness
indicates the coupling strength — the thickest for g = 0.045k, the middle one for ¢ = 0.07x and the thinnest for
g = 0.15k). The inset demonstrates dependence on coupling strength for the different pulse duration (thickness
indicates the pulse duration — the thickest for 7 = 200, the middle one for 7 = 90 and the thinnest for 7 = 20).

For both (a) and (b), km = ka =k, ga=9gu =g, n=0.9, S = 7dB.

QND gate, defined by the unitary operator
Us = exp [G(a +af)(bF — b)/2}, describes an-
other type of evolution of the two oscillators.
The gain G is the only parameter characterizing
the ideal QND gate transformation.

There is a significant difference between these
two transformations.
passive (energy conserving), if initially there is ex-
actly one excitation in each of the oscillators, at
the output of a BS they can appear bunched in
a single mode via the Hong-Ou-Mandel (HOM)
effect. To have only one excitation in a single
mode is insufficient to observe bunching because
of preservation of the total energy. Unlike BS,
the QND transformation is active, which means
it is capable of changing the total number of exci-
tations in the system (the energy of the system).
Despite the QND interaction can generate new
quanta, it is still possible to analyze whether the
QND interaction is capable of generating the non-
classical two-quanta superpositions going beyond
any classical states serving as input to the QND
interaction. However, such analysis requires a
general approach to the HOM interference be-
yond the simple case with the passive BS inter-
action. The first step to extend HOM effect to
active interaction has been presented in [74].

In our generalized description, the matrix ele-
ment of the quantum state that equals the suc-
cess probability of detecting two-photon HOM
entangled states (the HOM element) at the out-

The BS transformation is

put of the unitary transformation U, can be in-
troduced as [{(HOM|U|@)in|?, where |¢)i, is the
initial state [75]. Here, the HOM state is defined
as [HOM) = (|0), [2),, — |2),10)},) /2. It is well
known that a BS provides an ideal photon bunch-
ing (the HOM effect). This means that the suc-
cess probability |(HOM|Ugs|e)in|? at the output
of the BS equals one. This effect occurs when two
identical quanta enter a balanced beam-splitter
(T =0.5), one in each input port (the input state
[P)in = [L)al1)b).

In order to compare the two transformations
in the context of the HOM effect, let us look at
the matrix elements of the output state of each
of the transformations. For simplicity, first let us
restrict the input |p)i, to the space of coherent
superpositions of vacuum and one excitation of
each mode, that is an arbitrary pure superposi-
tion of [1)a|1)1, [0)all)b, |1)al0)p and |0),|0)y, (for
the case of full infinite space see Supplementary
Materials). Then, to obtain the desired matrix
element we need:

(HOM| Ugs = —sin (20) (1].(1]p, (16)
4G(8 — G?
2G?
+ W (0]a{O[p,. (17)

It clearly shows that the HOM matrix element
provided by the inputs |0),|1)p and |1),|0)y, is
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equal to zero for both BS and QND transforma-
tions. The matrix element provided by |0),|0)1, in-
put is equal to zero in the case of a beam-splitter.
However, for the QND gate this element is a func-
tion of the gain G and equals zero only in the
trivial case with G = 0. That is, by varying the
gain of the QND gate, it is impossible to make
the contribution of the input vacua |0),]0)p van-
ish, in order to render these two transformations
fully analogous. The active transformation can
therefore generate a non-zero HOM element even
from two ground (vacuum) states.

For the case of a QND gate with |1),]|1)p at the
input, one can observe that for a certain region of
the parameter G, the probability of bunching of
both excitations in one subsystem is higher than
the probability of equal redistribution of the ex-
citations between the subsystems. Visually, it is
characterized by the presence of the maximum of
(HOM|pout |[HOM) (see Fig. 4(b)) approximately
equal to 0.26 for G ~ 0.87 (as compared to 1 for
the BS with © = w/4). However, we should keep
in mind that this correspondence to the case of a
BS is not complete due to the non-zero contribu-
tion from the vacuum input that is non-zero for
the case of the QND gate but does not exist in
the case of a BS.

To overcome the
between the classical
classical bunching, we define two nonclassical-
ity thresholds by evaluating the maximum of
(HOM|pout|[HOM) over (i) all superpositions of
coherent states at the output of the QND in-
teraction: pout = P = |a)a|B)n{la(Bl, and
(i) all superpositions of coherent states, phase
averaged, before the QND interaction: poue =
ﬁ IS dcpadgobU(;pCOhUé. Here we use the nota-
tion @ = |ale*?* and B = |B|e***. For the BS
interaction, the two thresholds coincide.

To obtain the first threshold let us take two
random coherent states derived in the Fock basis:

o)=Y an%, (18)
n=0 :

issue of discriminating
interference and non-

18) = F > 57”%. (19)
m=0 :

The HOM element corresponding to this state is
the following:

1

(20)

hout = |<HOM|a>a|5>b‘2 =

It can be shown that [{(HOM|a),|8)p|? < 1/€? on
any coherent states, that is for any complex «
and B. This allows to prove that if the output
state pout is classical, i.e. is a mixture of coherent
states, then 0 < (HOM|pout[HOM) < 1/e? (see
Supplementary). Thus, 1/e? is the output thresh-
old for the HOM interference. That is, when mea-
suring the HOM element, a value greater than
1/€? indicates the nonclassicality of the output
state, as no classical state (no mixture of coherent
states) is capable of providing such value. This
threshold is shown by a thin gray dashed line in
the Fig. 4(a).

To derive the input threshold, let us use two ar-
bitrary coherent states as the input states of the
gate and calculate the maximal possible HOM
element for the output state p<o = ngCOhUé.
Bunching of the excitations (maximum of the
HOM element) can be provided not only by the
second-order interference (the non-classical effect
we are interested in) but also by the classical first-
order interference |76, 77|. To avoid the input
of the first-order interference we assume phase-
randomized coherent input state which practi-
cally means averaging over the phases of the in-
put coherent states. This allows us to eliminate
the interference enabled by the degree of freedom
(phases), which only the coherent states have in
contrast to the pure [1),|1)1,. After the threshold
is derived using the phase-randomized states, it
indicates the bunching of excitations due to only
the second-order interference, the only one avail-
able to the Fock states, so that the comparison is
more adequate. Thus the input threshold for the
ideal gate is as follows:

1
hin = —5 max / dpa doy, (21)

72 Ta,Th

. . 2
X |(HOMUg|rae™#* alre# )y,

The dependence of the (HOM|pS[HOM) on the
gain G for all the coherent states (see Fig. 4(b))
is illustrated by the area restricted by an wnput
threshold (blue curve) that has a specific complex
shape (explained in Supplementary).

In order to evaluate the robustness of the QND
gate against photon loss, let us examine an in-
coherent mixture of vacuum and single-photon
states at each input port of the gate. At this
point, the HOM effect is additionally influenced
by the statistics of quantum states at the inputs.
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Thus, we consider the following input state

Pl =(pa 111+ (1= pa) [0)(0])

® (oo 111+ (L =) 0)(0]) . (22)

where the parameters p, 1, characterize how much
vacuum has been admixed to the single-photon
state at the corresponding input ports, and calcu-
late matrix elements for the output state of the
gate. Using Eq. (17), we can obtain the HOM
matrix element of the output state of the gate
A2y = Vo

16G?(G? — 8)?

(4+G2)>

4
+(1= )1~ Py g

(HOM |} [HOM) = papy,
(23)

This matrix element is symmetrical with re-
spect to p, and pp. Surprisingly, the indepen-
dent coherent superpositions [¢);, = (\/pa |1) +
VT2 10))a (yF5 [1)+ I =1 [0))y at the in-
put give rise to exactly the same matrix element
Eq. (23) as does the mixture Eq. (22).

Figure 4(b) demonstrates (HOM]|pout|/HOM)
depending on the gain, assuming p, = p, = p,
compared with the case of the pure input |[1),]1)p,.
Expectedly, as the parameter p decreases, the con-
tribution from |1),|1)1, term decreases, while the
contribution from |0),]0)p term increases. Visu-
ally, it is reflected in the gradual change of the
curves’ shape — for relatively high p, the maxi-
mum first decreases, then smoothly shifts to the
right. Thus, the maximum of the HOM element
decreases from 0.26 at p = 1 to 1/e? at p ~ 0.7,
which corresponds to the output threshold. At
p ~ 0.48 it already crosses the input threshold,
so for lower values of p the HOM element lies be-
low the input threshold at the gain G ~ 0.87. For
p < 0.40 the HOM element lies below the input
threshold for any gain.

In order to calculate the matrix elements for
an ideal (without additional noise) transforma-
tion, it is enough to know the form of the unitary
transformation Ug. Thus the matrix element of
the output can be calculated as:

(HOM | pous[HOM) = [(HOM|Ug|¢)in|* =
2

= (HOM\U(;Z\n}(n|a|m><mlb\@>in , (24)

n,m

This approach is convenient to use for calcula-
tion of the ME when the input state has an ap-
propriate representation in the Fock-state basis
|n)alm)y,. We used this approach to obtain the
output threshold and the HOM elements for the
case of an ideal gate.

In the general case of a Gaussian transforma-
tion including noises it can be convenient to take
a different approach described below. We can use
the Wigner function (WF) of the output state and
define the matrix elements (1|pout|p) of the out-
put state as:

Wlooucle) = (4m)? [[[ ] de Wigyga1() - Woelr),

(25)
where Wy (r) is the WF of the output state, and
Wiy (w|(r) is the WE corresponding to the oper-
ator |p)(¥]. Woyt is a function of the column-
vector of quadratures r = (a:a,pa,xb,pb)T. For
the two mode case, the WF corresponding to the
operator &, is defined as follows:

1 —1(pay:
Wf(r) = (471_)2/ dyadyb e (payd'f‘pbyb)/Q

Ya Yb Ya Yb
x (ot Ll + Llefea — Lyl - 2. (26)
Thus, the WEF of the

[HOM) (HOM] is the following:

HOM projector

Wiou(r) = 757 € 2

X ((pa +pb)2 + (ZUa + :L’b)2 — 2)
X ((pa —pb)2 + (T2 — )2 = 2).  (27)

Xp(_pz+p%+w§+x%>

Both described approaches are identical and,
being applied to any ideal transformations, they
give the same results. However, for the non-ideal
gate we can apply only the WF-based one since
we have to take to account the noises. Moreover,
to obtain the WF of the output state in the case
of a non-ideal gate, we have to use the language
of the covariance matrices. An arbitrary Gaus-
sian transformation maps the quadratures of the
oscillators as [78, 79:

ro% = Ter'™ + v, where for a QND gate

1 0 G O
0 1 0 0
0 -G 0 1
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haracterized by two-mode homodyne tomography [75]. b)

(HOM|pout|HOM) matrix element of the output state for the ideal QND gate as a function of the gain G calculated
for the different cases of the input: quantum input |1),]|1)p (solid black curves), mixture input Eq. (22) (dashed
black curves, dashing scale indicates parameter p). Dashed gray line is the output threshold. Blue curve is the input
thresholds (phase randomized) restricting area that covers all the possible values of the matrix elements of the output
state of the gate in the case of the random coherent input with averaged phases.

and Y is a vector of the quadratures of the added
noise. The covariance matrices are transformed
according to

Vour = T6VinT¢ + VN, where

1 (] ° ° (] (] °
[Velij = 5{r®ir®; +120%) — (%) (%) (29)
(e = in,out,N).

This approach works the best with the Gaussian
states, for which the WF can be written as

exp (—%(r ~R)TV(r - R))
472/ detV
(30)

where R = (X,, Ya, Xy, Yb)T is the column-vector
of means and V is the covariance matrix. Us-
ing an approximation [79] to represent a single-
photon state as a combination of vacuum and
a thermal state, we are able to use the Wigner-
function based approach for non-Gaussian states
such as |1). We used this approach to calcu-
late the HOM elements and the input thresh-
olds for the atom-light, optomechanical and atom-
mechanical gates.

To calculate the input threshold for the non-
ideal gate let us take two random coherent states
as the inputs of the QND gate (for two coherent

wW({V,r,R) =

)

states, Vin = lyx4, a 4 X 4 identity matrix):

I/I/vin(r7 R) — W(‘/Outy r, R)7
Wout(ra R) G) = W(Vznlt’n r, TGR)

(31)
(32)

Using Eqs. (25) and (27) we can obtain the HOM
element (HOM|ph[HOM) = Myom (R, G) as a
function of G and R. We can obtain the input
threshold (phase randomized) as a function of G:

1
hin = II?E?I%D 477T2/ dQDa d@b MHOM(RaG) 5
(33)
where
R = (Xa,Ya, X1, 1)1 = (34)

= (Ra cos[pal, Ra sin[ga], Ry, cos[ep], Ry sinfep])”

that can be used in the case of a non-ideal QND
gate. In our work, we investigated three types
of non-ideal gates, for each of which we used the
mixed state Eq. (22) as the input. Note that the
output threshold is fixed, but the position of the
input threshold strongly depends on the physical
parameters of the gate.
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4 Discussion and Conclusion

We have proposed and investigated an analogue
of the celebrated Hong-Ou-Mandel bunching ef-
fect of single quanta excitations in a light-atom,
an optomechanical and finally, a hybrid opto-
atom-mechanical system. In the paradigmatic
configuration of the HOM experiment, two in-
distinguishable photons arrive simultaneously at
two input channels of a beamsplitter, and both
leave it together through one output port. In
order for the perfect coincidences at the output
to take place, the incident photons have to be
perfectly indistinguishable in all possible degrees
of freedom. This includes their spatio-temporal
modes including arrival times, spectral and po-
larization modes etc. In a realistic case, there
is always a distinguishability parameter, such as
a delay between the arrival times (the temporal
mode mismatch), which allows two photons to
emerge in different output channels. The HOM
effect is then directly witnessed by measuring
the coincidences of photon counts between the
output channels, which ideally vanishes at zero
distinguishability (e.g., zero delay) thus leading
to the famous HOM-dip. The key properties of
the optical HOM experiment are thus (i) the in-
put states of the photons including their spatio-
temporal, frequency and polarization modes, (ii)
the input-output transformation, which is typi-
cally a symmetric beamsplitter, and (iii) the co-
incidence counting which serves the purpose of
verification.

In contrast with the conventional HOM effect,
we use a quantum non-demolition gate between
the participating oscillators instead of the tradi-
tional beamsplitter. This allows to consider anal-
ogy between the transmittance of the latter and
the gain & of the QND interaction, as well as
all the parameters that influence the gain (light-
matter coupling rates, mediating pulse duration
and squeezing). In our setting, we consider a re-
alistic picture of the input states, where each in-
put quantum oscillator (optical, atomic and me-
chanical) is described by a single quantum mode.
The single-mode picture of the matter modes is
nevertheless fully feasible and is capable of per-
fectly accurate description of state-of-the-art ex-
periments [1, 80]. The single-mode picture rids us
of the complications associated with multimode
character of light field but allows to capture the
crucial non-classical character of the excitations

bunching. Finally, while the conventional HOM
allows a direct observation by the coincidence
counting, in our system, the matter subsystems
(atoms and mechanics) cannot be addressed di-
rectly. Hence in a real experiment light should be
used to perform the two-mode tomography [81-
84]. As an example, it is possible to use a red-
detuned drive of the optomechanical cavity on
the lower mechanical sideband. Such driving en-
ables a state swap between the mechanics and
the leaking light [1, 69, 85] whose subsequent to-
mography allows to infer the initial mechanical
state. A QND coupling can be used in place of
a beam-splitter in order to perform the tomog-
raphy one quadrature at a time [67, 86]. In the
atomic subsystem, the spin waves can be read
out with high efficiency using a quantum memory
protocols based on counter-propagating quantum
signal wave and strong classical reference wave
through the atomic matter [4, 87, 88|.

Our main finding is that the atomic-mechanical
HOM effect via realistic QND interaction with
light reveals two-boson interference beyond the
classical states. In order to prove the non-
classical character quanta bunching, we devise
coherent-state-based thresholds for the output bi-
partite quantum state. The output threshold,
computed as the maximal HOM element achiev-
able by two coherent states at the output, marks
the HOM elements attainable by the classical
states irrespectively to the interaction. The in-
put threshold, equal to the maximal HOM ele-
ment possible to obtain at the output given two
phase-randomized coherent states at the output,
shows the bunching enabled by the interference
of intensity of classical sources for the same in-
teraction. We prove that both thresholds can be
overcome with feasible parameters of opto-atom-
mechanical systems.

We found out that in the scheme, which can
be controlled by the set of coupling rates, the me-
diator pulse duration, and squeezing, there are
optimal values of each of these parameters to ob-
serve the HOM bunching. These optimal control
parameters are influenced by the value of the op-
tical loss in the system and the heating rate due
to the coupling of the mechanics to its environ-
ment. Importantly, we have shown that the op-
timal parameters are either within the values im-
plemented in the already reported experiments or
within the reach. For the choice of numerical pa-
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rameters, we were inspired by Refs [26, 27]. It
should be noted that for the HOM effect the im-
portant are not the absolute values of the param-
eters of the gate (with the exception of optical
losses and thermal noises, which the smaller the
better), but the relations between them.

For the atom-light gate the only requirement
to observe the HOM effect is to provide a strong
QND interaction between a collective atomic spin
and light [61]. Atoms, usually a cloud of alkali
metals as Rb or Ce with 107 — 10! units, can be
either cooled, or taken at the room temperature.
They can be placed into the cavity, but there is
no need (if a cavity is used — adiabatic regime
is preferable). The coupling strength g, obtained
in the experiments usually is about hundreds of
Hz and can be varied by the number of atoms in
a cloud or photons in the pump [59, 60, 89]. For
the HOM effect the important ratio is the pulse
duration multiplied by the coupling strength. To
maximize the HOM effect it should be g,7 ~ 0.87
for the free space case (and g 7 ~ 5 with g, ~
0.05k, if cavity is used), which allows to use of a
wide range of the pulse durations.

To obtain the HOM effect for the optomechan-
ical gate one has to provide a QND interaction
between a mechanical oscillator and light with a
sufficient coupling strength g,,. Normally gy is
about tenths of the optical decay rate ry [90]
that is enough to achieve the result. The HOM
effect occurs when the interaction is in the adia-
batic regime. Similar to the atom-light gate the
maximum of the HOM element is provided at the
ratio gy7T ~ 5 with gy =~ 0.05k,. For this type
of the gate it is extremely important to cool the
mechanics since the thermal noises can totally de-
stroy the effect. For the rethermalization rate
Cy/ku > 1072 the effect vanishes. In recent ex-
periments it is already possible to decrease this
value up to the 'y = 1074k, [12, 14] that for the
HOM effect can be considered as an ideal cooling
since a lower rethermalization would not give a
noticeable advantage.

The atom-mechanical gate combines recom-
mendations for the both previous gates. In this
work, we assumed the atomic ensemble be placed
in a cavity of the same optical decay rate as for
the optomechanical cavity and investigated the
situation when the coupling constants are equal.
Both these assumptions are not necessary to ob-
serve the effect.

It is required to ensure that the light that has
interacted with the atomic subsystem completely
enters the optomechanical cavity (to increase the
efficiency of the gate), but even strong optical
losses still do not lead to the complete disappear-
ance of the maximum of the HOM element. This
means for this effect (evaluated by the input co-
herent threshold) problems associated with dis-
tortion of the temporal profile of the pulse during
the interactions are not so significant. Moreover,
the effective value of the loss can be decreased by
a proper engineering of the driving field temporal
shapes [91]. In addition, the overall gain of the
interaction can be slightly increased by perform-
ing an optimal mode-matching of the homodyne
local oscillator to the light that leaks from the op-
tomechanical cavity. If atoms are in a free space
the time durations of about 1ms that are usually
used are suitable. For the cavity configuration
with the same parameters for the both parts of
the scheme (assumed in our work) we need to be
careful with the optical decay rate. We need to de-
crease the pulse duration from 1ms to 7 = 0.14ms
(it is possible, still much higher than the atom
transient time and the oscillator period), keeping
the coupling constant as g, = 27w x 7kHz [59].
According to [90] for the optomechanical part
Ky ~ 21 X 100kHz (1K) = 90 for 7 = 0.14ms),
while the coupling strength is still about tenths of
the optical decay rate. Thus, relations 7x = 90
providing g = gu = 0.07k are experimentally
achievable, but it is better to keep atoms in a
free space and do not chase to make two sub-
systems identical. Recent experiments [26, 27|
demonstrate the possibility to obtain the gate be-
tween mechanical and a spin oscillators with the
achievable coupling of the order 1 — 10kHz.

The atom-mechanical gate is symmetric. For
this type of the gate it is possible to increase the
value of the maximum of the HOM element, i.e.
improve the visibility of the HOM effect, by us-
ing a squeezed pulse as a light mediator. Squeez-
ing should be optimized in accordance with other
gate parameters, but anyway it should not be
strong: 5 — 7dB is good enough, strong squeez-
ing would destroy the effect.

Thus, we can safely say that at the moment
the physical capabilities of the experiment allow
observing the HOM effect for all three types of
gates. The bunching of phonons and polaritons
whose success depends on the experimental pa-
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rameters, can be used for a quantum-enhanced es-
timation of coupling between atoms and mechan-
ics in systems like reported in |26, 27]. Multiplex-
ing of the matter systems can potentally address
dual-rail encoding in the output light and allow
generation of polarization-entangled light states.
Besides this interesting perspectives, a HOM-like
experiment in the spirit of proposed here will be
advanced test of the hybrid pulsed gates open-
ing joint experiments with non-Gaussian states of
atoms and mechanical oscillators and, in future,
nonlinear hybrid gates using atomic and mechan-
ical nonlinearities.
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current study are available from the correspond-
ing author on reasonable request.
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A Model of the atomic-opto-mechanical gate

In this section we derive the input-output relations that characterize the atom-optical, opto-mechanical
and atom-mechanical interactions which take place in our proposed setup.

The schematic diagram of the setup that allows realization of the gate is shown in the Fig. 5. Note
that such an atomic-mechanical gate consists of two parts, which in turn are the QND gates coupling
the optical mode with the atomic (for the atom-light gate) or mechanical (for the optomechanical gate)
modes. Let us describe the model of each in detail.

atom-light gate optomechanical gate
(b ) C i Gt) 2 (it
Zin, Pin N /\ 'Eout;i)out energy 5 Lin; Pin (»Lm:c;jl)om) R @
el @ g loss @ g .
—_ 3 _—
pumpi N pumpi N
X r4
A w
(e, ) . ﬁ—'
magnetic . ..
field - | -
(XA7PA> XM,PM)
=] T
e
atomic ensemble /g optomechanical
in a cavity cavity

feedforward

Figure 5: QND gate between an atomic ensemble and a mechanical oscillator: a quantum light pulse with a rectangular
temporal profile first passes the atomic ensemble in a cavity and then the optomechanical cavity via circulators
Cy 2 and then goes to the homodyne detector (HD). Within the cavities the optical pulse is coupled to atoms and
mechanics respectively via QND interactions enabled by strong classical pumps. The homodyne detection data are
used to control the optical feedforward procedure after the detection to shift the atomic quadratures. Canonical
variables (Xa, Pa), (Xu, Pu), (Zc,pc), and (2, p.) are the quadratures of the collective atomic spin, mechanical
oscillator and intracavity modes respectively; non-canonical variables (Zin, Pin), (Zout, Pout), (&4, Ply) and (&4 ,e, Doye)
are the quadratures of the light field outside the cavities in free space at the corresponding parts of the scheme. The
homodyne measurement and magnetic feedforward control via magnetic field phase shifter are optimized to perform
the QND interaction and the squeezed light is used to achieve large entangling power.

A.1 Atom-light QND gate

A quantum pulse in a free space, described by the quadratures (Zin(t), pin(t)), enters the cavity (See
Fig. 1, the atom-light gate part) that contains a cloud of alkali-metal atoms. To describe the atomic
subsystem we consider the state of an ensemble of atoms at room temperature, each having two

Accepted in { Yuantum 2022-03-23, click title to verify. Published under CC-BY 4.0. 20


https://doi.org/10.1103/PhysRevLett.120.013601
https://doi.org/10.1103/PhysRevLett.120.013601
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1134/S0030400X15120152
https://doi.org/10.1134/S0030400X15120152
https://doi.org/10.1134/S0030400X15120152

stable ground states. We assume a strong magnetic driving along the Z-axis for the atomic ensem-
ble that allows us to apply the Holstein-Primakoff transformation and consider normalized collective
spins (X A, PA) as very long-lived canonical atomic variables. Duration of the initial pulse is 7. Optical
damping rate of the cavity is k.. The pulse is accompamed by the strong classical driving that ensures
the QND type interaction with the Hamiltonian Hip = thX APc. For the atomic part the coupling
constant is the following [61]: gy = 3T0+/Npnv/Nat/(27AA), where I' — total spontaneous decay rate
of the upper state, o — resonant photon absorption cross section (¢ = A\?/27), 7 — pulse duration, A —
the Raman detuning, A — the beam cross section, Ny, Nae — number of photons in the driving pulse
and the number of atoms in the atomic ensemble.

The intra cavity field described by the canonical quadratures (Z., p.) evolves in accordance with this
Hamiltonian. After the interaction field leaves the cavity, the field at the cavity output is described by
the quadrature pair (Zout(t), Pout(t)). Now the light and atoms are coupled. At this stage we take the
losses into account so we introduce final field (Zgetect (t), Ddetect (t)) that is the (Zout(t), Pout (t))-field but
with the admixed vacuum. We have to keep in mind that losses are presented at any stage of the gate,
so the losses characterized by a single parameter 7 (efficiency of the gate) are effective and describe all
possible losses in the system. We introduce the canonical quadratures for the initial and final states of
the light pulse as (X9, ¥Y9) and (X°U, Y°U) as the spectra at the zero frequency (formal definition is
in Eqns. (38,39) below). Thus, the atom-light gate transforms the initial vector (X, (0), P,(0), X%, Y?)
to the final vector (X, (7), Py(7), XOu, Yout),

Mathematically, the whole process is as follows. The Heisenberg-Langevin equations set is:

%Uc(t) = _KvA-ﬁc(t) + \/mi'in(t) + gAXA(t)a
ﬁC(t) = _’QAﬁc(t) + \/mAin(t)’ (35)
Xa(t) =0,
Py(t) = —gape(t).
The solution of the set is:
Xa(t) = X4 (0)
Pa) = PA0)— /25 61+ ) (0090 1) o -0l

= VZra (e i (1)) 4 Xa (00O (1) + dc(0) ! IR
= V25,4 (e ‘”At*pm( ) + Pe(0)e A

Here, the *-symbol is a convolution, i.e. f(t) fO g(thdt'.
We use the input-output relations to obtam the field at the cav1ty output (outside the cavity) and
take the optical losses into account:

{ i’detect (t) = \/ﬁ :i‘out (t) =+ 4/ 1-— n i‘vac (t) where { fi‘out (t) - 2"{nli'c (t) - jin (t) (37)
ﬁdetect(t) = \Mﬁout(t) + \% 1- n ﬁvac(t) ’ ﬁout (t) 2"’fmﬁc(t) - pin(t)
We introduce the canonical variables for the initial and final light pulses as:
R 1 T R 1 T
X)=— [ &w(t)dt, Y= — / Pin(t)dt, (38)
VT Jo

) - ) 1T
XUt — \ﬁ/(] wdetect(t)dt, YU = ﬁ/o pdetect(t)dt' (39)

A

Thus , we obtain the following atom-light gate (X,(0) = X%, P,(0) = Y9, X, (1) = X4, Pa(7) = Y, ):

X, = Xg + NXA? Xout = TLXE + GLX& + NXL’ (40)
YA = Yg — GAY-g + NPA7 Yout = TLYE + NPL) (41)
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transforming the initial vector (X2, Y9, X9 Y9 to the final vector (X4, Y4, XU YOut)  Here, the
gains G, 1, transfer factors T, and noises Nx, ; p, , are:

2 2 —KAT
= gay| = gay| — % [ - ] , (42)
KA Ka RAT

T, =yn(L—1) (43)

N

. R V2n(1 — e A7) o
NXL =V 1- 1 Xyac + \/m ﬂZC(O) + \/77 LLlXUfI’ (46)

. V21— e™"AT) ¢
NPL =1 —17Dvac + \/m pc(o) + \/ﬁ LLlYOfl' (47)

We use the following canonical variables

Yor, = / dte= 2T Dp (1), (48)

Yor, = L1/o dt <f1|f ) _ \%) Din(t), Xop, = Lll/OT dt (f1|ft) \%) Tin(t),  (49)

with the following correlation relations (all other unspecified combinations correlate to zero)

(YOX?) = (Yor, Yora) = (Yor, Yor,) = (XPXP) = (Xog, Xor,) = 1, (50)
. . K PN PN K PN K
(Yora Yo) = 1oy (Yor, ¥9) = (Ko, X0) = T2, (Yor, You,) = (51)
K, Ly L1Ky
where the constants are determined as follows:
Ky = /T dt (e-raG—0)?, L= /T f2(dt, L= /T dt (fl(t) - 1>2
Vo ’ S\ ’ Vo L VT
2(1 — —ka(T—t)
where fi(t) = (1-e ) (52)

NG )
_ \};[JT dte "D Ky — \%/OT 0 <f1|ft) B \/17_)’ Ke, = /OT J— (fllft) B \/17—)

A.2 Optomechanical QND gate

A1

A quantum pulse described by the quadratures (&1, (t), pl,(¢)) enters the optomechanical cavity (See
Fig. 1, the optomechanical gate part). To describe the mechanical part of the system we use quadratures
(X' M ]5M) that refer to the dimensionless position and momentum of the mechanical oscillator. Duration
of the initial pulse is 7. Optical damping rate of the cavity is Ky, the rethermalization rate is I'y;. The
pulse is accompanied by the strong classical driving that ensures the QND type interaction with the
Hamiltonian H;, = th)A(Mﬁ’C. The intra cavity field described by the canonical quadratures (27, p.)
evolves in accordance with the Hamiltonian. After the interaction field leaves the cavity, the field at
the cavity output is described by the quadrature pair (21 (t), P (t)). Now the light and mechanics
are coupled (and we can evaluate the HOM-element). At this stage we take the losses into account
so we introduce final field (&), (£), Phetect (t)) that is the (2], (t), Dby (t))-field but with the admixed
vacuum. We have to keep in mind that losses are presented at any stage of the gate, so the losses
characterized by a single parameter 7 (efficiency of the gate) are effective and describe all possible losses

Accepted in { Yuantum 2022-03-23, click title to verify. Published under CC-BY 4.0. 22



in the system. We introduce the canonical quadratures for the initial and final light pulses as (Xg, YE)
and (X/°U Y’°Ut) a5 the spectra at the zero frequency. Thus, the optomechanical gate transforms the
initial vector (X (0), Py (0), X%, YY) to the final vector (Xy(7), Py(T), X0t Y’out),
Mathematically, the whole process is as follows. The Heisenberg-Langevin equations are:
i‘é(t) — _ffl\{i'lc(t) + vV QHMi'{n(t) + glVIXI\/I(t)7
ﬁf:(t) = —hnpe(t) + v26uPi, (1),
Pu(t) = Cpy — g (t)-
where EXM Py are the operators for the mechanical noises with the following correlation relations
(CxtarPaa (D CxanPar () = a(2nen + 1)8(t — ') & 208 (t — /). The solution of the set is:

Xu(t) = /72Ty M 4 X4 (0)
Pu(t) = /12Ty cPM + PM(

(53)

V2%t (O () Py (1)) — PL(0)Orey (1)

) M
F(t) = V2 (e 5 20, (1)) + ( u*&wU+XmmmMo+@@gwtv (54)
PLE) = V2w (7" wm» _
G),%M (t) = 9m ! :I;HM

We use the input-output relations to obtain the field at the cavity output (outside the cavity) and
take the optical losses into account:

{ jéletect (t) = V1 i‘gut () + VI =1 Zyac(?) where { jgut(t) = 2“Mji:(t) — 2'in(t)
ﬁ:ietect(t) = \/ﬁﬁgut(t) + Vv 1- n ﬁvac(t) ﬁ:)ut (t) =V 2KM A,c(t) - ﬁ,in(t)

We introduce the canonical variables for the initial and final light pulses as:
R 1 T R 1 T
ﬁzf/%mw Vo= — [Chuwa, (56)
Jout __ {r/out 1 Ty
X \f xdetect t Y = F 0 pdetect(t>dt' (57)

Thus , we obtain the following optomechanical gate (X, (0) = X0, Py, (0) = YO, X\i(7) = Xy, Pu(7) =
Yu):

. (55)

XI\A — Xgl + NXM7 X/out - TLXg + GLX& + NXL’ (58)
?M = Y& - GM?O + 1QIPMa ?lout = TLYO + NPL> (59)

transforming the initial vector (X%, Y9, X2 ¥9) to the final vector (Xy, Yy, X/ Y’out)  Here, the
gains Gy, transfer factors T, and noises NXM,L7PM,L are:

2T 2T 1 — e M7
Gu = guy| —,  Gu = guy| — 1-—° 60
M = M P L = 9um Py X \/ﬁ[ g ] ) (60)

T,=yn(L-1), (61)

Nx,, = /720y &, (62)
Np,, = /72Ty P — pL(0)O,,, (1) + ——

. . V2n(1 — e~ "M7T /oT
NXL = m Xvac + n( N ) ( ) + f LLlXOfl + f 2y MCXM’ (64)
vV M

o . V2n(l —e™™T) ~
NPL =4/1— 7 Pvac + n(\/ﬁ )pé(O) + \/’7] LLlY()fl. (65)
M
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We use the following canonical variables
Youy = / dte™T=Dp! (1), (66)

CXM_\/TM / dt (f3(t)Cx (1)) (68)
/O diéx,, (1). (69)

éxm —

W QFMT
with the following correlation relations (all other unspecified combinations correlate to zero)
(YY) = (Yory Yorr) = (Yor Yor,) = (XPX2) = (Xor, Xor,) = (NN = () =1, (70)

2 $ Ki & <0 & <0 K X K X AX My
<Y0F»MY0> = K71’ (Yo, Yr) = (Xor, X;) = Tlla <Y0f1YOHM> L, Kl <Cf2MC M) = W?

where the constants are determined as follows:

Kl_\// dt (e—ru(7—0)2 ,/ f1 f)dt, Ly — \// ar (110 })2 (72)
M=/ [ dtf§<t>,M1=/0 dt (1)

_ e*HM(Tft)

1 /7 _ r fi(t)
7 kM (T—t) - _
\/F/O dte Ko \/7'/0 dt(

A.3 Atom-mechanical QND gate

\/%QM(Kq\I(T — t) —1+e —knm(T— t))
VT K2, ;

1Y kg = [ (B0 LY

where fi(t) =

To establish the gate we connect the atomic and optomechanical cavities in such a way that the light
passes them sequentially, interacting first with atoms and then with mechanics. Thus, as the input
light for the optomechanical part we take the output light of the atom-light part.

A quantum pulse described by the quadratures (#iy(t),pin(t)) enters the cavity (See Fig. 1) that
contains a cloud of alkali-metal atoms. To describe the atomic subsystem we consider the state of
an ensemble of atoms at room temperature, each having two stable ground states. We assume a
strong magnetic driving along the Z-axis for the atomic ensemble that allows us to apply the Holstein-
Primakoff transformation and consider normalized collective spins (X As ]5A) as very long-lived canonical
atomic variables. Duration of the initial pulse is 7. Optical damping rate of the cavity is k,. The
pulse is accompanied by the strong classical driving that ensures the QND type interaction with the
Hamiltonian fILA = —thPAi’C. The intra cavity field described by the canonical quadratures (Zc, pc)
evolves in accordance with this Hamiltonian. After the interaction, field leaves the cavity, the field at
the cavity output is described by the quadrature pair (Zout(t), Pout(t)). Now the light and atoms are
coupled.

At this stage we take the losses into account so we introduce the field (2 (¢),pl,(t)) that is the
(Zout (t), Pout (t))-field but with the admixed vacuum. We have to keep in mind that losses are presented
at any stage of the gate, so the losses characterized by a single parameter 1 (efficiency of the gate) are
effective and describe all possible losses in the sybtem

A quantum pulse described by the quadratures (Z{ (¢), pi,(t)) enters the optomechanical cavity. To
describe the mechanical part of the system we use quadratures (X M ]5M) that refer to the dimensionless
position and momentum of the mechanical oscillator. Optical damping rate of the cavity is Ky, the
rethermalization rate is I'y;. The pulse is accompanied by the strong classical driving that ensures the
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QND type interaction with the Hamiltonian Hiyv = th)A(Mﬁg. The intra cavity field described by the
canonical quadratures (2, p.) evolves in accordance with the Hamiltonian. After the interaction field
leaves the cavity, the field at the cavity output is described by the quadrature pair (27 (t), phy(t))-
Now the atoms and mechanics are coupled.

Afterward the pulse is homodyned and the output of the detection is used to displace the atoms in
the phase space. Here, we consider squeezed light, since for such a gate, squeezing allows to increase
the HOM element value.

Mathematically, the whole process is as follows. The Heisenberg-Langevin equations are:

Ze(t) = —Radc + V2Radin (73)
Pe(t) = gaPa(t) = Kabe + V2RaDin (74)
XA(t>— —gade(t) (75)
Py(t) =0. (76)

The solution of the set is the following:

where O, (¢) is:

We use the following input-output relation:
Q7(1) = V2raQ() = Q™(t), Q= e, . (82)
Thus, the field at the cavity output (outside the cavity):
Fout(t) = ((2kac™™" = 3(1)) # Bin(t) ) + v/2Zhake(0)e ™, (83)
Pout (£) = ((zﬁAefﬁAt - 5(t)) « ﬁin(t)) + V262 Py (0)8, () + V2rape(0)e AL, (84)
Next is the optomechanical interaction. The Heisenberg-Langevin set is:

2 (1) = —raide(t) + V2hu@5 () + gu X (1) (85)
é(t) — ke (t) + V2R Pin (1) (86)
XM(t) = (xu (87)
Pyu(t) = Cpy — gui(t) (83)
(¢

with correlation (Cx,; py (£)Cxy Py (t)) = 20y d(t — ).

The solution is

Xu(t) = /72Ty &M + X (0) (89)
Pyu(t) = V72T C™ + Py(0) = v/2ing (Oreyy (£) % P () — 5(0) Oy (1) (90)
FL() = Va7 5 2, (8)) + (O (1) * Gy (8)) + Kn(0)Oiey (8) + #(0) ™ (91)
PLt) = V2 (€7 5 (1)) + D (0) e~ (92)
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where O, (t) is:

1— e rmt
Oy (t) = gu—. (93)
Kwm
We use the following input-output relation:
QM (t) = V2ruQ'(t) - Q™(1), Q' =20, (94)
Thus, the field at the cavity output (outside the cavity):
‘%gut (t) =

= (e = 80) 5 800(0)) + VB (B ®) # Cxsa(®)) + K0 (1) + 8 (0)e™)
(1) = (2™ = 80) % (1)) + VEr (0)e ™

Let us take the optical loss into account as follows:

'ﬁ{n(t) = V1 Zout(t) + /1 — 1 Zyac(t) (95)
ﬁ;n(t) = \/ﬁﬁout(t) +v1-n ﬁvac(t) (96)

Now we have to detect the light outside the optomechanical cavity. For simplicity let us take
Ka = knm = K. We have to detect the X-quadrature of the output light:

Bt (1) = v/ (45267 — dke™ 4 5(t) ) * Fin(t)) + V25 %04(0)Opy, (1) + Noise. (97)

We assume a rectangular pulse. Thus

K= [Tal (98)

To obtain a symmetric gate we need to shift one of the quadratures. Thus, after detection we shift
of the atomic quadrature by the feedforward procedure with Ky coefficient:

N R /2 —KT 9 —9
XA(T) — XA( ) + K X/out K nTgI\{ ( (K/T + ) + KT )
VE(KT — 1+ e757)

The symmetric QND Gate is characterized by the equations that read:
PA(T) = PA<O)7
Xu(7) = Xu(0) + RIS'SYS
PI\4(T) — PM(O) - Q5PA(O) + mPM,

(99)

2
,where & = gAgM\fn? (e7" (kT + 2) + KT — 2)(100)

Here, the noises are defined as:
mPA = 07 (101)

Nxyy = V720 M,
mXA _ QA\[ IQ\/WX%H Xvac gMKf 4FM Xl\I
KQ\/> K5 T \l
[2 _ _ . [ 2 Ty A
+ (Kf R—Z(l —e "2kt 4+ 1)) —ga(l—e “T)> 2:(0) + K¢ EO — e ")2L(0)

NMpy, = —gua(1 — € ")pL(0) + V720 {P — /20 P
WK

1 _ KT 1 N
( € K:( + K:T))ﬁc(o) _ % 2%(1 _ n)Pvac'

_2\/779M
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“ 1 T L
X Par — dt t 102
¢ \/T27FM/O CXM7PM( )s (102)
(€% = gPugPy — 1, (@GP — EPE) (103
~ ' K3 kT ~ ~ -~ K3K4
D= e (e e Gau(m), (GO = =22 (104)
6k
K. = 105
5 \/3 + 267(3 + KT(KT — 3))) — 3e2K7 — 12e~"TKT (105)
2(1 — KT) — 27" + K272
K, = 106
4 = (106)
. K
X% — Ky (1= 26 % Gonc(7)), Ky = 1
(=2 (), Ka= o (107)
pvac __ KT ~ o 2K
P = Ky (1— e ) % prac(r)), Ko = \/%m e et (108)
P = Kg (1 — e " (267 + 1)) * pin(7)) , (109)
2K
Kq = 11
6 \/(2/4;7' —T7)+4e 57267+ 3) — e 27 (5 + 4kT(2 4 KT)) (110)
X" =Ky (1 — e ™) % Zin(7)) (111)
X ifn =K5 ((1 —457e ") % &in (7)) , (112)
K; = r (113)
(kT —4) + 8¢+ (1 + Kk7) — 4e=257(1 + 2k7(1 + KT))
2e7"T(3+2 —4) — 27T (1 +2 oo n s
K, = 20T B 2T) F(nr — ) Z 27 FTLEONT) gy _ KKK, (114)

K

The physical parameters of the systems are the pulse duration 7, the optical decay rates of the cavity
ka, the coupling strengths g, ., the gate efficiency 7, the mechanical damping coefficient 7, that
shows how good the mechanics is isolated from the thermal bath with average phonon number ngy, (the
two latter parameters are combined in the reheating rate I'y; = yy(2n4 + 1)).

Figures show the dependencies of the HOM element on different parameters. We assume that Hong-
Ou-Mandel interference takes place if the HOM-element of the output state of the gate lies above its
corresponding input threshold.

B Ideal QND gate. Nonclassicality thresholds

Here, we first describe the ideal case of the Quantum NonDemolition (QND) transformation and
compare it with the beam splitter (BS) transformation. We then proceed to introduce the matrix
elements of the output quantum state, that correspond to the bunching of excitations, and describe
how to calculate them in different cases.

B.1 Comparison of a beam splitter with a QND transformation

A beam splitter (BS) transformation, characterized by the Hamiltonian Hgg = ©hi (aTb — bTa), de-
scribes an evolution of two quantum oscillators a and b. The only parameter of this transformation is
the transmittance coefficient T = cos? ©.
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Figure 6: Matrix element (HOM|pout|HOM) of the output state of the gate as a function of the coupling strength
for the pulse length 7k, = 100: a) Light-atom QND gate with the independent single-photon (light) and single-
polariton (atom) states at the input. Dependence on coupling strength ga with efficiencies n = 1, 0.9, 0.1. Well
pronounced maximum shifts to the left with decreasing efficiency. The inset demonstrates HOM-element as the
function of the pulse duration Tk,. b) Light-mechanical QND gate with the independent single-photon (light) and
single-phonon (mechanics) states at the input. Dependence on coupling strength gy for the rethermalization rates
I'v = 0.01ky, 0.001ky for the different efficiencies (p = 1, 0.1). Note, 'y = 0.01ky is already too high for
(HOM| pout|HOM) to surpass the output classical threshold, but even for 7 = 0.1 the HOM-element lies quite close to
the input classical threshold. For both (a) and (b), the dashed gray line is the output threshold and the blue curves of
the corresponding thickness and dashing are the input thresholds (phase randomized).

A quantum Non-Demolition (QND) gate, characterized by the Hamiltonian Hg = Ghi(a + a')(b" —
b)/2, describes another type of evolution of the two oscillators. Gain G is the only parameter charac-

terizing the ideal QND gate transformation.
Hamiltonians and unitary transformations corresponding to the BS and QND transformations are

the following:
>, 0"(a’b — bla)"

Hgs = Ohi (a'b — bla), Ups =Y ~ ), (115)
n=0 '
G > g"(at +a)" (bt — )"
He = 7 hi(a+ ah (ot —b), Uvs=3% 4 (e “71‘( ) (116)
n=0 :
For Ug we can use the Zassenhaus formula and derive it in the normal order:
00 00 Y —1)m(ph)ipm By o
Ue=Yg"nl Y (a)an _ (=1)™(b") ___n mon—i-j
—~ e (n = 1)12 Ilm) (M%)!(_Q) . 2 2
where Ny is the set of natural numbers including 0.
et(aT+a) _ etaTetae—é[aT,a} _ emTemeé7 et(bT—b) _ etlﬁe—tbe—é[bt—b] _ ethe_tbe_%
o0 (o) ) ] (o) (o ¢]
(@' +a) , (al)'al \iion (bT —b)" (=)™ (O™ o
3 T SO LT DS ey ek (117)
= n! i o i171k12 = n! egrnlly Nmlk!(—2)k
(a' + a)" o~ Onitit2k i g (al)’a!
— 7 = - (a")'a! = — (118)
bt — ) = (=1)™-4,, > —1)™(bh)ipm
T 2, Ilk(-2) o ! (225 )1(—2) %2

In the article we are interested in (HOM|Ug Bs|¢)in, where (HOM| = (1/\/5) ((0]a(2]p — (2]a(0]p)-
Then we need (HOM|Ugps. Note that even (1|o(af)? = 0 (and (2|a(a")® = 0). Then, using
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Figure 7: Matrix element (HOM|pou:|HOM) of the output state for the non-adiabatic atom-mechanical QND gate
with the independent single-boson states at the input: a) dependence on coupling strength for the different efficiencies
n =1, 0.8, 0.1. Blue curves of the same dashing indicate the corresponding input thresholds. Efficiency n =0.1 is
too small to allow HOM-element to surpass the input thresholds. b) dependence on the squeezing .S of the light pulse
for the different efficiencies n = 1, 0.8, 0.1. For both (a) and (b), ka = kM =K, ga = gm = g-

(0[a(@)* = VEK|a, (La(a) = /(& + DUk +1la, (2la(a)® = /T + 2)1/2{k + 2|a, we can easily obtain:

I. For the QND transformation:

(HOM| Us = —= ({02l — (2(0l) Ve = (120)

_ 3y EUrgtnt Vim+2)0m £ Dim + 2l £ VU +2)0 + Dimlpld + 2
nimg—o V! 2 (B2 (mgm) (-2)

B VI T(mlu (i + 1la B (o (il .
(E:%:i>!.2£:%:l.(ﬂ%;@)g.Q_Q)"Em 2. ("*;*J)!.Qﬁigll.(”5”1)!.(—2)”Em

+ m + 1(m + 1], (jla (m|p(jla __ )

(%ﬂ')!-z%"'(n—lT—m)!.(_f =3 (%) -(”_QT_’”)!-(—Q) 2

Let us use )iy, = |1)p|1)a and obtain matrix element |(HOM| Ug [1)p[1)a]?:

k 2k+1(2k+1 0 k 2k+1(2k+1> 16G2(—8—|—G2)2
|<HOM| UG |1 b|1 = | Z k' 292k—1 +kz::1 — 1 192k—1 | - (4+G2)5 )
(9= G/2). (121)

II. For the BS transformation:
1
(HOM| Ups = 7 ({20 0l — (Ol (21a) U =
_ 1 i (=)o (2v/2) 1 (vV2)" (1]a (1] n (=D)"0*"(2v2)"(v2)" ({2[n(0]a — (0ln(2]a)
V2 = (2n+1)! (2n)! ’
(122)
Let us check the result by obtaining [(HOM| Ugs |1)p|1)a|*:
00 1)n+1@2n+1(2\/§)n+1(ﬂ)n 9 9
|(HOM| Ugs [1)b/1)a 7; G 1 > =4T(1 -T), (cos?@ =T).
(123)
29
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If we restrict ourselves by the limited input subspace, including only |1),|1)1,[0)a|1)p,|1)al0)s and
|0)a|0)1,, the formulas can be simplified:

00 (_1)n+1 (26)2n+1

(HOM| Ups = | Gt 1) (1a(1lp = —sin (20) (1]a(1]p, (124)
n=0 :
2 (=DR(G/2)2R 2k + I + K —1)k(G/2)%k+2(2k + 2)!
(HOM| U = 32 - S TR (htl + e Oa(0h =
_ G2 2
— T (il + s OO (125)

In the case of the general input BS transformation provides non-zero matrix elements exclusively

Table 1: Matrix elements of the output state corresponding the different cases of the input for the BS
and QND gate transformations

ot (HOM|pout [HOM)

P BS QND gate

16G%(GZ—8)2

[L)al1)n 4T(1-T) (4J(FG2)5)
11)a|0), 0 0
10)al1)1, 0 0
I

10)a]0)p 0 (4_?_%72)3
for |©)in = [1)all)b,[0)al2)b, |2)al0). However, the gate transformation generates and annihilates

excitations in pairs. That means that, for instance, if at the gate input there are states with an even
number of bosons (as [0)4|0), [1)all)b, |1)al3)b etc.), then (HOM|pous]HOM) will be nonzero (some
functions of the gain). If at the input of the gate there is a state with an odd number of excitations
(as [0)al1)b, 11)al0)b, [1)al2)b, [2)all)p etc.), then the matrix elements of the output state will be zero.

There is a significant difference between these two transformations. The BS transformation is passive,
it neither creates nor annihilates excitations in a system of two harmonic oscillators. If initially there
are exactly one excitation in each of the oscillators, at the output of a BS they can appear bunched in
a single mode via the Hong-Ou-Mandel (HOM) effect. It is not sufficient to have just one excitation in
a single mode to observe bunching. Unlike BS, the QND transformation is active, which means it can
possibly change the total number of excitations in the system (the energy of the system). The creation
of quanta by QND interaction can produce effects that resemble the HOM interference. Although
such case can be confused with the HOM interference effect, it is still possible to analyze whether the
QND interaction is capable of generating the non-classical two-quanta superpositions going beyond
any classical states serving as input to the QND interaction. However, such analysis requires a general
approach to the HOM interference beyond the simple case with the passive BS interaction.

In this generalized description, the matrix element of the output state pout, describing the success
probability of detection of two-photon HOM-entangled states (the HOM element), can be introduced
as |(HOM|U|@)in|?, where |p)i, is an initial state, and U is a unitary transformation. Here, the HOM-
state is determined as (HOM| = ((2|(0]a — (0[1,(2]a) /v/2. It is well known that a BS provides an ideal
photon bunching (the HOM effect). This means that the success probability |(HOM|Ugs|¢)in|? at the
output of the BS equals one. This effect occurs when two identical quanta enter a balanced beam
splitter (T = 0.5), one in each input port (the input state |¢@)in = [1)a|1)p)-

In order to compare the two transformations in the context of the HOM effect, let us look at the
matrix elements of the output state of each of the transformations. For simplicity, first let us restrict the
subspace of the input and assume that |¢)i, belongs to the space of coherent superpositions of vacuum
and one excitation of each mode, that is an arbitrary pure superposition of |1)a]|1)p,[0)al1)b, |1)al0)b
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and |0)a]0)p. Then, to obtain the desired matrix element we need:

4G(8 — G?) 2G2

(e (0[a{O[5.  (126)
It clearly shows that the HOM matrix element provided by the inputs |0)a|1)p and |1),]0)p is equal
to zero for both BS and QND transformations. Matrix element provided by |0),|0)p, input is equal to
zero in the case of a beamsplitter. However, for the QND gate this element is a function of the gain G
and equals zero only in the trivial case with G = 0. That is, by varying the gain of the QND gate, it
is impossible to make the contribution of the input vacua |0),|0)1, vanish, in order to render these two
transformations fully analogous.

For the case of a QND gate with |[1),|1)p at the input, one can observe that for a certain region of
the parameter G, the probability of bunching of both excitations in one subsystem is higher than the
probability of equal redistribution of the excitations between the subsystems. Visually, it is character-
ized by the presence of the maximum of (HOM|pous|HOM) (see Fig. 4(b) )approximately equal to 0.26

for G = 4/11 — /105 ~ 0.87 (as compared to 1 for the BS with © = 7/4). However, we should keep
in mind that this correspondence to the case of a BS is not complete due to the non-zero contribution
from the vacuum input for the gate case that does not exist in the case of a BS.

B.2 BS and QND transformations using quadratures.

Both Quantum Non-Demolition (QND) gate and beam splitter BS, transform quadratures of two
quantum oscillators a and b, correlating the quadratures of the two oscillators. The initial quadratures
r'’™ = (X,(0), P,(0), X,(0), P, (0))7 after transformation should relate to the final quadratures ro" =
I = (Za, Pa, Tb, pb) | as

ro" = T psr'™ + N, where (127)
Tw 0 &, 0 VT 0 VI—T 0
0 T, 0 0 0 VT 0 VI—T
Te = Tgs = 12
¢ 0 0 T o0 |78 —VI=T 0 VT 0 (128)
0 &, 0 T 0 —V1=-T 0 VT

where T is the transmittance coefficient (BS transformation); &, 1, are the controllable gains of the built
QND gate, T,, are the transfer factors (QND transformation). N = (DNx,, Np,, Nx,, Np, )T describe
the excess noises, thus for the ideal transformation they should be negligible (9x, p, x,.p, — 0) (and
for QND transfer factors equal one (T, 1, = 1), while the gains are of the same magnitude but opposite
sign (G = 8, = —®y,). Thus, gain G is the only parameter characterizing the ideal QND gate
transformation, while the BS transformation also is characterized by a single parameter T.

B.3  Wigner function of the state

The Wigner functions (WF) can be used to calculate the HOM element. Let us demonstrate how to
obtain the WF corresponding to an arbitrary operator. First, let us remind that the wave-function of
the n-th excited level (Fock state [n)) can be derived using Hermite polynomials as:

1 x x2
(@) = (efn) =~ H, (ﬂ) exp (—4) , (129)

Hy(z) =1, (130)
Hy(z) =2z, (131)
Hy(z) =422 —2=2(222 - 1), ... (132)
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The WF of the operator |¢) (| in the s-dimensional space is as follows:

17 _ipy y y
WI@(wI(XaP):W/dy@ gy<X+§|SD><¢’X—*>7 where q = (g1, g2, ...qs) for q =x,y,p.

2
(133)
Here,
2 vt U2
o 32 = v+ D= i ((e43) 1) e () )
x4+ £)2
(x+g|1>:w|1>(x+g)=yl2?(x+g> exp —(22)> (135)
x + 42
@+ 510) = by e+ §) = g=exp <_(+42)> (136)
x—¥)?
(Ol — %) =ity (w — %) = y%exp <—(42)> tc. (137)

In the article, we work in the 4-dimensional space. Thus, for the operator A = [HOM)(HOM]|,
associated with the state [HOM) = (|02 21) — |22 01)) /v/2, the WF can be calculated as:

_ i(P1y1+P2y2)

1
Waom (21, p1, T2, p2) = (47T)2/ dy1dys e 2 faom (21, Y1, T2, y2)

1 2+ p2+ 22 + 23
~ 16n2 P <_p1 = 2 2 (1 — p2)* + (21 — 22)* = 2)((p1 + p2)* + (21 + 22)* — 2). (138)
where

U1 Y2 Y2 U1
faom (21, Y1, T2, ¥2) = (21 + = [(x2 + Z|A |22 — ) o1 — 5) =
2 2 2 2
1

_ u %2 _ Y2 v
=5 (tor+ Lz + 21102) = 22+ 2ll2) (a1 + L0 ) @

© ((Oallor = %) 2alloa — 2) = 2ulJor — L) (Oallo — 2)) =

2
1

2
_ 1 @B+ @+ <x +y1>2—<x +l/2)2 <$ _yl>2_<x _yQ>2
gr P 2 ' SR 1T *T2) )
Analogically, for the operator A" = [1511)(1115]:

1 2 2 24 (L)2 422 4+ ()2
f\11><11|(331,y1,932,y2):27T <fﬂ%—<y21) ) <$§—<y22> >eXp (- 1+ (%) 5 2 (%) , (140)

1 Pt +p3 + 2t + a3
zexp<— A (S pE ) (<1 4 py + ad)). (141)

47

Wiy (z1, p1, 22, p2) =

B.4 Calculation of the HOM matrix element

In order to calculate the matrix elements for an ideal (without additional noise) transformation, it is
enough to know the form of the unitary transformation U. Thus the matrix element of the output can
be calculated as:

Muom = (HOM|peut[HOM) = [(HOM|U |)in]?. (142)
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To evaluate the robustness of the QND gate against photon loss, we examine an incoherent mixture
of vacuum and single-photon states at each input port of the gate

PP = (pa [1)(1] + (1 = pa) [0)0])a - (py |1 (1] + (1 = pp) [0) (O]}, (143)

where the parameter p, 1, characterizes how much vacuum has been admixed to the single-photon state
at the input ports, and calculate matrix elements for the output state of the gate. Using Eq. (17), we
can obtain the HOM matrix element of the output state of the gate:

16G*(G* — 8)* 4G*
(4(+GQ)5) + (1 —pa)(1 —pb)m-

This matrix element is symmetrical with respect to p, and py,. Surprisingly, the independent coherent
superpositions (y/pa [1) + /1 —pa |0))a - (/b |1) + /I —p1, [0))p at the input give rise to the same
matrix element Eq. (23) as the mixture Eq. (22).

This approach is good to calculate the ME when the input state is a |n)a|m)p-boson state or some
combination of them. Sometimes it is more convenient to take a different approach described below.
We can use the Wigner function (WF) and the matrix elements (¢|pout|¢) of the output state can be
defined as:

<HOM‘pout‘HOM> Db (144)

Mgy o1 = (looulie) = (4m)* [ [[ e Wiy 012 - Wouelr), (145)

where Woyt(r) is the WF of the output state, r = r°" = (x4, pa, 2p, pp) 7 . Wiy | (r) corresponds to
the projector |¢) (1], e.g. to calculate Myonm we need the WF of the HOM operator:

2 2 2 2
b (_pa tr ot

Whom(r) = ) ((pa+1p)° + (@a+2)° = 2)((Pa — Pb)* + (T2 — 21)* — 2).

(146)

The WF approach is convenient when we know the exact WF of the input state and how the

transformation changes the quadratures of the oscillators. This approach is also suitable for the case

of |n)a|m)p input. We demonstrate it for the gate transformation with |1),|1), input. Let us assume

that both quantum oscillators were initially in single-boson states. Since they are independent, the

exact Wigner function of the initial state of the system can be obtained by multiplying of the two
single-photon state Wigner functions:

1
1672

1 r2
Win(x) = Wil (ra) Woljy (eb), where Wap |1y (rap ) = o (x2, —1)exp <—2b> . (147)

apb = (wa,b » Pa,b )T- (148)
The WF of the output state of the system for the ideal gate:

1
Wout(r) = 477r2((pb + Gpa)2 + 5512) - 1)(1’2 + (za — Gilfb)2 —1)x
G N 2 2 2 a—G 2
X exp <_(pb+ D ) —|—l’b—|2—pa—|—(l' xb) > ' (149)

Using Eq.(145), we will obtain the same result as in Eq.( 23) for p, = p, = 1. Both described
approaches are identical and, being applied to any ideal transformations, they give the same results.

For the non-ideal case we need to take to account the noises, which is possible using the language
of covariance matrices. A Gaussian quantum state (such as vacuum, coherent, squeezed or thermal
states) can be fully described by the first and second statistical moments, that is, a vector of means
and a covariance matrix. The Wigner function of an arbitrary Gaussian state in Rg-dimension can be
represented using the covariance matrices V as:

W(r) = W(V,r) = W(lm exp (5= DTV -)) (150)

r= (ﬂflapla ...,x57p5) , T = (<X1>7 <P1>7 <00y <X8>7 <P8>) :
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After a nonideal transformation T of the vector r, the evolution of the covariance matrices and the
WF are as follows:

Winout(r) = W(r, Vinout),  where VoU = TgVTd 4 14, (151)
1 ..
[VN]ij = §<NZN] + NjNZ‘> (Z,] =1,..., S). (152)

Thus, we can use Eq.(145) and obtain the HOM matrix element of the output state for the nonideal
transformation.

However, neither single-photon nor HOM states are not Gaussian. Nevertheless, the single-photon
state can be approximated by the superposition of the thermal Wy, (r) and vacuum W)g (r) states as:

Wiy (r) =~ % ((n + 1)Win(r) — VV|0>(r)) , n < 1. (153)
Here Wy, is the Wigner function of a thermal state with mean occupation n, that is a Gaussian state
with zero means and covariance matrix equal to Vi, = (2n + 1)Iaxo.

Thermal and vacuum states are Gaussian, and, in turn, they can be represented using Eq. (150)
with r = 0 and s = 4. Thus, to describe the initial state at the input of the gate between a-oscillator
and b-oscillator we can use the following approximated WF:

Win(r) = Waljy) (ra) Wh|j1) (rs) = % ((n+ 1)Win(ra) = Wigy(ra)) : ((n+ D)Wan(ry) = Wi (x0)) =

n
1 in in in in
= 5 (0 DPWRE, 1) = (0 DWWV o 7) = (0 DWGE, e, o1) + WV, ey oT) ) =

1 in
= > ()W), (154)
k,1=0,1

Here, the corresponding covariance matrices are

2n+1 0 0 0 10 0 0
; ; ; 0 2n4+1 0 0 i 0 1 0 0
mn __ mn __ n __ m __
Vid = @nt Dl Vop =L, Vio =1 o 10" 00 mr1 o |
0 0 0 1 0 0 0 2n+1
. 1
Vit = TGVkleTGT + Wn, (Wlij = §<Nz’Nj + N;N;), (155)
where I is the identity matrix of size 4, k =0,1; [ =0,1 and 7,57 =1, ..., 4.
After the gate transformation of the vector r, the WF of the state at the output of the gate:
1
Wout (r) = — Y (=4 1)MWE x). (156)
k,1=0,1

Let us derive the approximated WF of the HOM state. Since Wiowm(r) is the WF of the state that
would be at the output of the 1:1 beamsplitter if at the input there were two single-photon states, we
use the same approach as we used to obtain Wy, (r) and get

1
Whom(r) = — > (=(n+ 1) W (Vi x), (157)
k,1=0,1
1 0 10
in \/E 0 1 0 1
Vie=TuViiToo  Tos=%| 1 o 1 0 (158)
0 -1 0 1
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To calculate the HOM matrix element let us use the rule [dr exp{—3r’V~'r} = 47%,/det[V] that
works for every symmetric positive-definite matrix V. Then, keeping in mind r’ (A4 + B)r = r” Ar +
r’ Br, we can calculate the HOM matrix element as:

4 _1
Mion= o Y (lnt DR, FAB) = (yala T B)) . (159

k,l,m,d=0,1
(160)

Using the same approach we can derive the HOM element for the case of the the mixture state input:

4
Muom = HIF Z (—(n+ 1))ktttm+d. F(%,h%ﬁ%)‘*‘

ko lm,d=0,1
4
+ —p(1 —p) Yo (-(n+ )M BV, Vet +
n ke, l,m=0,1

4 ou
+ ﬁp(l —p) Z (—(n+1))Ftid. F(V, Ve )+

k,l,d=0,1
4 ou
+ 50 —p)> Y (=(n+ 1) PV, V. (161)
k,1=0,1

B.5 Input and output thresholds (nonclassicality borders)

We define two nonclassicality thresholds by evaluating the maximum of (HOM|pou|[HOM) over (i) all
superpositions of the coherent states at the output of the QND interaction: pout = pPeoh = |afb) {(ta S
and (ii) before the QND interaction: pout = UQNDpCOhU(BND. For the BS interaction, such thresholds
coincide.

If the output state pout is classical, i.e. is a mixture of coherent states, then it turns out that
0 < (HOM|pout|HOM) < 1/e%. Thus, 1/e? is the output threshold for the HOM interference. That is,
when measuring the HOM element, if we get a value greater than 1/e?, then the measured state for
sure is a non-classical one. This threshold is shown by a thin gray dashed line in the Fig. 4(a).

To derive the input threshold, let us use two random coherent states as the input states of the gate
and calculate the HOM element for the output state pot = Up®PUT. We assume phase-randomized
input state which means that phases of the input coherent states are averaged. If we examine the
dependence of the (HOM|pSE|HOM) on the gain G for all the coherent states (see Fig. 4(b)) we will
obtain the area restricted by an input threshold (blue curve) that has a specific complex shape.

To calculate the input threshold (phase randomized) let us take two random coherent states as the
inputs of the QND gate. The WF of the input state (two independent coherent states) is the following

1 1
Win(r,R) = ——— ——(r—-R)TV,! —R). 162
(R) = oo (5 - RV - R) (162)

Here r = (24, pa, xb,pb)T, R = (Xa,Ya,Xb,Yb)T is the colomn-vector of means and V;, = l4x4 is the
covariance matrix of the initial state (coherent). The vector of means changes as R — TgR. Thus,
the WF of the output state is as follows:

1 1 _
Wout(r,R,G) = T P <—2(r —TeR)TV H(r — TGR)) . (163)

Using this WF we can obtain the HOM element as

Mion(R, G) = (HOM|pout HOM) = (477)2 / / / dr Witom(r) - Wous (v, R, G). (164)
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If, calculating the matrix elements for p22? over all the possible coherent states averaged over phases,

then the range of possible values for the matrix elements will significantly change. Assuming R =
(Xa, Ya, Xp, Yb)T = (R, cos|pal, Ra sin[ea)], Ry, cos|gp], Rb sin[gpb])T we can obtain

1
Font(Ras R G) = £ [[ dea dey Miou (R, G) (165)

and investigate it over all possible R,, Ry}, for the certain G.

a b

0.4

0.4

input threshold (input |),| )y, phase randomized) —— input threshold (input |&),|5)p, phase randomized)

-~~~ output threshold 1/¢” output threshold 1/e?

sl — input state p =1 (|1)a|1)1,) -

031

0.26

----- R.=2V2,Ry,=0 ----- input state p = 0.72

02 — R,=0,R, =0 (vacuum input|0),|0)) — - input state p = 0.48
r 02

--- input state p = 0.40

(HOM| o [HOM)
(HOM o [HOM)

0.1

‘ 4 ;
0.0 il
3.0 35 N p

G G

Figure 8: a) Shape of the input coherent threshold. b) (HOM|po,:|[HOM) matrix element of the output state for the
ideal QND gate as a function of the gain G calculated for the different cases of the input: quantum input |1).]1)y
(solid black curves), mixture input Eq. (22) (dashed black curves, dashing scale indicates parameter p). Dashed gray
line is the output threshold. Blue curve is the input thresholds (phase randomized) restricting area that covers all the
possible values of the matrix elements of the output state of the gate in the case of the random coherent input with

averaged phases.

Figure 8(b) demonstrates (HOM|pout [HOM) depending on the gain, assuming p, = p, = p, compared
with the case of the pure input |1)4]1),. Expectedly, as the parameter p decreases, the contribution from
|1)a]1)p term decreases, while the contribution from [0),|0)1, term increases. Visually, it is reflected in
the gradual change of the curves’ shape — for relatively high p maximum first decreases, then smoothly
shifts to the right. Thus, the maximum of the HOM element decreases from 0.26 at p = 1 to 1/e? at
p = 0.7, which corresponds to the output threshold. At p &~ 0.48 it already crosses the input threshold,
so for p < 0.48 the HOM element lies below the input threshold at the gain G ~ 0.87. For p < 0.40
the HOM element lies below the input threshold for any gain.

Accepted in { Yuantum 2022-03-23, click title to verify. Published under CC-BY 4.0. 36



0.30
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0.250 17— input (|1).|B))
CE) 020l fS AN 1 = mixed input p =1 (|1)a|1)s)
E /,-’ ™S~ 1 emmenee- mixed input p = 0.72
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Figure 9: (HOM|pout|HOM) matrix element of the output state for the ideal QND gate as a function of the gain G
calculated for the different cases of the input: the vacuum input |0),]0),(black dashed), the state with one-boson at
the first input and coherent at the second |1),|5)p (red), two independent coherent states at the input |a),|3), (blue
dot-dashed), phase averaged coherent states at the input |a).|5)b (blue), two-mode squeezed state TMS (green).
The curve of the vacuum input depends only on the gain, all other inputs depend on many parameters (phases,
displacements, squeezings etc), so their curves are the highest possible values (thresholds) of the HOM element
calculated over all their parameters.
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