Entropy production and fluctuation theorems in a continuously monitored optical cavity at zero temperature

Michael J. Kewming1 and Sally Shrapnel2

1School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
2Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, QLD 4072 Australia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Fluctuation theorems allow one to make generalised statements about the behaviour of thermodynamic quantities in systems that are driven far from thermal equilibrium. In this article we use Crooks' fluctuation theorem to understand the entropy production of a continuously measured, zero temperature quantum system; namely an optical cavity measured via homodyne detection. At zero temperature, if one uses the classical definition of inverse temperature $\beta$, then the entropy production becomes divergent. Our analysis shows that the entropy production can be well defined at zero temperature by considering the entropy produced in the measurement record leading to an effective inverse temperature $\beta_{\rm eff}$ which does not diverge. We link this result to the Cramér-Rao inequality and show that the product of the Fisher information of the work distribution with the entropy production is bounded below by half of the square of the effective inverse temperature $\beta_{\rm eff}$. This inequality indicates that there is a minimal amount of entropy production that is paid to acquire information about the work done to a quantum system driven far from equilibrium.

► BibTeX data

► References

[1] John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, and Paul Skrzypczyk. ``The role of quantum information in thermodynamics—a topical review''. Journal of Physics A: Mathematical and Theoretical 49, 143001 (2016).

[2] Sai Vinjanampathy and Janet Anders. ``Quantum thermodynamics''. Contemporary Physics 57, 545–579 (2016).

[3] Udo Seifert. ``Stochastic thermodynamics, fluctuation theorems and molecular machines''. Reports on Progress in Physics 75, 126001 (2012).

[4] C. Jarzynski. ``Nonequilibrium Equality for Free Energy Differences''. Physical Review Letters 78, 2690–2693 (1997).

[5] Gavin E. Crooks. ``Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences''. Physical Review E 60, 2721–2726 (1999).

[6] Takahiro Hatano and Shin-ichi Sasa. ``Steady-State Thermodynamics of Langevin Systems''. Physical Review Letters 86, 3463–3466 (2001).

[7] Udo Seifert. ``Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem''. Physical Review Letters 95, 040602 (2005).

[8] Jordan M. Horowitz and Todd R. Gingrich. ``Thermodynamic uncertainty relations constrain non-equilibrium fluctuations''. Nature Physics 16, 15–20 (2020).

[9] Philipp Strasberg. ``Operational approach to quantum stochastic thermodynamics''. Physical Review E 100, 022127 (2019).

[10] Philipp Strasberg and Massimiliano Esposito. ``Non-Markovianity and negative entropy production rates''. Physical Review E 99, 012120 (2019).

[11] E. B. Davies. ``Quantum stochastic processes''. Communications in Mathematical Physics 15, 277–304 (1969).

[12] Crispin Gardiner and Peter Zoller. ``Quantum noise: A handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics''. Springer Science and Business Media. (2004).

[13] Howard M. Wiseman and Gerard J. Milburn. ``Quantum Measurement and Control''. Cambridge University Press. (2009).

[14] Shaul Mukamel. ``Quantum Extension of the Jarzynski Relation: Analogy with Stochastic Dephasing''. Physical Review Letters 90, 170604 (2003).

[15] Sandu Popescu, Anthony J. Short, and Andreas Winter. ``Entanglement and the foundations of statistical mechanics''. Nature Physics 2, 754–758 (2006).

[16] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel. ``Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems''. Reviews of Modern Physics 81, 1665–1702 (2009).

[17] Gabriel T. Landi and Mauro Paternostro. ``Irreversible entropy production: From classical to quantum''. Rev. Mod. Phys. 93, 035008 (2021).

[18] Michele Campisi, Peter Hänggi, and Peter Talkner. ``Colloquium: Quantum fluctuation relations: Foundations and applications''. Reviews of Modern Physics 83, 771–791 (2011).

[19] Yoshihiko Hasegawa. ``Thermodynamic Uncertainty Relation for General Open Quantum Systems''. Physical Review Letters 126, 010602 (2021).

[20] Harry J. D. Miller, M. Hamed Mohammady, Martí Perarnau-Llobet, and Giacomo Guarnieri. ``Joint statistics of work and entropy production along quantum trajectories''. Phys. Rev. E 103, 052138 (2021).

[21] P. G. Di Stefano, J. J. Alonso, E. Lutz, G. Falci, and M. Paternostro. ``Nonequilibrium thermodynamics of continuously measured quantum systems: A circuit qed implementation''. Phys. Rev. B 98, 144514 (2018).

[22] Jordan M. Horowitz. ``Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator''. Physical Review E 85, 031110 (2012).

[23] Jordan M. Horowitz and Juan M. R. Parrondo. ``Entropy production along nonequilibrium quantum jump trajectories''. New Journal of Physics 15, 085028 (2013).

[24] Jose Joaquin Alonso, Eric Lutz, and Alessandro Romito. ``Thermodynamics of Weakly Measured Quantum Systems''. Physical Review Letters 116, 080403 (2016).

[25] Cyril Elouard, David A. Herrera-Martí, Maxime Clusel, and Alexia Auffèves. ``The role of quantum measurement in stochastic thermodynamics''. npj Quantum Information 3 (2017).

[26] Sreenath K. Manikandan, Cyril Elouard, and Andrew N. Jordan. ``Fluctuation theorems for continuous quantum measurements and absolute irreversibility''. Phys. Rev. A 99, 022117 (2019).

[27] Alessio Belenchia, Luca Mancino, Gabriel T. Landi, and Mauro Paternostro. ``Entropy production in continuously measured Gaussian quantum systems''. npj Quantum Information 6 (2020).

[28] M. Naghiloo, D. Tan, P. M. Harrington, J. J. Alonso, E. Lutz, A. Romito, and K. W. Murch. ``Heat and Work Along Individual Trajectories of a Quantum Bit''. Physical Review Letters 124, 110604 (2020).

[29] Yelena Guryanova, Nicolai Friis, and Marcus Huber. ``Ideal Projective Measurements Have Infinite Resource Costs''. Quantum 4, 222 (2020).

[30] Cyril Elouard, David Herrera-Martí, Benjamin Huard, and Alexia Auffèves. ``Extracting Work from Quantum Measurement in Maxwell’s Demon Engines''. Physical Review Letters 118, 260603 (2017).

[31] M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K. W. Murch. ``Information Gain and Loss for a Quantum Maxwell's Demon''. Physical Review Letters 121, 030604 (2018).

[32] Juliette Monsel, Marco Fellous-Asiani, Benjamin Huard, and Alexia Auffèves. ``The Energetic Cost of Work Extraction''. Physical Review Letters 124, 130601 (2020).

[33] Mark T. Mitchison, John Goold, and Javier Prior. ``Charging a quantum battery with linear feedback control''. Quantum 5 (2021).

[34] Yoshihiko Hasegawa. ``Quantum Thermodynamic Uncertainty Relation for Continuous Measurement''. Physical Review Letters 125, 050601 (2020).

[35] Andre C. Barato and Udo Seifert. ``Thermodynamic Uncertainty Relation for Biomolecular Processes''. Physical Review Letters 114, 158101 (2015).

[36] Patrick Pietzonka, Andre C. Barato, and Udo Seifert. ``Universal bounds on current fluctuations''. Physical Review E 93, 052145 (2016).

[37] Patrick Pietzonka and Udo Seifert. ``Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines''. Physical Review Letters 120, 190602 (2018).

[38] Tan Van Vu and Yoshihiko Hasegawa. ``Thermodynamic uncertainty relations under arbitrary control protocols''. Physical Review Research 2, 013060 (2020).

[39] Tan Van Vu and Yoshihiko Hasegawa. ``Uncertainty relation under information measurement and feedback control''. Journal of Physics A: Mathematical and Theoretical 53, 075001 (2020).

[40] Patrick P. Potts and Peter Samuelsson. ``Thermodynamic uncertainty relations including measurement and feedback''. Physical Review E 100, 052137 (2019).

[41] Maxime Debiossac, David Grass, Jose Joaquin Alonso, Eric Lutz, and Nikolai Kiesel. ``Thermodynamics of continuous non-Markovian feedback control''. Nature Communications 11 (2020).

[42] F. J. Cao and M. Feito. ``Thermodynamics of feedback controlled systems''. Physical Review E 79, 041118 (2009).

[43] Jordan M. Horowitz and Suriyanarayanan Vaikuntanathan. ``Nonequilibrium detailed fluctuation theorem for repeated discrete feedback''. Physical Review E 82, 061120 (2010).

[44] Zongping Gong, Yuto Ashida, and Masahito Ueda. ``Quantum-trajectory thermodynamics with discrete feedback control''. Phys. Rev. A 94, 012107 (2016).

[45] Yûto Murashita, Zongping Gong, Yuto Ashida, and Masahito Ueda. ``Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility''. Phys. Rev. A 96, 043840 (2017).

[46] Gonzalo Manzano and Roberta Zambrini. ``Quantum thermodynamics under continuous monitoring: a general framework'' (2021). arXiv:2112.02019.

[47] Lluís Masanes and Jonathan Oppenheim. ``A general derivation and quantification of the third law of thermodynamics''. Nature Communications 8 (2017).

[48] Jader P. Santos, Gabriel T. Landi, and Mauro Paternostro. ``Wigner Entropy Production Rate''. Physical Review Letters 118, 220601 (2017).

[49] Gerardo Adesso, Davide Girolami, and Alessio Serafini. ``Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2''. Physical Review Letters 109, 190502 (2012).

[50] H. M. Wiseman and G. J. Milburn. ``Quantum theory of field-quadrature measurements''. Physical Review A 47, 642–662 (1993).

[51] Crispin Gardiner. ``Stochastic Methods: A Handbook for the Natural and Social Sciences''. Springer Series in Synergetics. Springer-Verlag. Berlin Heidelberg (2009). 4 edition. url: www.springer.com/​gp/​book/​9783540707127.

[52] Alireza Seif, Mohammad Hafezi, and Christopher Jarzynski. ``Machine learning the thermodynamic arrow of time''. Nature Physics 17 (2021).

[53] Paul Erker, Mark T. Mitchison, Ralph Silva, Mischa P. Woods, Nicolas Brunner, and Marcus Huber. ``Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?''. Physical Review X 7, 031022 (2017).

[54] G. J. Milburn. ``The thermodynamics of clocks''. Contemporary Physics 61 (2020).

[55] A. N. Pearson, Y. Guryanova, P. Erker, E. A. Laird, G. A. D. Briggs, M. Huber, and N. Ares. ``Measuring the Thermodynamic Cost of Timekeeping''. Physical Review X 11, 021029 (2021).

[56] H. J. D. Miller and J. Anders. ``Energy-temperature uncertainty relation in quantum thermodynamics''. Nature Communications 9, 2203 (2018).

[57] Bruno O. Goes and Gabriel T. Landi. ``Entropy production dynamics in quench protocols of a driven-dissipative critical system''. Physical Review A 102, 052202 (2020).

[58] Bruno O. Goes, Carlos E. Fiore, and Gabriel T. Landi. ``Quantum features of entropy production in driven-dissipative transitions''. Physical Review Research 2, 013136 (2020).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 21:11:30). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-28 21:11:31).