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Fluctuation theorems allow one to make
generalised statements about the be-
haviour of thermodynamic quantities in
systems that are driven far from thermal
equilibrium. In this article we use Crooks’
fluctuation theorem to understand the en-
tropy production of a continuously mea-
sured, zero temperature quantum system;
namely an optical cavity measured via ho-
modyne detection. At zero temperature,
if one uses the classical definition of in-
verse temperature β, then the entropy pro-
duction becomes divergent. Our analysis
shows that the entropy production can be
well defined at zero temperature by con-
sidering the entropy produced in the mea-
surement record leading to an effective in-
verse temperature βeff which does not di-
verge. We link this result to the Cramér-
Rao inequality and show that the product
of the Fisher information of the work dis-
tribution with the entropy production is
bounded below by half of the square of
the effective inverse temperature βeff . This
inequality indicates that there is a mini-
mal amount of entropy production that is
paid to acquire information about the work
done to a quantum system driven far from
equilibrium.

1 Introduction

The laws of thermodynamics provide a tremen-
dously useful set of scientific tools. They tell
us which natural physical processes are possi-
ble, show us that our machines have efficiency
limits, and arguably form a basis for our under-
standing of the arrow of time. In the preced-
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ing decades the scope of thermodynamics has en-
larged to include nonequilibrium systems, quan-
tum systems, and cosmological systems such as
black holes. Thermodynamics is a truly uni-
versal theory. In particular, quantum thermo-
dynamics is a rapidly evolving discipline bring-
ing together concepts from quantum information,
many-body physics, and nonequilibrium thermo-
dynamics [1, 2].

For small thermalising systems with few inter-
acting degrees of freedom, fluctuations will dom-
inate and the thermodynamic quantities must be
characterised by stochastic random variables [3].
Investigations into these fluctuations has estab-
lished a new understanding regarding constraints
on entropy production and the second law of ther-
modynamics [4, 5, 6, 7]. These seminal results,
which are now colloquially known as fluctuation
theorems (FTs), have established a remarkable
insight; fluctuations in microscopic systems that
are comparable in scale to the system have a spe-
cific mathematical structure determined entirely
by the entropy production Σ [8]. Thus classical
FTs have significant implications for understand-
ing energy exchange in biology, nano-engineering,
computation and communications.

Another pertinent line of research stemming
from this body of work is the emerging field
of quantum stochastic thermodynamics (QST)
[9, 10]. Quantum systems are unique in the
sense that the measurement process is intrin-
sically connected to their stochastic behaviour
[11, 12, 13]. In QST, researchers seek to under-
stand the nature of heat Q, work W , and en-
tropy production Σ, and their associated prob-
ability distributions—P (W ), P (Q), P (Σ)—when
subject to continuous measurement. A natural
question to ask is whether continuously measured
quantum systems satisfy the classical FTs, or
whether these theorems need to be modified in ac-
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cordance with experimental findings. Given the
stochastic nature of quantum measurement, it is
interesting to consider how FTs could be incor-
porated into the frameworks of open and closed
quantum systems [14, 15, 16, 17, 18, 19, 20, 21].
Seminal results have shown that quantum mea-
surements produce entropy [22, 23, 24, 25, 26,
27, 28], and that perfect measurements cannot
be performed on quantum systems using finite
resources [29]. Further work has shown that mea-
surement can be utilised as a resource in quantum
engines for information, work extraction, and
battery charging [30, 31, 32, 33]. Importantly, the
fluctuations induced by the measurement process
satisfy several thermodynamic uncertainty rela-
tions (TURs) [34, 19] which impose strict restric-
tions on the fluctuations of thermodynamic cur-
rent [35, 36, 37]. This is particularly important
when considering the limitations of precision from
quantum measurement [38] and quantum or clas-
sical feedback [39, 40, 41, 42, 43, 44, 45]. For a
recent comprehensive review of stochastic quan-
tum thermodynamics for continuously measured
systems, please see [46].

Despite this growing body of work, it is not
yet clear how to extend FTs to the zero temper-
ature setting, T→0, where the inverse tempera-
ture β=1/kBT diverges. One could argue that
the zero temperature limit is unphysical—citing,
for example, the third law of thermodynamics, or
showing that this limit requires infinite resources
or infinite time [47]. Despite this argument, the
zero temperature limit is nonetheless a very good
approximation for optical cavities, and is of sig-
nificant practical utility in theoretical modelling
of quantum optical systems. As such, it is impor-
tant to understand how entropy production can
extended to the zero temperature limit, particu-
larly for quantum systems undergoing continuous
measurement.

One proposed solution is to use the Wigner en-
tropy, which relates β to the zero point energy, en-
suring Σ remains well defined at zero temperature
[48, 27]. Wigner entropy is defined in terms of
a quasi-probability distribution over phase-space,
and for pure states can be non-zero [49]). Inter-
estingly, Wigner entropy has been shown to sat-
isfy an integral fluctuation theorem, thus extend-
ing its application to stochastic systems driven far
from equilibrium. However, what is lacking from
the Wigner entropy description is its relationship

to stochastic fluctuations arising in the measure-
ment record from continuous measurement, as is
typically described in QST.

In this paper we take a new approach and show
that both entropy production, Σ, and FTs can be
well defined for continuously measured quantum
systems at zero temperature by considering the
entropy of the measurement record. This is done
in the context of a single mode optical cavity,
driven from an initial vacuum state to a nonequi-
librium steady-state, and monitored continuously
via homodyne detection (similar to the models
considered in [22, 48, 27]). Assuming that the op-
tical cavity is driven from an initial thermal equi-
librium state to a non-equilibrium steady-state,
then Σ is related to the difference between work
done W during the process and the Helmholtz
free energy of the system ∆F [5]:

Σ = β(W −∆F ). (1)

We show that if one defines Σ using the classical
Shannon entropy of the measurement record used
to infer the estimated work W , then to satisfy
Eq. (1), one must define an effective inverse tem-
perature, βeff , which is determined by the mea-
surement efficiency η, the mean photon number
of the cavity n, and the average energy in the
zero temperature bath. We further show that this
definition produces results that agree with those
derived using Wigner entropy [48, 27]. Interest-
ingly, while βeff differs from the classical inverse
temperature, it agrees in the high-temperature
limit when one has access to perfect measure-
ments, corresponding to βeff → 1/kBT .

As a final consideration in this article, we seek
to understand the relationship between the en-
tropy production Σ and what we can infer about
the average work from the measured signal. A
natural information measure to consider is the
classical Fisher information (FI) of the average
measured work I(W ). We compute the FI from
the observed work statistics and relate it to the
average entropy produced Σ. We derive an in-
equality that bounds the product of Σ and the
I(W ) below by half the effective temperature
squared β2

eff/2. Thus, for a given FI, only a given
region of possible Σ values are permitted. This
highlights the direct trade-off between informa-
tion gain and entropy production in such contin-
uously measured systems.
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2 System Dynamics and Thermody-
namics
We begin by considering a single mode cavity,
with frequency ω and annihilation (creation) op-
erators â (â†). The cavity is coherently driven by
an AC driving field, on resonance with a pump-
frequency ω along the phase quadrature q̂, with
a maximum amplitude g. The Hamiltonian de-
scribing this cavity system is

Ĥ(t) = h̄ωâ†â+ g sin(ωt)λ(t)q̂ , (2)

where the single mode phase quadratures are
q̂=
√
h̄/2ω(â + â†) and p̂=i

√
h̄ω/2(â − â†), and

satisfy [q̂, p̂] = ih̄. The sin(ωt) term ensures that
our optical field will physically couple to our cav-
ity on resonance. The power of the drive is time
dependent λ(t); initially equal to zero λ(0)=0 (i.e.
the drive is turned off) and then ramps up to
λ(τ)=1 (the drive is turned on). Unsurprisingly,
when the drive is on λ(t) 6= 0, the AC drive does
work W on the internal cavity state ρ̂ due to the
continuous oscillatory term.

We will further assume that our system is
weakly coupled to a thermal reservoir of Bosons
which evolves under the Born-Markov assump-
tion. The strength of this coupling is γ. We char-
acterise the mean photon number of the bath via
the Bose-Einstein distribution n=(exp(µ)− 1)−1,
where µ=h̄ω/kBT . Notably n will approach zero
when T→0 indicating the environment is a vac-
uum. We can describe the evolution of the in-
ternal cavity state via the local Lindblad master
equation, which in the Schrödinger picture

dρ̂

dt
= i

h̄
[Ĥ(t), ρ̂] + γ−D[â]ρ̂+ γ+D[â†]ρ̂ , (3)

where we have D[â]ρ̂= âρ̂â† − (â†ρ̂+ ρ̂â†)/2
as the standard Lindblad dissipator, and
γ−= γ(n+ 1) and γ+=γn are the emis-
sion/absorption rates respectively. Initially, the
internal cavity state is described by a thermal
Gibbs state ρ̂i=e−µâ

†â/Z where Z=tr(e−µâ†â) is
the Partition function.

From the perspective of quantum thermody-
namics and the local Lindlad master equation,
the average power 〈dW 〉 from the drive in the
weak coupling limit is [2]

〈dW 〉 =
〈
∂Ĥ(t)
∂t

〉
≈ gωλ(t)〈q̂(t)〉 , (4)

Figure 1: (Top) The Wigner function for the initial and
final states. The initial state is a thermal state cen-
tred at the origin, whereas the final state corresponds
to a displaced thermal state. (Bottom) If we plot the
power 〈dW 〉 against the dissipated heat 〈dQ〉 for the
forward (Red) and reverse (Green) paths. When the
path intersects the black dashed line, the system is
in a steady-state. At the origin, this corresponds to
the equilibrium steady-state, where all other cases when
〈dW 〉 = −〈dQ〉 6= 0 correspond to NESS. The simula-
tion parameters are n = 1, γ = 2, and g = 1. Here
we will assume the power ramp of the drive λ(t) =
(exp(−σ(t− t0) + 1)−1 follows a sigmoid profile where
σ controls the steepness of the ramp and t0 = τ/2 cor-
responds the centre of the ramp.

where we have only included the dominant term
proportional to ω. The average work done over
the time t ∈ (0, τ ] is given by the integral
〈W 〉 =

∫ τ
0 〈dW 〉dt. If we substitute the Hamilto-

nian Eq. (2) into this expression, and transform
into the interaction picture under the rotating
wave approximation, we obtain an expression for
the average work

〈W 〉 = gω

∫ τ

0
dtλ(t)〈q̂(t)〉 . (5)

Thus we can directly infer W by measuring the
evolution in q̂ in this frame.

The dynamics in this picture are therefore quite
straightforward; the system is initially in a Gibbs
state, centred at the origin of phase space which
is then driven over a period of time τ , to a dis-
placed Gibbs state—in the rotating frame with
λ(t)=1— with a mean steady-state displacement
〈q̂〉ss = 2g/ωγ as depicted in Figure 1. This dis-
placed thermal state corresponds to a nonequilib-
rium steady-state (NESS) given that the average
power added 〈dW 〉 is equal the average dissipated
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heat current 〈dQ〉—in this case, due to photons
leaking out of the cavity per unit time and is com-
puted via

〈dQ〉 = d〈Ĥ(t)〉
dt

≈ h̄ωγ(n− 〈n̂〉) , (6)

again where we have only included the domi-
nant term proportional to ω. This means that
the average change in internal energy 〈dU〉 =
〈dW 〉 + 〈dQ〉, is zero. Thus the non equilibrium
steady-state occurs when 〈dW 〉 = −〈dQ〉. If we
plot these two processes against one another, we
can easily see where the steady-states emerge and
the energy cycle traced out by this system in Fig-
ure 1.

Lastly, we can compute the change in
Helmholtz free energy ∆F , which is defined as
the difference between the change in internal en-
ergy ∆U and the change in the Von-Neumann
entropy in the system ∆S

∆F = ∆U − T∆S , (7)

where T is the temperature system. It is easy
to show that the ∆S=0 since ρ̂i and ρ̂f are
both thermal, and displaced thermal states re-
spectively. Therefore one can readily show that
the change in Helmholtz free energy between
λ(0) = 0 and λ(τ) = 1 as

∆F = −h̄ω (〈n̂〉f − 〈n̂〉0) = −2h̄ωg2

γ2 , (8)

where 〈n̂〉0 is the initial and 〈n̂〉f the final mean
photon numbers in the cavity. Thus ∆F of the
cavity corresponds to the change in photon occu-
pation of the cavity, as we would expect.

3 Stochastic Quantum Thermody-
namics and Measurements
Now that we have described the dynamics and
energetics of the system, we can turn to the mea-
surement scheme. In this example, we can con-
tinuously measure the work done on the system
using homodyne detection of the phase quadra-
ture q̂ in Eq. (5). During the evolution of a quan-
tum system, continuous quantum measurement
conditions the evolution of the system ρ̂J on the
measurement outcome—where subscript J indi-
cates that this operator has been conditioned on
the homodyne signal Jhome(t). This stochastic
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Figure 2: a) Here we consider a cavity with frequency ω
that is coherently driven by a time-dependent field Ĥ(t)
(green photons). The cavity is incoherently coupled to
a thermal bath with mean photon number n and decay
rate γ (red photons). The thermal bath and the LO lead
to white noise appearing at the measurement detector
[13]. b) The evolution of X for the forward (red) and
backward (green) simulation. The simulation parame-
ters are the same as those used in Figure 1. The solid
corresponds to the average path taken corresponding to
E[X] = 〈q̂(t)〉 and computed by the unconditional mas-
ter equation. The opaque lines are a samples of estimate
X derived from the filtered homodyne current Jhom(t).
Here we have used the same ramp λ(t) used in Figure 1
and is depicted as the black dashed line.

conditioning is well understood for many continu-
ous measurement protocols, including homodyne
detection [13]. Here the evolution of conditional
state ρ̂J is described by an Itô stochastic master
equation with a white noise input [50, 13]

dρ̂J = − i
h̄

[ĤI , ρ̂]dt+ γ(n+ 1)D[â]ρ̂dt

+ γnD[â†]ρ̂dt+
√
γη

L
H[(n+ 1)â− nâ†]ρ̂dW ,

(9)

where dW is a Wiener Process with E[dW]=0,
Var[dW]=dt, the coefficient L=2n+1, and the su-
peroperator is H[â]ρ̂= âρ̂+ ρ̂â† − tr

[
âρ̂+ ρ̂â†

]
.

The homodyne measurement will provide a con-
stant, albeit, stochastic readout of the phase
quadrature 〈q̂J〉, which can be used to infer 〈W 〉
via Eq. (5). We can compute this analytically
using the stochastic Heisenberg equation of mo-
tion for 〈q̂J〉 which is an Itô stochastic differential
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equation (SDE)

d〈q̂J〉 = g

ω
λ(t)dt− γ

2 〈q̂J〉dt

+
√

2γηω
h̄L

(
∆q̂2

J −
h̄L

2ω

)
dW , (10)

where ∆q̂2
J = 〈q̂2

J〉 − 〈q̂J〉2 is the conditional vari-
ance of q̂J due to the measurement action on the
quantum dynamics. This setup is depicted fully

in Figure 2a.
Given that our initial state is a thermal state,

and thus a Gaussian state, the additional stochas-
tic behaviour—which is Gaussian white noise—
will preserve the Gaussian nature of our statistics
in 〈q̂J〉. As a result, the stochastic dynamics will
only depend up to the second order moment ∆q̂2

J

[51]. Making use of Itô’s lemma, we derive the
Heisenberg equation of motion for the variance
and we obtain

d∆q̂2
J = −γ∆q2

Jdt+ γh̄L

2ω dt− 2γηω
h̄L

(
∆q̂2

J −
h̄L

2ω

)2
dt+

√
2γηω
h̄L

dWSkew[q̂J ] ,

where Skew[q̂J ] =
(
〈q̂3
J〉 − 3〈q̂2

J〉〈q̂J〉+ 2〈q̂J〉3
)
is

the third order moment (the skewness) which
vanishes for Gaussian states. Therefore the
variance obeys an ordinary differential equation
(ODE), which we can solve given the initial vari-
ance ∆q̂2

J(0) = h̄L/2ω. For all times, the solution
to the variance ODE is

∆q̂2
J = h̄L

2ω . (11)

If we now substitute this result into the SDE for
〈q̂J〉, the stochastic term also vanishes, permit-
ting the general deterministic solution to the first
moment Eq. (10)

〈q̂J〉 = g

ω

∫ τ

0
e−γ(τ−t)/2λ(t)dt . (12)

This tells us that the measurement apparatus
does not condition the dynamics of the first mo-
ment. Using this result we can finally compute
the average work done on the cavity by the oscil-
latory drive using Eq. (5)

〈W 〉 = g2
∫ τ

0

∫ τ

0
dtdt′λ(t)λ(t′)e−γ(t−t′)/2 . (13)

In a real experiment, the homodyne signal is
generated by taking the continuum limit of the
point process photocounts to a continuous pho-
tocurrent with white noise. If the local oscillator
has classical intensity fluctuations then these will
be cancelled out when the difference in the pho-
tocurrents is taken; this is commonly known as
balanced homodyne detection. Experimentally,
we do not measure 〈q̂J〉 at each time step t, but

rather infer a noisy classical estimate X(t) which
is derived from the observed homodyne current
Jhom(t). In an imperfect homodyne detection, we
mix a strong local oscillator (LO) with the output
of the cavity. Once the LO has been subtracted
out and removed, the signal homodyne current
Jhom(t) [50, 13]

Jhom(t) = γη〈â+ â†〉J +
√
γηLξ(t) , (14)

where 0 ≤ η ≤ 1 is the measurement efficiency,
ξ(t)=dW/dt is a delta correlated white noise and
satisfies 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉=δ(t − t′) and
has units of 1/

√
dt. Any fluctuations from the

bath will show up as noise in our measurement
result and limit the precision with which we can
infer 〈q̂J〉. Thus, there will necessarily be errors
due to these fluctuations in our estimate of the
average work W .

To determine the statistics of the work distri-
butions, we must first find the distributions as-
sociated with our estimate X(t). This can be
found by defining the associated SDE dX(t) of
the estimate obtained from the homodyne cur-
rent Jhom(t), which is given by the classical Itô
SDE

dX(t) = g

ω
λ(t)dt− γ

2X(t)dt+
√
γh̄L

2ωη dW ,

(15)

where dW is another Wiener process. This
SDE is a time-dependent Orstein-Ulenbeck pro-
cess and preserves the Gaussian nature of X(t)
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[51]. The general solution to this SDE is

X(τ) = X(0)e−γτ/2 + 〈q̂J〉+
√
γh̄L

2ωη e
−γτ/2f(τ) ,

(16)

where f(τ) =
∫ τ

0 dWeγt/2 is the integrated noise
and has units of

√
dt. We can therefore deter-

mine the probability distribution of each X given
〈q̂J〉 at each time step using only the first two
moments. Unsurprisingly, the mean is trivial and
satisfies X=〈q̂J〉 as we would expect given the
initial condition X(0)=0. In order to find the
second order moment ∆X2 we need to look at
the fluctuating term in Eq. (16), which for a non-
anticipating function can be written as [51]

∆X2 = γh̄L

2ωη e
−γτf(τ)2 . (17)

If we now take the average and make use the of
the two-time correlation function of f(t) [51]

f(t)f(t′) =
∫ min(t,t′)

0
dτeγτ , (18)

then we obtain the average variance

∆X2 = γh̄L

2ωη . (19)

We can bring all this together to define the prob-
ability distribution over X(t) given 〈q̂J〉 as the
Gaussian distribution

P (X(t)|〈q̂J〉) = N exp
(
−ωη(X(t)− 〈q̂J〉)2

h̄L

)
,

(20)
where N =

√
ωη/πh̄L is the normalisation con-

stant. This distribution highlights a key compo-
nent of quantum estimation theory which states
that even when using a perfect measurement η=1
at zero temperature L = 1/2, the precision of the
estimate X(t) of 〈q̂J〉 is bounded by the Heisen-
berg limit. These estimated trajectories are nu-
merically simulated and depicted in Figure 2b.

We now turn to finding the estimated work dis-
tributions P (W ) using the general solution to the
stochastic variable X(t). The estimated work W
derived from the noisy signal X(t) can be used to
infer the average 〈W 〉 determined by the quan-
tum dynamics. The estimated work W is given
in by integrating Eq. (16)

W = gω

∫ τ

0
dtλ(t)X(t) . (21)
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Figure 3: a) We plot the measured work distribution for
both the forwards (red) and backwards (green) trajec-
tories using a total of 20000 simulations. Note they are
not symmetric about W = 0 which indicates a non-zero
change in ∆F = −0.5—for the simulation parameters—
which corresponds to the intersection of these two dis-
tributions [5]. b) We plot W as a function of time for
the forwards and backwards trajectories. Given that ρ̂f

is a NESS, it requires constant work to maintain equilib-
rium. We can see that as time increases in the forward
direction, the width in the estimated works diffuse due
to the cumulative effects of energy fluctuations in the
measurement signal, thus providing visual justification
for inequality. (34). In the reverse trajectories, the work
at τ initially equals zero, but quickly diffuses as the drive
is on. When the drive is turned off, the work stops at
some finite value.

If we take the average of this estimate—and ig-
nore the stochastic force term using the assump-
tion X(0) = 0—we find that the inferred average
work corresponds to the average work done on
the cavity given by Eq. (13)

W = 〈W 〉 . (22)

Given that the work is also a non-anticipating
function, the variance can also be defined by the
stochastic term in Eq. (21). If we again make use
of the two-time correlation function Eq. (18) and
integrate, then we obtain the average variance in
the estimate work

∆W 2 = g2ωh̄L

η

∫ τ

0

∫ τ

0
dtdt′λ(t)λ(t′)e−γ(t−t′)/2 ,

(23)

which is more compactly written in terms of the
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average work

∆W 2 = h̄ωL

η
〈W 〉 . (24)

If we now integrate over the range t ∈ (0, τ ] such
that the system has been given enough time to
reach the NESS with λ(τ)=1, then the inferredW
is well defined by a Gaussian distribution. Thus,
bringing all this together we can obtain an ex-
pression for the work distribution

P (W ) =
√

η

2πh̄ωL〈W 〉 exp
(
η(W − 〈W 〉)2

2h̄ωL〈W 〉

)
.

(25)
The numerical simulation of these results along
with the analytic prediction Eq. (25) are depicted
in Figure 3a showing perfect agreement.

4 Crooks’ Theorem and Entropy Pro-
duction
We have so far described in detail the dynamics
and estimation of the thermodynamic parameters
needed to determine the Σ in this model. Now
we can make use of Crooks’ theorem [5] which
tells us that the ratio of the forward PF (W ) and
the backward PB(−W ) work distributions are di-
rectly related to the entropy production Σ

PF (W )
PB(−W ) = eΣ , (26)

which holds under all the assumptions outlined in
Section 2 and Section 3. Here the reverse observa-
tions X̃ are generated by starting in the final state
ρ̂f with the drive on λ(t)=1, and then reversing
the ramp over the interval t ∈ (τ, 0], until the sys-
tem settles back into the initial steady-state ρ̂i;
this is otherwise known as a local time-reversal
transformation [52]. With the work distribution
calculated in Eq. (25), it is straight forward to
compute the forward PF (W ) and backward dis-
tribution PR(−W ). Taking the ratio of these dis-
tributions in accordance with Crook’s theorem
leads to

PF (W )
PB(−W ) = exp

η(W −∆F )
h̄ω
(
n+ 1

2

)
 , (27)

where 2∆F= 〈W 〉R − 〈W 〉F is the change in
Helmholtz Free energy and coincides with the in-
tersection of the two work distributions [5]. Here
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Figure 4: A log plot of the logarithm of the ratio of
PF (W )/PB(−W ) as a function of the estimated W .
The solid black line corresponds to our analytic results
derived in Eq. (27) where the red dashed line corresponds
numerical fit derived from our simulations in Figure (2).
The gradient corresponds to βeff and the intercept cor-
responds to −βeff∆F .

〈W 〉F and 〈W 〉B are the mean of the forward
and backward distributions using Eq. (25) respec-
tively. We have also assumed that ∆WF ≈ ∆WR

which is valid in the limit where both the for-
wards and backwards dynamics have spent ap-
proximately equal time in their initial and fi-
nal states as depicted in Figure 3a and Figure 2b.
Thus, we can directly associate the exponent with
the entropy production

Σ = η(W −∆F )
h̄ω
(
n+ 1

2

) . (28)

We confirm these results by plotting the analytic
solution derived above with the numerically fitted
results using our simulations considered above.
The results of this are depicted in Figure 4 which
shows the log plot of Eq. (27) where the gradient
corresponds to effective temperature

βeff = η

h̄ω
(
n+ 1

2

) , (29)

which agrees—up to the measurement efficiency
η—with that derived from the Wigner Entropy
Ref. [48] and ensures the entropy production does
not diverge at zero temperature n=0. It is impor-
tant to note that we are not arguing that βeff is
the inverse temperature—which is the bath tem-
perature T—but that it is related to the stochas-
tic fluctuations in the inferred work W and is
determined by the energy of the bath and the
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measurement efficiency. When n=0, the presence
of zero point energy ensures that βeff=2/h̄ω and
thus leads to a well defined entropy production.

Unlike the Wigner Entropy derivation, our
derivation shows that βeff depends explicitly on
the measurement efficiency, highlighting that the
effective temperature is directly related to the
measurement record. When η = 0, no informa-
tion about the work is gained, and thus the mea-
sured entropy production in zero. Given that the
effective inverse temperature βeff is determined
by the fluctuations in the measurement record,
we can therefore think of this as the entropy pro-
duced to acquire the estimate of the work.

We can now compute the average entropy pro-
duction in the forwards direction by computing
the relative Shannon entropy of the work distri-
butions from our Eq. (27)

Σ =
∫
dWPF (W ) log

(
PF (W )
PB(−W )

)
, (30)

= βeff
(
WF −∆F

)
. (31)

We further verify this result by numerically find-
ing the ratio of the forward and backward work
distributions plotted in Figure 3a and plotting it
against the Eq. (31) which is depicted in Figure 4.
Moreover it allows us to define the inequality of
the entropy production

Σ ≥ βeffWF . (32)

On closer inspection, one will recognise the RHS
of this inequality as equal to Σ≥2〈W 〉2F /∆W 2

F ,
where the variance is given by Eq. (24), which
is consistent with TURs [8]. Thermodynamic
uncertainty relations quantify the fundamental
lower bound on the trade-off between preci-
sion with which thermodynamic quantities can
be measured—namely the signal to noise ratio
(SNR)—and entropy production. This precision
is related to the integrated current exchanged
during an out-of-equilibrium process over some
time interval, which in this case is related to the
average work inferred via the measured homo-
dyne signal. Therefore we can think of Eq. (30)
as a TUR that is the minimum amount of en-
tropy produced when estimating the work WF

in a temperature quantum system under the de-
scribed dynamics. Furthermore, as the average
amount of work increases, so to does the entropy
which corresponds to a decrease in the SNR. This

is due to the diffusive nature of work distribution
Eq. (25) and can be seen clearly in the Figure 3c.
When driven far from equilibrium the cavity re-
quires constant work be done to maintain the
NESS. However due to the measurement fluctua-
tions arising from the homodyne signal, this esti-
mate is stochastic and diffuses in time.

5 Classical Fisher Information (FI) and
a new inequality
We have thus far characterised thermodynamic
quantities such as work and entropy production
in a low temperature, quantum optical cavity, by
applying classical estimation theory to the ho-
modyne detection measurement record. We now
quantify how much signal (or information) is car-
ried by our estimation W of the average work
done 〈W 〉F in the forward process, using classi-
cal FI I(〈W 〉F ). Mathematically, the FI of the
work distribution is defined

I(WF ) = −E
[
∂2

∂W
2 log(P (W ))

∣∣∣∣∣WF

]
, (33)

which we can compute using Eq. (25) to obtain

I(WF ) = βeff

2WF
+ 1
W

2
F

≥ 1
∆W 2

, (34)

which is the Cramér-Rao inequality for large WF

as the estimated work becomes an unbiased esti-
mator. The Cramér-Rao inequality tells us that
the precision with which we can estimate the av-
erage work WF decreases with the amount of
work done due to cumulative effect of fluctua-
tions in our measurement record. As an interest-
ing aside, this result may be useful in understand-
ing the relation to the precision in time keeping,
which is the conjugate variable of energy. As
more heat is dissipated, the Fisher information
in the energy estimate decreases, but arguably in-
creases in the precision of time [53, 54, 55]. The
effect of this can be seen in the diffusive nature
of the estimated work in Figure 2d for increasing
time.

By itself, the Cramér-Rao inequality alone is
unsurprising, but we can now go a step further
and combine the quantum inequality (30) and the
Cramér-Rao inequality (34) under a single bound

I(WF )Σ ≥ β2
eff
2 . (35)
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Figure 5: Trade off between classical FI and the entropy
production of measurements of the average work W .
The green region is satisfies the inequality, whereas the
purple region does not.

This inequality tells us that the product of the
information about WF which is obtained by pro-
ducing entropy Σ must always be greater than
half of the squared effective inverse tempera-
ture. The interpretation of this inequality is
straight forward: estimating a thermodynamic
variable such as work WF requires that a mini-
mum amount of entropy be produced in the mea-
surement process. However this measurement is
not error free due to cumulative effect of fluctua-
tions in the measurement record due to non-zero
effective temperature of the bath. Thus, greater
information I(WF ) requires lowering the aver-
age entropy production, but at the quantum limit
with unit efficiency η=1, this cannot be reduced
to zero: there will always be errors in the mea-
surement record producing entropy as depicted in
Figure 5.

6 Conclusion

In this article we have sought to establish how the
entropy production for zero temperature quan-
tum systems can be defined. Using stochastic
quantum thermodynamics we have shown that
for a zero temperature optical cavity subject to
homodyne detection, the inverse temperature β
is replaced by the effective inverse temperature
βeff which is related to the zero point energy of
the environment. This effective temperature does
not diverge at zero temperature and thus ensures
that the estimated entropy production is well de-
fined even as the environment approaches zero

temperature. This result further corroborates the
effective temperature derived using the Wigner
entropy [48, 27]. The implication of this work
is that it is physically meaningful to define en-
tropy production using continuous measurement
records and estimations of thermodynamic quan-
tities. In doing so, the role of the measurement
device is seen to be critical, as it sets the nature of
the measured fluctuations. Furthermore, the en-
tropy contained in the measurement record con-
nects Crooks’ fluctuation theorem at the quan-
tum limit to the Cramér Rao bound, under a
single information inequality (35). This inequal-
ity fundamentally bounds the trade-off between
Fisher information and entropy production for
a zero temperature quantum system subject to
continuous homodyne measurement. From this
we can see that measuring a higher average en-
tropy production necessarily implies lower FI in
the measured signal. Thus higher entropy coin-
cides with lower precision and agrees with the
standard interpretation of the TUR. Finally, our
results hold for Gaussian states, weakly coupled
to the bath, with a linear Hamiltonian. It will be
interesting to consider in future work whether it
also holds in the strong coupling limit [56], and
for higher order Hamiltonians containing dissipa-
tive phase transitions [57, 58].
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