Atom-Mechanical Hong-Ou-Mandel Interference

Alisa D. Manukhova, Andrey A. Rakhubovsky, and Radim Filip

Department of Optics, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum coupling between mechanical oscillators and atomic gases generating entanglement has been recently experimentally demonstrated using their subsequent interaction with light. The next step is to build a hybrid atom-mechanical quantum gate showing bosonic interference effects of single quanta in the atoms and oscillators. We propose an experimental test of Hong-Ou-Mandel interference between single phononic excitation and single collective excitation of atoms using the optical connection between them. A single optical pulse is sufficient to build a hybrid quantum-nondemolition gate to observe the bunching of such different quanta. The output atomic-mechanical state exhibits a probability of a hybrid bunching effect that proves its nonclassical aspects. This proposal opens a feasible road to broadly test such advanced quantum bunching phenomena in a hybrid system with different specific couplings.

When two indistinguishable photons arrive simultaneously at two input ports of a symmetric beamsplitter, they always leave it through only one output port. This effect, known as the Hong-Ou-Mandel interference, has potential applications in a wide range of experiments. It is commonly used in quantum optics to test the indistinguishability of single photons produced by different sources, in quantum metrology for sensing, and in linear optical quantum computing as a basic entangling tool. The bunching of quantum excitations has already been demonstrated not only for optical photons but for a wide variety of physical systems. However, the excitations are usually of the same nature, whether these are photons, phonons, polaritons, or even fermionic excitations.

In our work, we study the HOM interference of excitations of disparate nature using a hybrid quantum nondemolition (QND) interaction between a mechanical oscillator and an atomic cloud. We show the HOM effect arising from single excitations in a light-atom, an optomechanical, and a hybrid atom-mechanical systems. That is, we show that not only the photons can bunch with each other, but also with material excitations such as phonons of mechanical oscillations and atomic polaritons. Moreover, the two latter can bunch with each other. Our result reveals two-quanta interference in these systems beyond the classical states. In order to propose an experimental test, we devise thresholds of coincidence probability attainable with classical states and confirm that the thresholds can be surpassed with feasible parameters of the state-of-the-art systems.

The Hong-Ou-Mandel interference test can be fruitful for the further development of hybrid quantum technologies with quantum non-Gaussian states and quantum technology with nonlocal gates.

► BibTeX data

► References

[1] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt, ``Cavity Optomechanics'' Reviews of Modern Physics 86, 1391-1452 (2014).

[2] Brian Julsgaard, Jacob Sherson, J. Ignacio Cirac, Jaromír Fiurášek, and Eugene S. Polzik, ``Experimental Demonstration of Quantum Memory for Light'' Nature 432, 482–486 (2004).

[3] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin, ``Quantum Repeaters Based on Atomic Ensembles and Linear Optics'' Reviews of Modern Physics 83, 33–80 (2011).

[4] L. V. Gerasimov, R. R. Yusupov, I. B. Bobrov, D. Shchepanovich, E. V. Kovlakov, S. S. Straupe, S. P. Kulik, and D. V. Kupriyanov, ``Dynamics of a spin qubit in an optical dipole trap'' Phys. Rev. A 103, 062426 (2021).

[5] Yong Yu, Fei Ma, Xi-Yu Luo, Bo Jing, Peng-Fei Sun, Ren-Zhou Fang, Chao-Wei Yang, Hui Liu, Ming-Yang Zheng, Xiu-Ping Xie, Wei-Jun Zhang, Li-Xing You, Zhen Wang, Teng-Yun Chen, Qiang Zhang, Xiao-Hui Bao, and Jian-Wei Pan, ``Entanglement of two quantum memories via fibres over dozens of kilometres'' Nature 578, 240–245 (2020).

[6] N I Masalaeva, A N Vetlugin, and I V Sokolov, ``Cavity-assisted squeezing and entanglement: non-adiabatic effects and optimal cavity-atomic ensemble matching'' Physica Scripta 95, 034009 (2020).

[7] I.V. Sokolov ``Schrödinger cat states in continuous variable non-Gaussian networks'' Physics Letters A 384, 126762 (2020).

[8] Ottó Elíasson, Jens S. Laustsen, Robert Heck, Romain Müller, Jan J. Arlt, Carrie A. Weidner, and Jacob F. Sherson, ``Spatial tomography of individual atoms in a quantum gas microscope'' Physical Review A 102, 053311 (2020).

[9] Jens Schultz Laustsen, Robert Heck, Ottó Elíasson, Jan Joachim Arlt, Jacob Sherson, and Carrie Ann Weidner, ``Remote multi‑user control of the production of Bose–Einstein condensates'' Applied Physics B 127, 125 (2021).

[10] Y.-W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler, ``Highly efficient optical quantum memory with long coherence time in cold atoms'' Optica 3, 100–107 (2016).

[11] Christian Grossand Immanuel Bloch ``Quantum Simulations with Ultracold Atoms in Optical Lattices'' Science 357, 995–1001 (2017).

[12] Dennis Høj, Fengwen Wang, Wenjun Gao, Ulrich Busk Hoff, Ole Sigmund, and Ulrik Lund Andersen, ``Ultra-Coherent Nanomechanical Resonators Based on Inverse Design'' Nature Communications 12, 5766 (2021).

[13] R. A. Norte, J. P. Moura, and S. Gröblacher, ``Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature'' Physical Review Letters 116, 147202 (2016).

[14] Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, ``Ultracoherent Nanomechanical Resonators via Soft Clamping and Dissipation Dilution'' Nature Nanotechnology 12, 776–783 (2017).

[15] Claus Gärtner, João P. Moura, Wouter Haaxman, Richard A. Norte, and Simon Gröblacher, ``Integrated Optomechanical Arrays of Two High Reflectivity SiN Membranes'' Nano Letters 18, 7171–7175 (2018).

[16] Jinyong Ma, Jiayi Qin, Geoff T. Campbell, Giovanni Guccione, Ruvi Lecamwasam, Ben C. Buchler, and Ping Koy Lam, ``Observation of nonlinear dynamics in an optical levitation system'' Communications Physics 3, 197 (2020).

[17] Fernando Monteiro, Wenqiang Li, Gadi Afek, Chang-ling Li, Michael Mossman, and David C. Moore, ``Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures'' Phys. Rev. A 101, 053835 (2020).

[18] Jonghoon Ahn, Zhujing Xu, Jaehoon Bang, Peng Ju, Xingyu Gao, and Tongcang Li, ``Ultrasensitive torque detection with an optically levitated nanorotor'' Nature Nanotechnology 15, 89–93 (2020).

[19] Gambhir Ranjit, Mark Cunningham, Kirsten Casey, and Andrew A. Geraci, ``Zeptonewton force sensing with nanospheres in an optical lattice'' Phys. Rev. A 93, 053801 (2016).

[20] Lorenzo Magrini, Philipp Rosenzweig, Constanze Bach, Andreas Deutschmann-Olek, Sebastian G. Hofer, Sungkun Hong, Nikolai Kiesel, Andreas Kugi, and Markus Aspelmeyer, ``Real-time optimal quantum control of mechanical motion at room temperature'' Nature 595, 373–377 (2021).

[21] Rainer Kaltenbaek, Markus Aspelmeyer, Peter F. Barker, Angelo Bassi, James Bateman, Kai Bongs, Sougato Bose, Claus Braxmaier, Časlav Brukner, Bruno Christophe, Michael Chwalla, Pierre-François Cohadon, Adrian Michael Cruise, Catalina Curceanu, Kishan Dholakia, Lajos Diósi, Klaus Döringshoff, Wolfgang Ertmer, Jan Gieseler, Norman Gürlebeck, Gerald Hechenblaikner, Antoine Heidmann, Sven Herrmann, Sabine Hossenfelder, Ulrich Johann, Nikolai Kiesel, Myungshik Kim, Claus Lämmerzahl, Astrid Lambrecht, Michael Mazilu, Gerard J. Milburn, Holger Müller, Lukas Novotny, Mauro Paternostro, Achim Peters, Igor Pikovski, André Pilan Zanoni, Ernst M. Rasel, Serge Reynaud, Charles Jess Riedel, Manuel Rodrigues, Loïc Rondin, Albert Roura, Wolfgang P. Schleich, Jörg Schmiedmayer, Thilo Schuldt, Keith C. Schwab, Martin Tajmar, Guglielmo M. Tino, Hendrik Ulbricht, Rupert Ursin, and Vlatko Vedral, ``Macroscopic Quantum Resonators (MAQRO): 2015 update'' EPJ Quantum Technology 3, 5 (2016).

[22] Igor Pikovski, Michael R. Vanner, Markus Aspelmeyer, M. S. Kim, and Časlav Brukner, ``Probing Planck-scale physics with quantum optics'' Nature Physics 8, 393–397 (2012).

[23] Igor Marinković, Andreas Wallucks, Ralf Riedinger, Sungkun Hong, Markus Aspelmeyer, and Simon Gröblacher, ``Optomechanical Bell Test'' Phys. Rev. Lett. 121, 220404 (2018).

[24] J. S. Ochs, M. Seitner, M. I. Dykman, and E. M. Weig, ``Amplification and Spectral Evidence of Squeezing in the Response of a Strongly Driven Nanoresonator to a Probe Field'' Physical Review A 103, 013506 (2021).

[25] Sofia Qvarfort, Michael R. Vanner, P. F. Barker, and David Edward Bruschi, ``Master-equation treatment of nonlinear optomechanical systems with optical loss'' Phys. Rev. A 104, 013501 (2021).

[26] Thomas M. Karg, Baptiste Gouraud, Chun Tat Ngai, Gian-Luca Schmid, Klemens Hammerer, and Philipp Treutlein, ``Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart'' Science 369, 174–179 (2020).

[27] Rodrigo A. Thomas, Michał Parniak, Christoffer Østfeldt, Christoffer B. Møller, Christian Bærentsen, Yeghishe Tsaturyan, Albert Schliesser, Jürgen Appel, Emil Zeuthen, and Eugene S. Polzik, ``Entanglement between distant macroscopic mechanical and spin systems'' Nature Physics 17, 228–233 (2021).

[28] Warit Asavanant, Kan Takase, Kosuke Fukui, Mamoru Endo, Jun-ichi Yoshikawa, and Akira Furusawa, ``Wave-function engineering via conditional quantum teleportation with a non-Gaussian entanglement resource'' Phys. Rev. A 103, 043701 (2021).

[29] Nikita Vostrosablin, Andrey A. Rakhubovsky, and Radim Filip, ``Pulsed quantum continuous-variable optoelectromechanical transducer'' Opt. Express 25, 18974–18989 (2017).

[30] Nikita Vostrosablin, Andrey A Rakhubovsky, Ulrich B Hoff, Ulrik L Andersen, and Radim Filip, ``Quantum optomechanical transducer with ultrashort pulses'' New Journal of Physics 20, 083042 (2018).

[31] Stephen D. Bartlett, Barry C. Sanders, Samuel L. Braunstein, and Kae Nemoto, ``Efficient Classical Simulation of Continuous Variable Quantum Information Processes'' Phys. Rev. Lett. 88, 097904 (2002).

[32] Petr Marek, Radim Filip, Hisashi Ogawa, Atsushi Sakaguchi, Shuntaro Takeda, Jun-ichi Yoshikawa, and Akira Furusawa, ``General implementation of arbitrary nonlinear quadrature phase gates'' Phys. Rev. A 97, 022329 (2018).

[33] C. K. Hong, Z. Y. Ou, and L. Mandel, ``Measurement of subpicosecond time intervals between two photons by interference'' Phys. Rev. Lett. 59, 2044–2046 (1987).

[34] Frédéric Bouchard, Alicia Sit, Yingwen Zhang, Robert Fickler, Filippo M Miatto, Yuan Yao, Fabio Sciarrino, and Ebrahim Karimi, ``Two-photon interference: the Hong-Ou-Mandel effect'' Reports on Progress in Physics 84, 012402 (2021).

[35] Petr Marek, Petr Zapletal, Radim Filip, Yosuke Hashimoto, Takeshi Toyama, Jun-ichi Yoshikawa, Kenzo Makino, and Akira Furusawa, ``Direct observation of phase-sensitive Hong-Ou-Mandel interference'' Phys. Rev. A 96, 033830 (2017).

[36] Reinier W. Heeres, Leo P. Kouwenhoven, and Valery Zwiller, ``Quantum interference in plasmonic circuits'' Nature Nanotechnology 8, 719–722 (2013).

[37] F. Dieleman, M. S. Tame, Y. Sonnefraud, M. S. Kim, and S. A. Maier, ``Experimental Verification of Entanglement Generated in a Plasmonic System'' Nano Letters 17, 7455–7461 (2017).

[38] Kenji Toyoda, Ryoto Hiji, Atsushi Noguchi, and Shinji Urabe, ``Hong–Ou–Mandel interference of two phonons in trapped ions'' Nature 527, 74–77 (2015).

[39] Masaya Tamura, Takashi Mukaiyama, and Kenji Toyoda, ``Quantum Walks of a Phonon in Trapped Ions'' Phys. Rev. Lett. 124, 200501 (2020).

[40] Jun Li, Ming-Ti Zhou, Bo Jing, Xu-Jie Wang, Sheng-Jun Yang, Xiao Jiang, Klaus Mølmer, Xiao-Hui Bao, and Jian-Wei Pan, ``Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble'' Phys. Rev. Lett. 117, 180501 (2016).

[41] A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, ``Two-particle quantum interference in tunnel-coupled optical tweezers'' Science 345, 306–309 (2014).

[42] Philipp M. Preiss, Ruichao Ma, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Philip Zupancic, Yoav Lahini, Rajibul Islam, and Markus Greiner, ``Strongly correlated quantum walks in optical lattices'' Science 347, 1229–1233 (2015).

[43] R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, ``Atomic Hong–Ou–Mandel experiment'' Nature 520, 66–68 (2015).

[44] Adam M. Kaufman, Malte C. Tichy, Florian Mintert, Ana Maria Rey, and Cindy A. Regal, ``Chapter Seven - The Hong–Ou–Mandel Effect With Atoms'' Academic Press (2018).

[45] A. S. Losev, T. Yu. Golubeva, A. D. Manukhova, and Yu. M. Golubev, ``Two-photon bunching inside a quantum memory cell'' Phys. Rev. A 102, 042603 (2020).

[46] V. Freulon, A. Marguerite, J.-M. Berroir, B. Plaçais, A. Cavanna, Y. Jin, and G. Fève, ``Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization'' Nature Communications 6, 6854 (2015).

[47] Anton N. Vetlugin, Ruixiang Guo, Cesare Soci, and Nikolay I. Zheludev, ``Anti-Hong-Ou-Mandel effect with entangled photons and lossy beamsplitter'' Quantum Nanophotonic Materials, Devices, and Systems 2021 11806 (2021).

[48] Quanwei Li, Wei Bao, Zhaoyu Nie, Yang Xia, Yahui Xue, Yuan Wang, Sui Yang, and Xiang Zhang, ``A non-unitary metasurface enables continuous control of quantum photon–photon interactions from bosonic to fermionic'' Nature Photonics 15, 267–271 (2021).

[49] Sahar Basiri-Esfahani, Casey R. Myers, Ardalan Armin, Joshua Combes, and Gerard J. Milburn, ``Integrated quantum photonic sensor based on Hong-Ou-Mandel interference'' Optics Express 23, 16008–16023 (2015).

[50] G. S. Thekkadath, M. E. Mycroft, B. A. Bell, C. G. Wade, A. Eckstein, D. S. Phillips, R. B. Patel, A. Buraczewski, A. E. Lita, T. Gerrits, S. W. Nam, M. Stobińska, A. I. Lvovsky, and I. A. Walmsley, ``Quantum-Enhanced Interferometry with Large Heralded Photon-Number States'' npj Quantum Information 6, 1–6 (2020).

[51] A. D. Manukhova, A. A. Rakhubovsky, and R. Filip, ``Pulsed atom-mechanical quantum non-demolition gate'' npj Quantum Information 6, 4 (2020).

[52] Andreas Jöckel, Aline Faber, Tobias Kampschulte, Maria Korppi, Matthew T. Rakher, and Philipp Treutlein, ``Sympathetic Cooling of a Membrane Oscillator in a Hybrid Mechanical-Atomic System'' Nature Nanotechnology 10, 55–59 (2015).

[53] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W. Lehnert, and C. A. Regal, ``Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit'' Physical Review Letters 116, 063601 (2016).

[54] Philipp Christoph, Tobias Wagner, Hai Zhong, Roland Wiesendanger, Klaus Sengstock, Alexander Schwarz, and Christoph Becker, ``Combined Feedback and Sympathetic Cooling of a Mechanical Oscillator Coupled to Ultracold Atoms'' New Journal of Physics 20, 093020 (2018).

[55] A M Jayich, J C Sankey, K Børkje, D Lee, C Yang, M Underwood, L Childress, A Petrenko, S M Girvin, and J G E Harris, ``Cryogenic Optomechanics with a Si 3 N 4 Membrane and Classical Laser Noise'' New Journal of Physics 14, 115018 (2012).

[56] T P Purdy, R W Peterson, P-L Yu, and C A Regal, ``Cavity Optomechanics with Si 3 N 4 Membranes at Cryogenic Temperatures'' New Journal of Physics 14, 115021 (2012).

[57] Yong-Su Kim, Oliver Slattery, Paulina S. Kuo, and Xiao Tang, ``Conditions for Two-Photon Interference with Coherent Pulses'' Physical Review A 87, 063843 (2013).

[58] Simanraj Sadana, Debadrita Ghosh, Kaushik Joarder, A. Naga Lakshmi, Barry C. Sanders, and Urbasi Sinha, ``Near-100% Two-Photon-like Coincidence-Visibility Dip with Classical Light and the Role of Complementarity'' Physical Review A 100, 013839 (2019).

[59] G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen, and E. S. Polzik, ``Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement'' Nature Physics 11, 389–392 (2015).

[60] Han Bao, Junlei Duan, Shenchao Jin, Xingda Lu, Pengxiong Li, Weizhi Qu, Mingfeng Wang, Irina Novikova, Eugeniy E. Mikhailov, Kai-Feng Zhao, Klaus Mølmer, Heng Shen, and Yanhong Xiao, ``Spin squeezing of $10^{11}$ atoms by prediction and retrodiction measurements'' Nature 581, 159–163 (2020).

[61] N J Cerf, G Leuchs, and E S Polzik, ``Quantum Information with Continuous Variables of Atoms and Light'' Published by imperial college press distributed by world scientific publishing co. (2007).

[62] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn, ``Linear Optical Quantum Computing with Photonic Qubits'' Reviews of Modern Physics 79, 135–174 (2007).

[63] S. L. Christensen, J.-B. Béguin, E. Bookjans, H. L. Sørensen, J. H. Müller, J. Appel, and E. S. Polzik, ``Quantum interference of a single spin excitation with a macroscopic atomic ensemble'' Phys. Rev. A 89, 033801 (2014).

[64] Álvaro Cuevas, Juan Camilo López Carreño, Blanca Silva, Milena De Giorgi, Daniel G. Suárez-Forero, Carlos Sánchez Muñoz, Antonio Fieramosca, Filippo Cardano, Lorenzo Marrucci, Vittorianna Tasco, Giorgio Biasiol, Elena del Valle, Lorenzo Dominici, Dario Ballarini, Giuseppe Gigli, Paolo Mataloni, Fabrice P. Laussy, Fabio Sciarrino, and Daniele Sanvitto, ``First observation of the quantized exciton-polariton field and effect of interactions on a single polariton'' Science Advances 4, eaao6814 (2018).

[65] D. M. Jackson, D. A. Gangloff, J. H. Bodey, L. Zaporski, C. Bachorz, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre, ``Quantum sensing of a coherent single spin excitation in a nuclear ensemble'' Nature Physics 17, 585–590 (2021).

[66] Vladimir B. Braginsky, Yuri I. Vorontsov, and Kip S. Thorne, ``Quantum Nondemolition Measurements'' Science 209, 547–557 (1980).

[67] Itay Shomroni, Liu Qiu, Daniel Malz, Andreas Nunnenkamp, and Tobias J. Kippenberg, ``Optical Backaction-Evading Measurement of a Mechanical Oscillator'' Nature Communications 10, 2086 (2019).

[68] Sungkun Hong, Ralf Riedinger, Igor Marinković, Andreas Wallucks, Sebastian G. Hofer, Richard A. Norte, Markus Aspelmeyer, and Simon Gröblacher, ``Hanbury Brown and Twiss Interferometry of Single Phonons from an Optomechanical Resonator'' Science 358, 203–206 (2017).

[69] Andrey A. Rakhubovskyand Radim Filip ``Photon-Phonon-Photon Transfer in Optomechanics'' Scientific Reports 7, 46764 (2017).

[70] S. Kiesewetter, R. Y. Teh, P. D. Drummond, and M. D. Reid, ``Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis'' Physical Review Letters 119, 023601 (2017).

[71] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt, ``Cavity optomechanics'' Rev. Mod. Phys. 86, 1391–1452 (2014).

[72] Radim Filip ``Quantum Interface to a Noisy System through a Single Kind of Arbitrary Gaussian Coupling with Limited Interaction Strength'' Physical Review A 80, 022304 (2009).

[73] Andrey A. Rakhubovsky, Nikita Vostrosablin, and Radim Filip, ``Squeezer-Based Pulsed Optomechanical Interface'' Physical Review A 93, 033813 (2016).

[74] Nicolas J. Cerfand Michael G. Jabbour ``Two-boson quantum interference in time'' Proceedings of the National Academy of Sciences 117, 33107–33116 (2020).

[75] Kenzo Makino, Yosuke Hashimoto, Jun-ichi Yoshikawa, Hideaki Ohdan, Takeshi Toyama, Peter van Loock, and Akira Furusawa, ``Synchronization of optical photons for quantum information processing'' Science Advances 2 (2016).

[76] Roy J. Glauber ``Optical Coherence and Photon Statistics'' John Wiley & Sons, Ltd chapter 2 (2006).

[77] Jan Peřina ``Quantum Statistics of Linear and Nonlinear Optical Phenomena'' Springer, Dordrecht (1991).

[78] Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd, ``Gaussian Quantum Information'' Reviews of Modern Physics 84, 621–669 (2012).

[79] Carlos Navarrete-Benlloch ``An Introduction to the Formalism of Quantum Information with Continuous Variables'' Morgan & Claypool Publishers (2015).

[80] Thomas M. Karg, Baptiste Gouraud, Chun Tat Ngai, Gian-Luca Schmid, Klemens Hammerer, and Philipp Treutlein, ``Light-Mediated Strong Coupling between a Mechanical Oscillator and Atomic Spins 1 Meter Apart'' Science 369, 174 (2020).

[81] Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic, Claude Fabre, and Julien Laurat, ``Remote Creation of Hybrid Entanglement between Particle-like and Wave-like Optical Qubits'' Nature Photonics 8, 570–574 (2014).

[82] Kenzo Makino, Yosuke Hashimoto, Jun-ichi Yoshikawa, Hideaki Ohdan, Takeshi Toyama, Peter van Loock, and Akira Furusawa, ``Synchronization of Optical Photons for Quantum Information Processing'' Science Advances 2, e1501772 (2016).

[83] Alexander E. Ulanov, Ilya A. Fedorov, Demid Sychev, Philippe Grangier, and A. I. Lvovsky, ``Loss-Tolerant State Engineering for Quantum-Enhanced Metrology via the Reverse Hong–Ou–Mandel Effect'' Nature Communications 7, 11925 (2016).

[84] Petr Marek, Petr Zapletal, Radim Filip, Yosuke Hashimoto, Takeshi Toyama, Jun-ichi Yoshikawa, Kenzo Makino, and Akira Furusawa, ``Direct Observation of Phase-Sensitive Hong-Ou-Mandel Interference'' Physical Review A 96, 033830 (2017).

[85] M. R. Vanner, I. Pikovski, and M. S. Kim, ``Towards Optomechanical Quantum State Reconstruction of Mechanical Motion'' Annalen der Physik 527, 15–26 (2015).

[86] C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, ``Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit'' Physical Review Letters 117, 100801 (2016).

[87] Mingtao Cao, Félix Hoffet, Shuwei Qiu, Alexandra S. Sheremet, and Julien Laurat, ``Efficient reversible entanglement transfer between light and quantum memories'' Optica 7, 1440–1444 (2020).

[88] Y.-F. Pu, N. Jiang, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan, ``Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells'' Nature Communications 8, 15359 (2017).

[89] Jonathan Kohler, Justin A. Gerber, Emma Dowd, and Dan M. Stamper-Kurn, ``Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction'' Phys. Rev. Lett. 120, 013601 (2018).

[90] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, ``Cooling of a levitated nanoparticle to the motional quantum ground state'' Science 367, 892–895 (2020).

[91] V. V. Kuz'min, A. N. Vetlugin, and I. V. Sokolov, ``Control of parameters of quantum memory for light in a cavity configuration'' Optics and Spectroscopy 119, 1004–1009 (2015).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 18:33:19). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-28 18:33:20).