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Strong coupling regime takes place in open hybrid systems consisting of two
or more physical subsystems when the coupling strength between subsystems
exceeds the relaxation rate. The relaxation arises due to the interaction of
the system with environment. For this reason, it is usually believed that the
enhancement of the interaction with environment inevitably leads to a transi-
tion of the system from the strong to weak coupling regime. In this paper, we
refute this common opinion. We demonstrate the interaction of the coupled
system with environment induces an additional coupling between the subsys-
tems that contribute to retention the system in the strong coupling regime. We
show that the environmental-induced coupling strength is proportional to the
product of the Rabi coupling strength by the gradient of the density of states
of the reservoir. There is a critical Rabi coupling strength above which the
environmental-induced coupling ensures that the system remains in the strong
coupling regime at any relaxation rate. In this case, the strong coupling regime
takes place even when the relaxation rate significantly exceeds the Rabi cou-
pling strength between the subsystems. The critical coupling depends on the
gradient of the reservoir density of states. We demonstrate that managing this
gradient can serve as an additional tool to control the properties of the coupled
systems.

Recently, non-Hermitian systems consisting of several coupled subsystems have received
significant interest [1]-[7]. The increase of coupling strength between the subsystems leads
to a transition from the weak coupling (WC) to the strong coupling (SC) regime [1]-[11].
The transition between the WC and SC regimes occurs at an exceptional point (EP)
[12]-[15]. The EP is a spectral singularity in the parameter space of a non-Hermitian
system, where two or more eigenfrequencies coincide and the corresponding eigenstates
become collinear [12, 13, 16, 17]. In the SC regime, hybrid eigenstates of the interacting
subsystems are formed and Rabi splitting in the spectrum appears [1]-[5]. The formation of
hybrid states leads to a change in the physical properties of such systems [5],[18]-[25], which
makes them promising for different applications [26]-[33]. For example, the plasmonic [1]-
[5], photonic [6, 8, 9] and polaritonic [34] realizations of strongly-coupled non-Hermitian
systems are used to enhance the sensitivity of laser gyroscopes [35] and sensors [36, 37],
to control the rate of chemical reactions [5, 23, 24, 38, 39], to build quantum information
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systems [40], to achieve single-mode lasing in multimode systems [41, 42] and lasing without
inversion [26, 27].

To achieve SC regime, the different ways to decrease the relaxation rate and increase
the coupling strength between subsystems are used. The relaxation arises due to the
interaction of the system with the environment. For this reason, it is assumed that an
increase in the magnitude of the interaction with environment lead to a transition from
the strong to weak coupling regime and, as a result, destroyed the hybrid states and hinders
the practical applications of the coupled systems.

We refute this opinion and demonstrate that interaction with the environment can even
lead to an increase in the coupling strength between the subsystems. From a theoretical
point of view, when the subsystems strongly interact, not only is the Hermitian part of
the Hamiltonian modified but also the description of the relaxation processes should be
revisited [43]-[52]. Therefore, relaxation superoperators should be derived by considering
the eigenstates of the interacting subsystems [53]-[55]. This results in the appearance of
cross-relaxation processes when the relaxation of one subsystem depends on the state of
another [56]-[60]. Mathematically, this manifests as the appearance of a non-Hermitian
addition to the coupling strength arising from the Hamiltonian interaction. Usually, this
effect is ignored when considering the SC systems.

In this paper, we demonstrate that in open coupled systems, the interaction with envi-
ronment lead to appearance of a additional coupling between the subsystems (hereinafter,
environmental-induced (EI) coupling). By taking account reservoir degrees of freedom, we
show that environmental-induced coupling is proportional to a gradient of reservoir density
of states and the Rabi coupling between subsystems. The EI coupling results in a qualita-
tive change in the system behavior, namely, it leads to the repulsion of eigenfrequencies,
which increases with both the Rabi coupling strength and the relaxation rate. In addi-
tion, the EI coupling leads to increase of the interaction energy between the subsystems.
That promotes the transition to the SC regime. We show that there is a critical coupling
strength, above which the EI coupling guarantees that the system is in the SC regime at
any value of the relaxation rates. Thus, when the coupling strength exceeds the critical
value, the strong coupling regime is resistant to destruction caused by losses. This regime
can be referred to as the environment-assisted strong coupling regime (EASC regime). In
the EASC regime, the hybrid states exist even when the relaxation rate is significantly
above the Rabi coupling strength between the subsystems. The critical coupling and the
eigenstates of the coupled system depend on the gradient of the reservoir density of states.
This opens additional possibility to control of the interaction energy between subsystems
by manipulation of the reservoir density of states.

1 Model
We consider a system of two coupled oscillators, interacting with their reservoirs that are
non-correlated. The Hamiltonian of this system is

Ĥ = ĤS + ĤR + ĤSR (1)

where ĤS = ω0 â
†
1â1 + ω0 â

†
2â2 + Ω

(
â†1â2 + â†2â1

)
is the Hamiltonian for two coupled

oscillators in the rotating-wave approximation [61, 62]; h̄ = 1. Here â1,2 and â†1,2 are the
annihilation and creation operators of the first and the second oscillators, respectively. ω0
is the oscillator frequency. The last term Ω

(
â†1â2 + â†2â1

)
is the interaction energy between

oscillators, where Ω is the Rabi coupling strength between the oscillators [61, 62]. This
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Hamiltonian is used, for example, to describe the interaction of electromagnetic modes in
two coupled resonators. In this case, the last term has meaning of the interaction energy
of cavity electric fields in the second quantization formalism [61, 62]. ĤR and ĤSR are
the Hamiltonians of the reservoirs and the interaction of the oscillators with the reservoirs,
respectively (see, for details, Appendix A).

When the oscillators are uncoupled, the interaction of the oscillators with the reservoirs
leads to an independent relaxation process in each oscillator. To describe the dynamics
of the coupled oscillators, one usually assumes that the oscillator relaxation rates do not
depend on the coupling between them (local approach) [63, 64]. In this approach, the
degrees of freedom of reservoirs are eliminated in the Born-Markov approximation, which
leads to a master equation for the system density matrix ρ̂ in the Lindblad form [61, 62].
Using the equalities 〈â1,2〉 = Tr (â1,2ρ̂) and d 〈â1,2〉 /dt = Tr

(
â1,2 ˙̂ρ

)
the closed equations

for the average values of the annihilation operators 〈â1,2〉 can be obtained

d

dt

(
a1
a2

)
=
(
−i ω0 − γ1 −iΩ
−iΩ −i ω0 − γ2

)(
a1
a2

)
(2)

where a1,2 = 〈â1,2〉 are amplitudes of the first and the second oscillator, γ1,2 are the
relaxation rates of the oscillators. The eigenfrequencies of this system are ω1,2 = ω0 −
iγ1+γ2

2 ±
√

Ω2 − (γ1 − γ2)2/4 and the eigenstates are

~e1,2 =
(
a1 a2

)T
=
(
i

(
γ2 − γ1 +

√
(γ1 − γ2)2 − 4Ω2

)
/2Ω, 1

)T
(3)

[12, 13].
This system has an exceptional point (EP), at which the eigenstates are linearly de-

pendent and the eigenfrequencies coincide. The EP takes place when the coupling strength
of the oscillators equals Ω = ΩEP = |γ1 − γ2| /2 [12, 13]. If Ω < ΩEP , the WC regime
takes place in the system. In this regime, the real parts of the eigenfrequencies coincide
with each other and there is an exponential decay of the oscillators amplitudes with time
[12, 13, 15]. Also, we determine the interaction energy for each of the eigenstates, i.e., the
interaction energy in the system when the system is in one of the eigenstates. This inter-
action energy is calculated by the formula Ω (a∗1a2 + a1a

∗
2), where a1 and a2 are elements

of the corresponding eigenstate (3). In the WC regime, the interaction energy between the
oscillators is zero for both the eigenstates. If Ω > ΩEP , the SC regime takes place in the
system. In the SC regime, the real parts of the eigenfrequencies are split [12, 13, 15] and
the exponential decay is replaced by decaying oscillations of the oscillators amplitudes.
In the SC regime, the interaction energy between the oscillators is nonzero for both the
eigenstates. It is negative for the eigenstate with lower frequency and positive for the
eigenstate with higher frequency. Thus, the EP separates the WC and SC regimes in the
system of the coupled oscillators. Note that the exceptional points exist not only in the
equations for average amplitudes, but also in the master equations for the density matrix
of the systems with asymmetrical relaxation rates [65]-[68]. In particular, they are studied
in the language of the generalized master equations [59, 65, 69] that take into account the
incoherent coupling between modes.

The assumption regarding the independence of the relaxation rates of the oscillators is
not valid when the coupling strength between subsystems are comparable or greater than
the relaxation rates [53]-[55]. This is because the eigenstates of the system of coupled
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oscillators do not coincide with the eigenstates of the non-interacting oscillators. It is nec-
essary to eliminate the reservoir degrees of freedom using the eigenstates of the interacting
subsystems [53]-[55].

To derive the consistent equations describing the system dynamics in both the WC
and SC regimes, we eliminate the reservoirs degrees of freedom using the partial-secular
approximation (see Appendices A and B) [60]. The obtained equations for density ma-
trix include additional terms, which describe the cross-relaxation of the eigenstates (see
Appendices A and B and also [59]). Then using the equalities 〈â1,2〉 = Tr (â1,2ρ̂) and
d 〈â1,2〉 /dt = Tr

(
â1,2 ˙̂ρ

)
we derive the following closed equations for the average values of

the annihilation operators 〈â1,2〉

d
dt

(
a1
a2

)
=
(

−i ω0 − γ1 −iΩ−K (Ω, γ1)
−iΩ−K (Ω, γ2) −i ω0 − γ2

)(
a1
a2

)
(4)

where the relaxation rates γ1,2 (ω) = π
∣∣∣γ(1),(2)
ω

∣∣∣2ρ (ω) are determined by the reservoir den-

sities of states ρ (ω) and the interaction constant γ(1),(2)
ω of the oscillators with its reser-

voirs. The functions K (Ω, γ1,2) are an additional coupling strengths, which appear due to
the interaction of the coupled system with the environment (environmental-induced (EI)
coupling). These terms appear in both classical and quantum considerations and are de-
termined by the frequency dispersion of the reservoir density of states (see Appendices A
and B),

K (Ω, γ1,2) = γ1,2(ωs)−γ1,2(ωa)
2 ≈

π

∣∣∣γ(1),(2)
ω0

∣∣∣2
2

∂ρ(ω)
∂ω

∣∣∣
ω0

(ωs − ωa) (5)

where ωs and ωa are the eigenfrequencies of the symmetric and anti-symmetric states of
the Hermitian system, respectively. Note that in the case of frequency-independent the
reservoir density of states the EI coupling strength is zero.

We emphasize that due to we consider the system of two bosonic modes (oscillators)
with quadratic interaction (1) Eq. (4) for average amplitudes is derived from the master
equations without additional assumptions [65]. Therefore, the dynamics of 〈â1〉 and 〈â2〉
calculated from Eq. (4) coincides with one obtained from the master equations for density
matrix [65] (see Appendices A and C).

2 Formation of environment-assisted strong coupling regime
The EI coupling leads to an increase in the interaction between the oscillators. Therefore,
it can be expected that due to the presence of EI coupling, the transition between the WC
and SC regimes occurs at smaller values of the Rabi coupling strength or at greater vales of
the relaxation rates. To be specific, we consider the case of a power-dependent dispersion
of the density of states (ρ (ω) ∼ ωn). Then

K (Ω, γ1,2) ≈ nΩ γ1,2(ω0)/ω0 (6)

and the eigenfrequencies of the oscillators system Eq. (4) take the form

ω1,2 = ω0 − iγ1+γ2
2 ±

√
Ω2
(
1− n2γ1γ2

ω2
0
− i n(γ1+γ2)

ω0

)
− (γ1 − γ2)2/4 (7)
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Figure 1: Trajectories of the eigenfrequencies in the complex frequency plane when the coupling strength
Ω changes from 0 to 0.1ω0. The different curves are corresponded to the different values of relaxation
rates: γ1 = 2 × 10−2 ω0 and γ2 = 10−2 ω0 (solid blue lines), γ1 = 10−1 ω0 and γ2 = 5 × 10−2 ω0
(dashed green lines), γ1 = 6 × 10−1 ω0 and γ2 = 3 × 10−1 ω0 (dotted red lines). The dashed gray
line in Fig. 1 shows the dependence when the EI coupling is not taken into account (or in the case of
frequency-independent dispersion of the reservoir density of states). The red point indicates the EP in
the case when the EI coupling is not taken into account.

and experience a splitting. Because the EI coupling strength is proportional to the product
of the coupling strength Ω and the relaxation rates γ1,2 (see Eq. (6)), the increase in both
the coupling strength and the relaxation rates leads to a growth in the frequency splitting.
This takes place both below and above the EP. In addition, the EI coupling leads to a
break of the exact symmetry among eigenmodes in the SC regime (|a1|2 6= |a2|2) and to
an appearance of a nonzero interaction energy between the oscillators in the WC regime.

To illustrate the influence of the EI coupling on the system behavior, we track the
dependence of the eigenfrequencies ω1, ω2 (see Eq. (7)) in the complex frequency plane
on the coupling strength Ω (Fig. 1). When the EI coupling is not taken into account, the
eigenfrequencies coalesce in the complex plane at a coupling strength corresponding to the
EP, Ω = ΩEP (Fig. 1). The exceptional point separates the WC (Ω < ΩEP ) and the SC
(Ω > ΩEP ) regimes.

With taking into account the EI coupling, the eigenfrequencies do not coalesce for any
values of the coupling strength (Fig. 1). However, there is a value of coupling strength, at
which the distance ∆ between the eigenfrequencies in the complex plane (∆ = |ω1 − ω2|)
reaches minimum (see designations in Fig. 1). Using the analogy with the case without
the EI coupling, we determine this value of the coupling strength as the transition point
between the WC and the SC regimes.

In Fig. 2, we plot the phase diagram of different coupling regimes in the coordinates
Ω/ω0 and γ1/ω0 (we fix the ratio γ2/γ1). When Ω, γ1,2 � ω0, the transition between the
WC and SC regimes occurs at the line determined by the condition Ω = ΩEP = |γ1 − γ2| /2
(Fig. 2). With the increase in the coupling strength, the transition point deviates from the
condition Ω = ΩEP (Fig. 2) and the transition between the WC and SC regimes occurs
under a different condition from the one of the EP. This is due to the EI coupling strength
being proportional to the product of the relaxation rate and the Rabi coupling strength.
There are a critical coupling strength ΩCP starting of which the EI coupling guarantees
that the system is in the SC regime at any relaxation rate (Fig. 2). In this case, the increase
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Figure 2: Phase diagram of coupling regimes in the coordinates Ω/ω0 and γ1/ω0 (the ratio γ2/γ1 = 2
is fixed). The solid blue line shows the condition when the distance between the eigenfrequencies in
the complex plane, i.e., ∆ = |ω1 − ω2|, have a minimum. The dashed red line shows the condition
Ω = ΩEP = |γ1 − γ2| /2. The vertical black line shows the critical coupling strength. The reservoir
density of states ρ (ω) ∼ ω2.

in the relaxation rate leads to the growth of the EI coupling strength, which prevents the
transition from the SC to the WC regime (see Figs. 1 and 2). Thus, when Ω > ΩCP , the
system is in the SC regime at all values of the relaxation rate. This regime can be referred
to as the environment-assisted strong coupling (EASC) regime (see Fig. 2).

3 Influence of the reservoir density of states on the system states
The EI coupling appears due to the difference in the eigenstates and eigenfrequencies of the
system of coupled and uncoupled oscillators. Due to the density of states of the reservoirs
depending on the frequency, the interaction with reservoirs depends on the eigenfrequencies
of the coupled system [53]-[55]. These eigenfrequencies change when the coupling strength
between the oscillators increases. As a result, the relaxation terms turn out to be explicitly
dependent on the coupling strength between the oscillators and the rate of amplitude relax-
ation in the first/second oscillator depends on the amplitude of the second/first oscillator,
which corresponds to the appearance of the EI coupling strength.

The EI coupling strength depends on the frequency dispersion of the reservoir density
of states (see Eq. (5)). The dependence of K (Ω, γ1,2) on the reservoir density of states
leads to the dependence of the critical coupling strength ΩCP , the eigenfrequencies and the
eigenstates on the same quantity (see Fig. 3). Let us consider the case of power-dependent
density of states, ρ (ω) ∼ ωn. In the case of reservoirs with a frequency-independent
density of states, n = 0, the EI coupling strength K (Ω, γ1,2) is zero and does not causes the
frequency splitting (see dashed gray lines in Fig. 1). However, in the case of reservoirs with
a frequency-dependent density of states, the EI coupling leads to the frequency splitting
(see Fig. 1). The stronger the dependence of density of states on the frequency, i.e., the
higher n, the larger the EI coupling strength.

In addition, the EI coupling leads to a change in the eigenstates. In particular, it
results in an increase of the interaction energy between the oscillators, i.e., Ω (a∗1a2 + a1a

∗
2),

calculated for the eigenstate amplitudes. Without taking into account the EI coupling or
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Figure 3: (a) Dependence of critical coupling strength ΩCP on the degree n in the power-law dependence
of the reservoir density of states on frequency (ρ (ω) ∼ ωn). (b), (c) Diagrams of the interaction energy
between the oscillators (Ω (a∗1a2 + a1a

∗
2)) calculated for the eigenstate amplitudes. The diagrams for

other eigenstate are similar. The ratio γ2/γ1 = 2 is fixed. (b) ρ (ω) is frequency-independent, (c)
ρ (ω) ∼ ω2.

in the case of reservoirs with a frequency-independent density of states, in the WC regime,
the interaction energy between the oscillators is zero (Fig. 3b). In contrast, in the case of
reservoirs with a frequency-dependent density of states, the interaction energy is nonzero
at any values of the coupling strength and the relaxation rates (Fig. 3c). That is, due to
the EI coupling, the eigenstates become more coupled.

Thus, we conclude that the control of the reservoir density of states can serve as an ad-
ditional tool to manipulate the eigenfrequencies and the eigenstates of the coupled systems.
This control can be achieved by using the different types of reservoirs. For example, the ra-
diation in the one-dimensional waveguide corresponds to the interaction with the reservoir
having a frequency-independent density of states. While, the interaction with phonons in
the solid state corresponds to the interaction with the reservoir having the square power-
law dependence of the reservoir density of states on frequency. The artificial reservoirs
with high gradient of the density of states can be used to decrease the critical coupling
strength ΩCP . The stopped-light waveguides [70] serve as an example of such reservoirs.
In these waveguides the density of states has sharp peak near the cutoff frequency [70] that
corresponds to the gradient of the density of states ∂ρ/∂ω |ω=ω0

∼ 103ρ (ω0) /ω0. Usage
the reservoirs with such gradients of the density of state can allow to decrease critical
coupling strength ΩCP to 10−4ω0.

4 Influence of the EI coupling on the system dynamics
The EI coupling leads to changing in the eigenstates and eigenfrequencies, which, in turn,
causes changes in the system dynamics. Firstly, the EI coupling leads to increase in the
difference of the real part of eigenfrequencies (Fig. 4) that causes growth of the oscillations
frequency of the average amplitudes 〈â1〉 and 〈â2〉. Such a change is noticeable in the WC
regime (Fig. 4), where the EI coupling promotes the transition to the SC regime.

Secondly, the EI coupling leads to a qualitative change in the temporal dependence
of the interaction energy. As an example, we simulate the time dynamics of two coupled
oscillators, when at the initial time the first oscillator is in the excited state and the second
oscillator is in the ground state. Our calculations based on Eq. (4) show that in the case of
frequency-independent density of states (the EI coupling strength is zero) the interaction
energy remains zero at all times. It is due to that in the SC regime when K (Ω, γ1,2) = 0
(ρ (ω) = const) the relaxation rates of two eigenmodes are equal to each other. So long
as the initial amplitudes of two eigenstates are the same and the interaction energies of

Accepted in Quantum 2022-04-04, click title to verify. Published under CC-BY 4.0. 7



0. 1 2
0

0.05

0.1

0.15

W�WEP

R
eHΩ

2
-

Ω
1
L�Ω

0

Figure 4: Dependence of the difference of the real parts of the eigenfrequencies on the coupling strength
when ρ (ω) is frequency-independent (solid blue line) and ρ (ω) ∼ ω2 (dashed red line). The vertical
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Figure 5: Dependence of the interaction energy calculated by Eq. (4) (a∗1a2 + a1a
∗
2) (solid blue line)

and by the master equation for density matrix
〈
â†1â2 + â1â

†
2

〉
(dashed red line) in the EASC regime.

ρ (ω) ∼ ω2; γ1 = 0.001ω0; γ2 = 0.002ω0; the Rabi coupling strength Ω = 0.08ω0.

eigenstates differ in the sign, the total interaction energy stays zero throughout the system
evolution. In the WC regime, the interaction energies for each of the eigenstates are zero
(Fig. 3b, c) and so the total interaction energy stays zero throughout the system evolution
too.

In the case of reservoirs with a frequency-dependent density of states, the interaction
energy differs from zero (Fig. 5). It is due to the two factors. First, the EI coupling leads
to the difference in the relaxation rates of two eigenmodes for all Rabi coupling strength
(Fig. 1). As a result, at t >> |γ1 − γ2|−1 the system evolves to a state in which one of the
eigenstates dominates. In turn, the interaction energy for each of the eigenstates is not
zero (Figs. 3c). For this reason, the interaction energy differs from zero during the system
evolution from the excited state (Fig. 5). That is, the EI coupling leads to a non-zero
interaction energy during the system evolution.

Note that the interaction energy Ω
〈
â†1â2 + â1â

†
2

〉
as well as the energies of the os-

cillators ω0
〈
â†1â1

〉
and ω0

〈
â†2â2

〉
can be calculated from Eq. (4) only approximately by
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using the semi-classical replacement, such as
〈
â+

1 â2 + â1â
+
2

〉
→

〈
â+

1

〉
〈â2〉 + 〈â1〉

〈
â+

2

〉
.

To verify our predictions for the quantum system, we simulate dynamics of two coupled
oscillators by the master equations for density matrix (see Appendix C). We compare the
system dynamics calculated from Eq. (4) and from the master equations for the density
matrix (42) for the different reservoir density of states (Appendix C). It is seen that the
master equation for the density matrix (dashed red line in Fig. 5) predicts a similar system
dynamics as Eq. (4) (solid blue line in Fig. 5).

Thus, we conclude that the EI coupling significantly influence on the system dynamics
in both semiclassical and quantum cases. This opens the way to control the quantum
states of the system by the reservoir density of states.

5 Relation between environment-assisted strong coupling and ultra-strong
coupling regimes

The environment-assisted strong coupling regime takes place when the coupling strength
exceeds the critical value. This value depends on the reservoir density of states and can
be comparable to the eigenfrequencies of the system (see Fig. 3). It is known [71, 72] that
an increase in the coupling strength leads to a transition from the SC to the ultra-strong
coupling (USC) regime in which the counter-rotating and the diamagnetic terms in the
Hamiltonian begin to have a noticeable effect on the system states [73]-[75].

Usually, it is considered that the transition to the USC regime occurs when the coupling
strength reaches one tenth of the system eigenfrequency [71, 73],[76]-[79] (see also Appendix
C). Depending on the reservoir density of states, the transition to the EASC regime can
precede the transition to the USC regime and vice versa. In the first case, an increase
in the coupling strength, at the beginning, leads to formation of the hybrid states at all
values of the relaxation rates and the system goes into the EASC regime. At further
increase in the coupling strength, the counter rotating and the diamagnetic terms begin
to modify these hybrid states and the transition to the USC regime occurs. In the second
case, the transition to the USC regime occurs without the intermediate transition to the
EASC regime. Thus, we conclude that depending on the reservoir density of states, there
are two possible types of transition to the USC regime.

6 Summary
To conclude, we consider a strong coupled system of two oscillators interacting with their
reservoirs. We demonstrate that the interaction of the coupled oscillators with the environ-
ment leads to the appearance of additional coupling between the oscillators (environmental-
induced (EI) coupling). The EI coupling results in a qualitative change in the behavior of
open coupled systems. Due to the presence of the EI coupling, the transition between the
WC and SC regimes occurs at smaller values of the Rabi coupling strength or at greater
vales of the relaxation rates. Since the EI coupling strength is proportional to the re-
laxation rates, the increase in relaxation rate leads to growth of the EI coupling, which
prevents the transition from the SC to the WC regime. We demonstrate that there is a
critical Rabi coupling strength ΩCP above of which the EI coupling makes it impossible
to transition from the SC to the WC regime with the increase in the relaxation rates.
Thus, when Ω > ΩCP the system is in the SC regime at all values of the relaxation rate.
This regime we define as the environment-assisted strong coupling (EASC) regime. The
EI coupling depends on the gradient of density of states in the reservoirs, which leads to
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the corresponding dependence of the critical coupling strength, eigenfrequencies and eigen-
states of the coupled system. This opens the additional way to control the behavior of the
coupled systems with the reservoir density of states.
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A Master equation and equations for average amplitudes for the coupled
oscillators

Here we derive the dynamic equations for averaged amplitudes of two coupled harmonic
oscillators in quantum case. Total Hamiltonian of two coupled oscillators interacting with
the reservoirs has the form

Ĥ = ĤS + ĤR + ĤSR (8)

where
ĤS = ω0 â

†
1â1 + ω0 â

†
2â2 + Ω

(
â†1â2 + â†2â1

)
(9)

ĤSR = λ

(∑
k

γ
(1)
k (â†1 + â1)(b̂†1k + b̂1k) +

∑
k

γ
(2)
k (â†2 + â2)(b̂†2k + b̂2k)

)
= λ

(
Ŝ1R̂1 + Ŝ2R̂2

)
(10)

ĤR = ĤR1 + ĤR2 , ĤR1 =
∑
k

ω
(1)
k b†1kb1k, ĤR2 =

∑
k

ω
(2)
k b†2kb2k (11)

Here ω0 is the oscillator eigenfrequency, Ω is the interaction constant between them, ω(1)
k

and ω
(2)
k are reservoir mode eigenfrequencies, γ(1)

k and γ
(2)
k are the interaction constants

between oscillators and their reservoirs.
In the interaction representation the von Neumann equation for the density matrix has

the form

∂ ˆ̃ρ
∂t

= i [ ˆ̃ρ, ˆ̃HSR] (12)

where
ˆ̃HSR = λ ( ˆ̃S1

ˆ̃R1 + ˆ̃S2
ˆ̃R2) (13)

ˆ̃S1 = exp(i ˆ̃HSt)Ŝ1 exp(−i ˆ̃HSt) (14)

ˆ̃R1 = exp(i ˆ̃HRt)R̂1 exp(−i ˆ̃HRt) (15)

ˆ̃S2 = exp(i ˆ̃HSt)Ŝ2 exp(−i ˆ̃HSt) (16)

ˆ̃R2 = exp(i ˆ̃HRt)R̂2 exp(−i ˆ̃HRt) (17)

Accepted in Quantum 2022-04-04, click title to verify. Published under CC-BY 4.0. 10



We will consider λ as small parameter and expand density matrix in the series of λ,

ˆ̃ρ(t) = ˆ̃ρ0(t) + λ ˆ̃ρ1(t) + λ2 ˆ̃ρ2(t) +O(λ3) (18)

In zero, first and second orders we have the following equations

∂ ˆ̃ρ0(t)
∂t

= 0, ∂ ˆ̃ρ1(t)
∂t

= i [ ˆ̃ρ0(t), ˆ̃S1
ˆ̃R1 + ˆ̃S2

ˆ̃R2], ∂ ˆ̃ρ2(t)
∂t

= i [ ˆ̃ρ1(t), ˆ̃S1
ˆ̃R1 + ˆ̃S2

ˆ̃R2] (19)

with the initial conditions ˆ̃ρ(t0) = ˆ̃ρ0(t0), ˆ̃ρ1(t0) = 0, ˆ̃ρ2(t0) = 0. Formal integration of
Eq. (19) gives:

ˆ̃ρ0(t0 + ∆t) = ˆ̃ρ (t0) (20)

ˆ̃ρ1(t0 + ∆t) = i

t0+∆t∫
t0

dt1
[
ˆ̃ρ0(t0), ˆ̃S1(t1) ˆ̃R1(t1) + ˆ̃S2(t1) ˆ̃R2(t1)

]
(21)

ˆ̃ρ2(t0 + ∆t) =

−
t0+∆t∫
t0

dt1

[
t1∫
t0

dt2[ ˆ̃ρ0(t0), ˆ̃S1(t2) ˆ̃R1(t2) + ˆ̃S2(t2) ˆ̃R2(t2)], ˆ̃S1(t1) ˆ̃R1(t1) + ˆ̃S2(t1) ˆ̃R2(t1)
]
(22)

Further, we consider noncorrelated reservoirs. Following to the Born approximation [61,
62], we present the density matrix in the form ˆ̃ρ(t) = ˆ̃ρS(t) ˆ̃ρthR1

ˆ̃ρthR2
, where superscript “th”

means that corresponding reservoir is at thermodynamic equilibrium, i.e.,

ˆ̃ρthRj
= exp(−ĤRj/Tj)/tr(exp(−ĤRj/Tj)) (23)

Taking trace over reservoir’s variables we obtain the following equations

ˆ̃ρS1(t) = 0 (24)

ˆ̃ρS2(t0 + ∆t) =

−
t0+∆t∫
t0

dt1
t1∫
t0

dt2
ˆ̃ρS0(t0) ˆ̃S1(t2) ˆ̃S1(t1)TR1(t2 − t1)− ˆ̃S1(t2)ˆ̃ρS0(t0) ˆ̃S1(t1)TR1(−(t2 − t1))−
ˆ̃S1(t1)ˆ̃ρS0(t0) ˆ̃S1(t2)TR1(t2 − t1) + ˆ̃S1(t1) ˆ̃S1(t2)ˆ̃ρS0(t0)TR1(−(t2 − t1))+
ˆ̃ρS0(t0) ˆ̃S2(t2) ˆ̃S2(t1)TR2(t2 − t1)− ˆ̃S2(t2)ˆ̃ρS0(t0) ˆ̃S2(t1)TR2(−(t2 − t1))−
ˆ̃S2(t1)ˆ̃ρS0(t0) ˆ̃S2(t2)TR2(t2 − t1) + ˆ̃S2(t1) ˆ̃S2(t2)ˆ̃ρS0(t0)TR2(−(t2 − t1))


(25)

where TR1,2(t2−t1) = Tr(ˆ̃ρthR1
ˆ̃ρthR2

ˆ̃R1,2(t2) ˆ̃R1,2(t1)), TR1,2(−(t2−t1)) = Tr(ˆ̃ρthR1
ˆ̃ρthR2

ˆ̃R1,2(t1) ˆ̃R1,2(t2))
are reservoir correlation function.

To calculate operators ˆ̃S1,2(t) we use the Baker–Campbell–Hausdorff formula,

eÂB̂e−Â = Â+ 1
1! [Â, B̂] + 1

2! [Â, [Â, B̂]] + ... (26)

and diagonal representation of the system Hamiltonian,
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ĤS = (ω0 + Ω)b̂†b̂+ (ω0 − Ω)ĉ†ĉ,
b̂ = â1+â2√

2 , ĉ = â1−â2√
2 , b̂† = â†1+â†2√

2 , ĉ† = â†1−â
†
2√

2
(27)

Using commutation relations [ĤS , b̂] = − (ω0 + Ω ) b̂, [ĤS , b̂
†] = (ω0 + Ω ) b̂†, [ĤS , ĉ] =

− (ω0 − Ω ) ĉ, [ĤS , ĉ
†] = (ω0 − Ω ) ĉ† and Eq. (26), we get

ˆ̃S1(t) =
exp(iĤSt) (â1 + â†1) exp(−iĤSt) = 1√

2

(
be−i(ω0+Ω)t + ce−i(ω0−Ω)t + b†ei(ω0+Ω)t + c†ei(ω0−Ω)t

)
(28)

ˆ̃S2(t) =
exp(iĤSt) (â2 + â†2) exp(−iĤSt) = 1√

2

(
be−i(ω0+Ω)t − ce−i(ω0−Ω)t + b†ei(ω0+Ω)t − c†ei(ω0−Ω)t

)
(29)

Now we can substitute expressions for ˆ̃S1,2(t) into the equation for ˆ̃ρS2(t). We consider
the case Ω� ω0 and Ω ∆t� 1� ω0 ∆t. This enables to estimate the terms that appear
from the products like ˆ̃S1(t2) ˆ̃S1(t1). The terms proportional to b̂b̂, b̂†b̂†, ĉĉ, ĉ†ĉ†, bc and
b̂†ĉ† after averaging give zero. For instance:

−
t0+∆t∫
t0

dt1
t1∫
t0

dt2 ˆ̃ρS0(t0)b̂e−i(ω0+Ω)t2 ĉe−i(ω0−Ω)t1TR1(t2 − t1) ∼

−
t0+∆t∫
t0

dt1
t1∫
t0

dt2e
−i(ω0+Ω)t2−i(ω0−Ω)t1TR1(t2 − t1) ∼

t0+∆t∫
t0

dt1
t1∫
t0

dt2e
−iω0(t2+t1)−iΩ(t2−t1)TR1(t2 − t1) =

=
[
τ = t2 − t1
dτ = dt2

]
=

t0+∆t∫
t0

dt1e
−i2ω0t1

0∫
t0−t1

dτe−iω0τ−iΩτTR1(τ) ≈
t0+∆t∫
t0

dt1e
−i2ω0t1G1−(ω0 + Ω) ≈ 0,

(30)

where G1−(ω) is one-side Fourier transform of reservoir correlation function,

G1−(ω) =
0∫

−∞

dτe−iωτTR1(τ) G1+(ω) =
+∞∫
0

dτe−iωτTR1(τ) (31)

G1(ω) =
+∞∫
−∞

dτe−iωτTR1(τ) = G1−(ω) +G1+(ω) (32)

Other terms give one-side Fourier transforms multiplied by slowly oscillating exponents.
For example,
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t0+∆t∫
t0

dt1
t1∫
t0

dt2 ˆ̃ρS0(t0) ˆ̃S1(t2) ˆ̃S1(t1)TR1(t2 − t1) =

1
2

ˆ̃ρS0(t0)
t0+∆t∫
t0

dt1
t1∫
t0

dt2
(
b̂b̂†e−i(ω0+Ω)(t2−t1) + b̂†b̂ei(ω0+Ω)(t2−t1)

+b̂ĉ†e−i(ω0+Ω)t2+i(ω0−Ω)t1 + b̂†ĉei(ω0+Ω)t2−i(ω0−Ω)t1 + ĉb̂†e−i(ω0−Ω)t2+i(ω0+Ω)t1+
ĉ†b̂ei(ω0−Ω)t2−i(ω0+Ω)t1 + ĉĉ†e−i(ω0−Ω)(t2−t1) + ĉ†ĉei(ω0−Ω)(t2−t1)

)
TR1(t2 − t1) ≈

1
2

ˆ̃ρS0(t0)
t0+∆t∫
t0

dt1
0∫
−∞

dτ
(
b̂b̂†e−i(ω0+Ω)τ + b̂†b̂ei(ω0+Ω)τ + b̂ĉ†e−i(ω0+Ω)τ−i2Ωt1+

b̂†ĉei(ω0+Ω)τ+i2Ωt1 + ĉb̂†e−i(ω0−Ω)τ+i2Ωt1 + ĉ†b̂ei(ω0−Ω)τ+i2Ωt1

+ ĉĉ†e−i(ω0−Ω)τ + ĉ†ĉei(ω0−Ω)τ
)
TR1(τ) =

1
2

ˆ̃ρS0(t0)
t0+∆t∫
t0

dt1
(
b̂b̂†G1−(ω0 + Ω) + b̂†b̂G1−(−(ω0 + Ω)) + b̂ĉ†G1−(ω0 + Ω)e−i2Ωt1+

b̂†ĉG1−(−(ω0 + Ω))ei2Ωt1 + ĉb̂†G1−(ω0 − Ω)ei2Ωt1 + ĉ†b̂G1−(−(ω0 − Ω))ei2Ωt1

+ ĉĉ†G1−(ω0 − Ω) + ĉ†ĉG1−(−(ω0 − Ω))ei(ω0−Ω)τ
)
TR1(τ)

(33)
We average the equation over the time 1/Ω � ∆t � 1/ω0. As a consequence, the terms
multiplied by fast-oscillating exponents, exp (±i (ω0 ± Ω) t), gives zero. Other terms can
be integrated straightforwardly. As a result, we obtain (for details, see [60]):

ˆ̃ρS2(t0 + ∆t)− ˆ̃ρS2(t0) =(
− ((I)− (II) + (III)− (IV ))−

(
(1)→ (2), ĉ→ −ĉ, ĉ† → −ĉ†

))
∆t (34)

where

(I) = 1
2


ˆ̃ρS0

(
b̂b̂†G1−(ω0 + Ω) + b̂†b̂G1−(−(ω0 + Ω)) +

b̂ĉ†G1−(ω0 + Ω)e−i2Ωt0 + b̂†ĉG1−(−(ω0 + Ω))ei2Ωt0+
ĉb̂†G1−(ω0 − Ω)ei2Ωt0 + ĉ†b̂G1−(−(ω0 − Ω))e−i2Ωt0+
ĉĉ†G1−(ω0 − Ω) + ĉ†ĉG1−(−(ω0 − Ω))

) (35)

(II) = 1
2



(
b̂ ˆ̃ρS0b

†G1−(−(ω0 + Ω)) + b† ˆ̃ρS0b̂G1−(ω0 + Ω) +
b̂ ˆ̃ρS0ĉ

†G1−(−(ω0 − Ω))e−i2Ωt0 + b† ˆ̃ρS0ĉG1−(ω0 − Ω)ei2Ωt0+
ĉ ˆ̃ρS0b

†G1−(−(ω0 + Ω))ei2Ωt0 + ĉ† ˆ̃ρS0b̂G1−(ω0 + Ω)e−i2Ωt0+
ĉ ˆ̃ρS0ĉ

†G1−(−(ω0 − Ω)) + ĉ† ˆ̃ρS0ĉG1−(ω0 − Ω)
) (36)

(III) = 1
2



(
b̂b̂†G1+(ω0 + Ω) + b̂†b̂G1+(−(ω0 + Ω)) +
b̂ĉ†G1+(ω0 − Ω)e−i2Ωt0 + b̂†ĉG1+(−(ω0 − Ω))ei2Ωt0+
ĉb̂†G1+(ω0 + Ω)ei2Ωt0 + ĉ†b̂G1+(−(ω0 + Ω))e−i2Ωt0+
ĉĉ†G1+(ω0 − Ω) + ĉ†ĉG1+(−(ω0 − Ω))

)
ˆ̃ρS0

(37)

(IV ) = 1
2



(
b̂ ˆ̃ρS0b̂

†G1+(−(ω0 + Ω)) + b̂† ˆ̃ρS0b̂G1+(ω0 + Ω) +
b̂ ˆ̃ρS0ĉ

†G1+(−(ω0 + Ω))e−i2Ωt0 + b̂† ˆ̃ρS0ĉG1+(ω0 + Ω)ei2Ωt0+
ĉ ˆ̃ρS0b̂

†G1+(−(ω0 − Ω))ei2Ωt0 + ĉ† ˆ̃ρS0b̂G1+(ω0 − Ω)e−i2Ωt0+
ĉ ˆ̃ρS0ĉ

†G1+(−(ω0 − Ω)) + ĉ† ˆ̃ρS0ĉG1+(ω0 − Ω)
) (38)

and (1)→ (2) denotes same terms with index exchange. Further, we divide both parts of
Eq. (34) by ∆t and replace

(
ˆ̃ρS2(t0 + ∆t)− ˆ̃ρS2(t0)

)
/∆t with ∂ ˆ̃ρS (t0) /∂t. Finally, we get
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1
λ2

∂ ˆ̃ρS
∂t =

+G1(−(ω0+Ω))
4

(
2b̂ ˆ̃ρS b̂† − ˆ̃ρS b̂†b̂− b̂†b̂ ˆ̃ρS

)
+ G1(ω0+Ω)

4

(
2b̂† ˆ̃ρS b̂− ˆ̃ρS b̂b̂† − b̂b̂† ˆ̃ρS

)
+

+G1(−(ω0−Ω))
4

(
2ĉ ˆ̃ρS ĉ† − ˆ̃ρS ĉ†ĉ− ĉ†ĉ ˆ̃ρS

)
+ G1(ω0−Ω)

4

(
2ĉ† ˆ̃ρS ĉ− ˆ̃ρS ĉĉ† − ĉĉ† ˆ̃ρS

)
+

+G1−(−(ω0−Ω))+G1+(−(ω0+Ω))
4

(
2b̂ ˆ̃ρS ĉ† − ˆ̃ρS ĉ†b̂− ĉ†b̂ ˆ̃ρS

)
e−i2Ωt+

+G1−(ω0+Ω)+G1+(ω0−Ω)
4

(
2ĉ† ˆ̃ρS b̂− ˆ̃ρS b̂ĉ† − b̂ĉ† ˆ̃ρS

)
e−i2Ωt+

+G1−(ω0−Ω)+G1+(ω0+Ω)
4

(
2b̂† ˆ̃ρS ĉ− ˆ̃ρS ĉb̂† − ĉb̂† ˆ̃ρS

)
ei2Ωt+

+G1−(−(ω0+Ω))+G1+(−(ω0−Ω))
4

(
2ĉ ˆ̃ρS b̂† − ˆ̃ρS b̂†ĉ− b̂†ĉ ˆ̃ρS

)
ei2Ωt−

−G1+(−(ω0+Ω))−G1−(−(ω0+Ω))+G1+(ω0+Ω)−G1−(ω0+Ω)
4

[
b̂†b̂, ˆ̃ρS

]
−

−G1+(−(ω0−Ω))−G1−(−(ω0−Ω))+G1+(ω0−Ω)−G1−(ω0−Ω)
4

[
ĉ†ĉ, ˆ̃ρS

]
+

+G1−(−(ω0−Ω))−G1+(−(ω0+Ω))
4

[
ĉ†b̂, ˆ̃ρS

]
e−i2Ωt + G1−(ω0+Ω)−G1+(ω0−Ω)

4

[
b̂ĉ†, ˆ̃ρS

]
e−i2Ωt+

+G1−(ω0−Ω)−G1+(ω0+Ω)
4

[
ĉb̂†, ˆ̃ρS

]
ei2Ωt + G1−(−(ω0+Ω))−G1+(−(ω0−Ω))

4

[
b̂†ĉ, ˆ̃ρS

]
ei2Ωt+

+
(
(1)→ (2), ĉ→ −ĉ, ĉ† → −ĉ†

)
.

(39)
This approximation is called semisecular [83]. The difference from the secular approach

and master equation in the Lindblad form is in slowly oscillating terms. These terms are
absent in secular approximation where slowly oscillating exponents are averaged.

One can move back from interaction picture to the Schrodinger picture via formulas

˙̂ρ = d
(
exp

(
−iĤSt

)
ˆ̃ρ exp

(
iĤSt

))
/dt = −i

[
ĤS , ρ̂

]
+ exp

(
−iĤSt

) d ˆ̃ρ
dt

exp
(
iĤSt

)
(40)

exp
(
−iĤSt

) (
2X̂(t)ˆ̃ρ(t)Ŷ (t)− ˆ̃ρ(t)Ŷ (t)X̂(t)− Ŷ (t)X̂(t)ˆ̃ρ(t)

)
exp

(
iĤSt

)
=

=
(
2 ˆ̃X(−t)ρ̂(t) ˆ̃Y (−t)− ρ̂(t) ˆ̃Y (−t) ˆ̃X(−t)− ˆ̃Y (−t) ˆ̃X(−t)ρ̂(t)

) (41)

Straightforward calculations give us the following master equation

1
λ2

∂ρ̂S
∂t = − i

λ2 [ĤS , ρ̂S ]+
+G1(−(ω0+Ω))

4

(
2b̂ρ̂S b̂† − ρ̂S b̂†b̂− b̂†b̂ρ̂S

)
+ G1(ω0+Ω)

4

(
2b̂†ρ̂S b̂− ρ̂S b̂b̂† − b̂b̂†ρ̂S

)
+

+G1(−(ω0−Ω))
4

(
2ĉρ̂S ĉ† − ρ̂S ĉ†ĉ− ĉ† ĉ̃̂ρS

)
+ G1(ω0−Ω)

4

(
2ĉ†ρ̂S ĉ− ρ̂S ĉĉ† − ĉĉ†ρ̂S

)
+

+G1−(−(ω0−Ω))+G1+(−(ω0+Ω))
4

(
2b̂ρ̂S ĉ† − ρ̂S ĉ†b̂− ĉ†b̂ρ̂S

)
+

+G1−(ω0+Ω)+G1+(ω0−Ω)
4

(
2ĉ†ρ̂S b̂− ρ̂S b̂ĉ† − b̂ĉ†ρ̂S

)
+

+G1−(ω0−Ω)+G1+(ω0+Ω)
4

(
2b̂†ρ̂S ĉ− ρ̂S ĉb̂† − ĉb̂†ρ̂S

)
+

+G1−(−(ω0+Ω))+G1+(−(ω0−Ω))
4

(
2ĉρ̂S b̂† − ρ̂S b̂†ĉ− b̂†ĉρ̂S

)
−

−G1+(−(ω0+Ω))−G1−(−(ω0+Ω))+G1+(ω0+Ω)−G1−(ω0+Ω)
4

[
b̂†b̂, ρ̂S

]
−

−G1+(−(ω0−Ω))−G1−(−(ω0−Ω))+G1+(ω0−Ω)−G1−(ω0−Ω)
4

[
ĉ†ĉ, ρ̂S

]
+

+G1−(−(ω0−Ω))−G1+(−(ω0+Ω))
4

[
ĉ†b̂, ρ̂S

]
+ G1−(ω0+Ω)−G1+(ω0−Ω)

4

[
b̂ĉ†, ρ̂S

]
+

+G1−(ω0−Ω)−G1+(ω0+Ω)
4

[
ĉb̂†, ρ̂S

]
+ G1−(−(ω0+Ω))−G1+(−(ω0−Ω))

4

[
b̂†ĉ, ρ̂S

]
+

+
(
(1)→ (2), ĉ→ −ĉ, ĉ† → −ĉ†

)

(42)
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Now let’s compute dâ/dt = Tr
(

˙̂ρ â
)
. For this purpose we use the following identity

Tr(2X̂ρ̂SŶ â− ρ̂SŶ X̂â− Ŷ X̂ρ̂S â) = 2Tr(ρ̂SŶ âX̂)− Tr(ρ̂SŶ X̂â)− Tr(ρ̂S âŶ X̂) =
= 2

〈
Ŷ âX̂

〉
−
〈
Ŷ X̂â

〉
−
〈
âŶ X̂

〉
=
〈
Ŷ
[
â, X̂

]〉
+
〈[
Ŷ , â

]
X̂
〉

(43)
Applying this formula, we get

2Tr
(
ρ̂S b̂
†b̂b̂
)
− Tr

(
ρ̂S b̂
†b̂b̂
)
− Tr

(
ρ̂S b̂b̂

†b̂
)

=
〈
b̂†
[
b̂, b̂
]〉

+
〈[
b̂†, b̂

]
b̂
〉

= −
〈
b̂
〉
,

2Tr
(
ρ̂S b̂b̂b̂

†
)
− Tr

(
ρ̂S b̂b̂

†b̂
)
− Tr

(
ρ̂S b̂b̂b̂

†
)

=
〈
b̂
[
b̂, b̂†

]〉
+
〈[
b̂, b̂
]
b̂†
〉

=
〈
b̂
〉
,

2Tr
(
ρ̂S ĉ
†b̂ĉ
)
− Tr

(
ρ̂S ĉ
†ĉb̂
)
− Tr

(
ρ̂S b̂ĉ

†ĉ
)

=
〈
ĉ†
[
b̂, ĉ
]〉

+
〈[
ĉ†, b̂

]
ĉ
〉

= 0,
2Tr

(
ρ̂S ĉb̂ĉ

†
)
− Tr

(
ρ̂S ĉĉ

†b̂
)
− Tr

(
ρ̂S b̂ĉĉ

†
)

=
〈
ĉ
[
b̂, ĉ†

]〉
+
〈[
ĉ, b̂
]
ĉ†
〉

= 0,
2Tr

(
ρ̂S ĉ
†b̂b̂
)
− Tr

(
ρ̂S ĉ
†b̂b̂
)
− Tr

(
ρ̂S b̂ĉ

†b̂
)

=
〈
ĉ†
[
b̂, b̂
]〉

+
〈[
ĉ†, b̂

]
b̂
〉

= 0,
2Tr

(
ρ̂S b̂b̂ĉ

†
)
− Tr

(
ρ̂S b̂ĉ

†b̂
)
− Tr

(
ρ̂S b̂b̂ĉ

†
)

=
〈
b̂
[
b̂, ĉ†

]〉
+
〈[
b̂, b̂
]
ĉ†
〉

= 0,
2Tr

(
ρ̂S ĉb̂b̂

†
)
− Tr

(
ρ̂S ĉb̂

†b̂
)
− Tr

(
ρ̂S b̂ĉb̂

†
)

=
〈
ĉ
[
b̂, b̂†

]〉
+
〈[
ĉ, b̂
]
b̂†
〉

= 〈ĉ〉 ,
2Tr

(
ρ̂S b̂
†b̂ĉ
)
− Tr

(
ρ̂S b̂
†ĉb̂
)
− Tr

(
ρ̂S b̂b̂

†ĉ
)

=
〈
b̂†
[
b̂, ĉ
]〉

+
〈[
b̂†, b̂

]
ĉ
〉

= −〈ĉ〉 ,
T r
([
ĉ†b̂, ρ̂0

]
b̂
)

= 0, T r
([
ĉb̂†, ρ̂0

]
b̂
)

= 〈ĉ〉 ,
T r
([
ĉ†b̂, ρ̂S

]
ĉ
)

=
〈
b̂
〉
, T r

([
ĉb̂†, ρ̂S

]
ĉ
)

= 0.

(44)

Combining obtained terms and neglecting last four terms in Eq. (42) (they just result in
small changing of eigenmode frequencies), we arrive at the following equations for average
amplitudes of eigenmodes

d〈b̂〉
dt = −i(ω0 + Ω)

〈
b̂
〉

+ λ2
(
A
〈
b̂
〉

+ (B + C) 〈ĉ〉
)

d〈ĉ〉
dt = −i(ω0 − Ω) 〈ĉ〉+ λ2

(
Ã 〈ĉ〉+ (B̃ + C̃)

〈
b̂
〉) (45)

where

A = −G1(−(ω0+Ω))+G2(−(ω0+Ω))
4 + G1(ω0+Ω)+G2(ω0+Ω)

4 ,

Ã = −G1(−(ω0−Ω))+G2(−(ω0−Ω))
4 + G1(ω0−Ω)+G2(ω0−Ω)

4 ,

B + C = G1−(ω0−Ω)−G1+(−(ω0−Ω))−G2−(ω0−Ω)+G2+(−(ω0−Ω))
2 ,

B̃ + C̃ = G1−(ω0+Ω)−G1+(−(ω0+Ω))−G2−(ω0+Ω)+G2+(−(ω0+Ω))
2 ,

B = G1−(ω0−Ω)+G1+(ω0+Ω)
4 − G2−(ω0−Ω)+G2+(ω0+Ω)

4 −
−G1−(−(ω0+Ω))+G1+(−(ω0−Ω))

4 + G2−(−(ω0+Ω))+G2+(−(ω0−Ω))
4 ,

B̃ = G1−(ω0+Ω)+G1+(ω0−Ω)
4 − G2−(ω0+Ω)+G2+(ω0−Ω)

4 −
−G1−(−(ω0−Ω))+G1+(−(ω0+Ω))

4 + G2−(−(ω0−Ω))+G2+(−(ω0+Ω))
4 ,

C = G1−(−(ω0+Ω))−G1+(−(ω0−Ω))+G1−(ω0−Ω)−G1+(ω0+Ω)
4 −

−G2−(−(ω0+Ω))−G2+(−(ω0−Ω))+G2−(ω0−Ω)−G2+(ω0+Ω)
4 ,

C̃ = G1−(−(ω0−Ω))−G1+(−(ω0+Ω))+G1−(ω0+Ω)−G1+(ω0−Ω)
4 −

−G2−(−(ω0−Ω))−G2+(−(ω0+Ω))+G2−(ω0+Ω)−G2+(ω0−Ω)
4

(46)

The equation for average amplitudes of eigenmodes (45) can be rewritten in terms of
average amplitudes of oscillators via the linear transformation:
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d 〈â1〉 /dt = −iω0 〈â1〉 − iΩ 〈â2〉+ λ2A+Ã+B+C+B̃+C̃
2 〈â1〉+ λ2 (A−Ã)−(B+C−B̃−C̃)

2 〈â2〉
d 〈â2〉 /dt = −iω0 〈â2〉 − iΩ 〈â1〉+ λ2A+Ã−(B+C+B̃+C̃)

2 〈â2〉+ λ2 (A−Ã)+(B+C−B̃−C̃)
2 〈â1〉

(47)
Calculating G1,2±(ω) using Eqs. (23) and (31), we get following equations for oscillators
amplitudes

d

dt

(
〈â1〉
〈â2〉

)
=
(
−iω0 − λ2 γ1(ω0+Ω)+γ1(ω0−Ω)

2 −iΩ− λ2 γ1(ω0+Ω)−γ1(ω0−Ω)
2

−iΩ− λ2 γ2(ω0+Ω)−γ2(ω0−Ω)
2 −iω0 − λ2 γ2(ω0+Ω)+γ2(ω0−Ω)

2

)(
〈â1〉
〈â2〉

)
(48)

Here γ1,2(ω) = π
(
γ

(1),(2)
k

)2
ρ1,2(ω).

B Classical equations for two coupled oscillators interacting with envi-
ronment

We consider a system of two identical oscillators coupling with each other. Each oscillator
interacts with its own reservoir. This system is described by the following system equations

ẍ1 + ω2
0x1 =

∑
ω

ρ(1)
ω g(1)

ω y(1)
ω − κ2x2 (49)

ẍ2 + ω2
0x2 =

∑
ω

ρ(2)
ω g(2)

ω y(2)
ω − κ2x1 (50)

ÿ(1)
ω + ω2y(1)

ω = g(1)
ω x1 (51)

ÿ(2)
ω + ω2y(2)

ω = g(2)
ω x2 (52)

Here x1 and x2 are coordinates of first and second oscillators; y(1)
k and y(2)

k are coordinates
of kth oscillator in first and second reservoirs, respectively. κ is a coupling constant between
the oscillators. g(1)

ω and g(2)
ω are, respectively, the coupling strength between the first and

second oscillators with the modes of first and second reservoirs with a frequency ω. ρ(1)
ω

and ρ(2)
ω are, respectively, the number of modes in the first and second reservoirs with a

frequency ω.
We exclude the reservoir variables, y(1)

k and y(2)
k , in the Born approximation [61, 62]. In

this approach, we obtain a closed system of equations for the coordinates of two oscillators.
The interaction of oscillators with the reservoirs leads to the appearance of relaxation terms
in the equations. It is usually assumed that each oscillator has its own relaxation rate,
which does not depend on the amplitude of the other oscillator. However, this assumption
is not correct. To exclude the degrees of freedom of the reservoirs it is necessary to consider
the interaction of reservoirs with the eigenstates of the system of oscillators [53]-[55], and
not with the individual oscillators. As a result, the cross-relaxation terms appear in the
equations for oscillator coordinates.

The eigenstates of the system of two coupled oscillators are symmetric and anti-
symmetric modes, i.e., ~hs,a = 1√

2(1, ±1)T ; the eigenfrequencies are ω2
s,a = ω2

0 ± κ2. Intro-

ducing the vector ~x(t) = (x1, x2)T , we can write the system evolution as

~x(t) = Cs(t)~hse−iωst + Ca(t)~hae−iωat + c.c. (53)
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where Cs,a are complex amplitudes. At this step, we move from real to complex variables
and increase the number of unknown variables. We also can introduce symmetric and
anti-symmetric modes for the reservoir variables

y(s)
ω = 1√

g
(1)2

ω + g
(2)2

ω

(g(2)
ω y(1)

ω + g(1)
ω y(2)

ω ) = µ(s)
ω e−iωst + µ(s)∗

ω eiωst (54)

y(a)
ω = 1√

g
(1)2

ω + g
(2)2

ω

(g(2)
ω y(1)

ω − g(1)
ω y(2)

ω ) = µ(a)
ω e−iωat + µ(a)∗

ω eiωat (55)

Following [81], we impose constraints on the first derivatives of complex amplitudes Cs,a(t),
Ċs,a(t)exp (−iωs,at) + Ċ∗s,a(t)exp (iωs,at) = 0 and restore the number of independent un-
known variables. Using these constraints, we obtain

Ċs = i

ωs

∑
ω

(
g(ss)
ω µ(s)

ω + g(sa)
ω µ(a)

ω e−i(ωa−ωs)t
)

(56)

Ċa = i

ωa

∑
ω

(
g(sa)
ω µ(s)

ω ei(ωa−ωs)t + g(ss)
ω µ(a)

ω

)
(57)

where g(ss)
ω =

√
g

(1)2

ω + g
(2)2

ω
ρ

(1)
ω g

(1)2
ω +ρ(2)

ω g
(2)2
ω

23/2g
(2)
ω g

(1)
ω

, g(sa)
ω =

√
g

(1)2

ω + g
(2)2

ω
ρ

(1)
ω g

(1)2
ω −ρ(2)

ω g
(2)2
ω

23/2g
(2)
ω g

(1)
ω

. More-

over, from Eqs. (51) and (52) we obtain

µ̇(s)
ω + 2i∆sµ

(s)
ω = i

√
2

ωs

g
(1)
ω g

(2)
ω√

g
(1)2

ω + g
(2)2

ω

Cs(t) (58)

µ̇(a)
ω + 2i∆aµ

(a)
ω = i

√
2

ωa

g
(1)
ω g

(2)
ω√

g
(1)2

ω + g
(2)2

ω

Ca(t) (59)

where ∆s = ω−ωs, ∆a = ω−ωa and we use that ω2−ω2
s ≈ 2∆sωs and ω2−ω2

a ≈ 2∆aωa.
Further, we integrate Eqs. (58) and (59) and get

µ(s)
ω (t) = µ(s)

ω (0) e−2i∆st + i
√

2
ωs

g
(1)
ω g

(2)
ω√

g
(1)2

ω + g
(2)2

ω

t∫
0

Cs(τ)e−2i∆s(t−τ)dτ (60)

and a similar equation for µ(a)
ω . To calculate the integral on the right side of Eq. (60) we

use Born approximation:

t∫
0

Cs(τ)e−2i∆s(t−τ)dτ ≈ Cs(t)
∞∫
0

e2i∆sτdτ = Cs(t)
∞∫
0

e−2i(ωs−ω) τ ′dτ ′ (61)

Using the Sokhotski-Plemelj formula [82] we obtain that

µ(s)
ω (t) = µ(s)

ω (0) e−2i∆st + i√
2ωs

g
(1)
ω g

(2)
ω√

g
(1)2

ω + g
(2)2

ω

Cs(t)
[
π δ (ωs − ω) + iP

( 1
ωs − ω

)]
(62)

µ(a)
ω (t) = µ(a)

ω (0) e−2i∆at+ i√
2ωa

g
(1)
ω g

(2)
ω√

g
(1)2

ω + g
(2)2

ω

Ca(t)
[
π δ (ωa − ω) + iP

( 1
ωa − ω

)]
(63)
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We substitute these formulas into the equations for the slow amplitudes of the oscilla-
tors (56) and (57) and obtain:

Ċs = i
ωs

∑
ω
g

(ss)
ω

µ(s)
ω (0) e−2i∆st + i√

2ωs

g
(1)
ω g

(2)
ω√

g
(1)2
ω +g(2)2

ω

Cs(t)
[
π δ (ωs − ω) + iP

(
1

ωs−ω

)]+

g
(sa)
ω

µ(a)
ω (0) e−2i∆at + i√

2ωa

g
(1)
ω g

(2)
ω√

g
(1)2
ω +g(2)2

ω

Ca(t)
[
π δ (ωa − ω) + iP

(
1

ωa−ω

)] ei(ωs−ωa)t

(64)
and analogous equation for Ċa(t).

We transform these equations in following way:

Ċs = f
(1)
1 (t) + f

(1)
2 (t)−

Cs

(∑
ω

{
π (ρ(1)

ω g
(1)2
ω +ρ(2)

ω g
(2)2
ω )

4ω2
s

δ (ωs − ω)
}

+ i
∑
ω

{
ρ

(1)
ω g

(1)2
ω +ρ(2)

ω g
(2)2
ω

4ω2
s

1
ωs−ω

})
−

Ca

(∑
ω

{
π (ρ(1)

ω g
(1)2
ω −ρ(2)

ω g
(2)2
ω )

4ωsωa
δ (ωa − ω)

}
+ i

∑
ω

{
ρ

(1)
ω g

(1)2
ω −ρ(2)

ω g
(2)2
ω

4ωsωa

1
ωa−ω

})
ei(ωs−ωa)t

(65)

Ċa = f
(2)
1 (t) + f

(2)
2 (t)−

Cs

(∑
ω

{
π (ρ(1)

ω g
(1)2
ω −ρ(2)

ω g
(2)2
ω )

4ωsωa
δ (ωs − ω)

}
+ i

∑
ω

{
ρ

(1)
ω g

(1)2
ω +ρ(2)

ω g
(2)2
ω

4ωsωa

1
ωs−ω

})
ei(ωa−ωs)t−

Ca

(∑
ω

{
π (ρ(1)

ω g
(1)2
ω +ρ(2)

ω g
(2)2
ω )

4ω2
a

δ (ωa − ω)
}

+ i
∑
ω

{
ρ

(1)
ω g

(1)2
ω +ρ(2)

ω g
(2)2
ω

4ω2
a

1
ωa−ω

})
(66)

where f (1)
1 = i

ωs

∑
ω
g

(ss)
ω µ

(s)
ω (0) e−2i∆st; f (1)

2 = i
ωs

∑
ω
g

(sa)
ω µ

(a)
ω (0) e−2i∆stei(ωs−ωa)t; f (2)

1 =
i
ωa

∑
ω
g

(sa)
ω µ

(s)
ω (0) e−2i∆ste−i(ωs−ωa)t; f (2)

2 = i
ωa

∑
ω
g

(ss)
ω µ

(a)
ω (0) e−2i∆at are noise terms. We

introduce notations: Γ(+)(ωs,a)
2 =

∑
ω
π (ρ(1)

ω g
(1)2

ω + ρ
(2)
ω g

(2)2

ω )δ (ωs,a − ω); Γ(−)(ωs,a)
2 =∑

ω
π (ρ(1)

ω g
(1)2

ω − ρ(2)
ω g

(2)2

ω )δ (ωs,a − ω); ∆ω(+)
s,a =

∑
ω

ρ
(1)
ω g

(1)2
ω +ρ(2)

ω g
(2)2
ω

ωs,a−ω ; ∆ω(−)
s,a =

∑
ω

ρ
(1)
ω g

(1)2
ω −ρ(2)

ω g
(2)2
ω

ωs,a−ω .

Here Γ/2 are the relaxation rates and ∆ω are the frequency shifts.
The expressions for Γ/2 and ∆ω can be rewritten as

Γ(±) (ωs,a) /2 = V π

∫
dω (ρ1(ω)g(1)2

ω ± ρ2(ω)g(2)2

ω )δ (ωs,a − ω) (67)

∆ω(±)
s,a = P.

∫
dω

V (ρ1(ω)g(1)2

ω ± ρ2(ω)g(2)2

ω )
ωs,a − ω

(68)

where ρ1,2 (ω) is a density of states in the respective reservoirs and V is a reservoir volume.
Using the introduced notations, we rewrite Eqs. (65) and (66) as

Ċs = f
(1)
1 (t) + f

(1)
2 (t)−

Cs
({

1
4ω2

s

Γ(+)(ωs)
2

}
+ i

{
1

4ω2
s
∆ω(+)

s

})
−

Cae
i(ωs−ωa)t

({
1

4ωsωa

Γ(−)(ωa)
2

}
+ i

{
1

4ωsωa
∆ω(−)

a

}) (69)

Ċa = f
(2)
1 (t) + f

(2)
2 (t)−

Cse
i(ωa−ωs)t

({
1

4ωsωa

Γ(−)(ωs)
2

}
+ i

{
1

4ωsωa
∆ω(−)

s

})
−

Ca
({

1
4ω2

a

Γ(+)(ωa)
2

}
+ i

{
1

4ω2
a
∆ω(+)

a

}) (70)
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Introducing notations

β
(1)
1 =

{
1

4ω2
s

Γ(+) (ωs)
2

}
+ i

{ 1
4ω2

s

∆ω(+)
s

}
(71)

β
(1)
2 =

{
1

4ωsωa
Γ(−) (ωa)

2

}
+ i

{ 1
4ωsωa

∆ω(−)
a

}
(72)

β
(2)
1 =

{
1

4ωsωa
Γ(−) (ωs)

2

}
+ i

{ 1
4ωsωa

∆ω(−)
s

}
(73)

β
(2)
2 =

{
1

4ω2
a

Γ(+) (ωa)
2

}
+ i

{ 1
4ω2

a

∆ω(+)
a

}
(74)

we write the Eqs. (69) and (70) as

Ċs = f
(1)
1 (t) + f

(1)
2 (t)− Csβ(1)

1 − Caei(ωs−ωa)tβ
(1)
2 (75)

Ċa = f
(2)
1 (t) + f

(2)
2 (t)− Cse−i(ωs−ωa)tβ

(2)
1 − Ca β(2)

2 (76)

Note that the real parts of β are responsible for the relaxation processes and the imaginary
parts of β are responsible for the frequency shift.

Neglect the noise terms and accomplish the change of variable Cs = C̃se
i(ωs−ωa)t/2;

Ca = C̃ae
−i(ωs−ωa)t/2 we obtain the following differential equation

d

dt

(
C̃s
C̃a

)
=
(
−β(1)

1 − iωs−ωa
2 −β(1)

2
−β(2)

1 −β(2)
2 + iωs−ωa

2

)(
C̃s
C̃a

)
(77)

We introduce new variables: C̃s = (a1 + a2) /
√

2 and C̃a = (a1 − a2) /
√

2 (then x1,2 =
a1,2e

iω0t + c.c) and rewrite Eq. (77) as

d

dt

(
a1
a2

)
= −

 β
(1)
1 +β(2)

2
2 + β

(1)
2 +β(2)

1
2

β
(1)
1 −β

(2)
2

2 − β
(1)
2 −β

(2)
1

2 + i κ
2

2ω0
β

(1)
1 −β

(2)
2

2 + β
(1)
2 −β

(2)
1

2 + i κ
2

2ω0

β
(1)
1 +β(2)

2
2 − β

(1)
2 +β(2)

1
2

( a1
a2

)
(78)

where we use that ωs − ωa ≈ κ2/ω0.
Using the expressions (71)-(74) we obtain the following system of equations

d
dt

(
a1
a2

)
=

− πV
4ω2

0

 ρ1(ωs)g(1)2

ωs + ρ1(ωa)g(1)2

ωa ρ1(ωs)g(1)2

ωs − ρ1(ωa)g(1)2

ωa + 4ω2
0

πV
iκ2

2ω0

ρ2(ωs)g(2)2

ωs − ρ2(ωa)g(2)2

ωa + 4ω2
0

πV
iκ2

2ω0
ρ2(ωs)g(2)2

ωs + ρ2(ωa)g(2)2

ωa

( a1
a2

)
(79)

Introducing new quantities Ω = κ2/2ω0 and γ
(1),(2)
ω = V g

(1),(2)
ωs,a /2ω0, we can rewrite

Eq. (79) as

d

dt

(
a1
a2

)
= −

(
γ1(ωs)+γ1(ωa)

2
γ1(ωs)−γ1(ωa)

2 + iΩ
γ2(ωs)−γ2(ωa)

2 + iΩ γ2(ωs)+γ2(ωa)
2

)(
a1
a2

)
(80)
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Figure 6: Dependence of the real parts of the elements of the density matrix in the EASC regime.
ρ (ω) ∼ ω2; γ1 = 0.001ω0; γ2 = 0.002ω0; Ω = 0.08ω0.

where γ1,2 (ωs,a) = π ρ1,2(ωs,a)
(
γ

(1),(2)
ωs,a

)2
are the relaxation rates of the first and second

oscillators at the frequencies of symmetric and anti-symmetric eigenmodes, respectively.
In Eq. (80), we can approximately assume that (γ1,2(ωs) + γ1,2(ωa)) /2 ≈ γ1,2(ω0) and

introduce designation K (κ, γ1,2) = γ1,2(ωs)−γ1,2(ωa)
2 . It is seen that Eq. (80) are equivalent

to Eq. (48) after transition to slowly varying amplitudes.

C Dynamics of the density matrix of two coupled oscillators
We simulate the quantum dynamics of two coupled oscillators predicted by the master
equation for the density matrix (42). We consider that at the initial time the first oscillator
is in the state with one excitation and the second oscillator is in the ground state, i.e. the
system state is |ψ (t = 0)〉 = |1, 0〉. Also we assume that the temperatures of two reservoirs
are zero. In these conditions, the system evolution takes place in the subspace spanned by
the states: |1, 0〉, |0, 1〉 and |0, 0〉.

We calculate the temporal evolution of the density matrix of the system with the
power-dependent reservoir density of states ρ (ω) ∼ ω2 (Fig. 6) and with the frequency-
independent reservoirs ρ (ω) = const (Fig. 7). In the first system, the EI coupling strength
is nonzero. While in the second system the EI coupling is zero.

The EI coupling leads to change in the system dynamics (cf. Figs. 6 and 7). The
influence of EI coupling is most pronounced in the time dependence of the real parts of the
non-diagonal elements of density matrix ρ̂10,01 and ρ̂01,10. Our calculations show that in
the case of frequency-independent reservoirs, these real parts are zero (Fig. 7b, d). While
in the case of the power-dependent reservoir density of states its differ from zero during the
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Figure 7: Dependence of the real parts of the elements of the density matrix in the SC regime. ρ (ω) =
const; γ1 = 0.001ω0; γ2 = 0.002ω0; Ω = 0.08ω0.

system evolution (Fig. 6b, d). This leads to the nonzero interaction energy Ω
〈
â†1â2 + â1â

†
2

〉
during the system evolution (Fig. 5 in the main text).

In addition, we compare the time dependencies of the oscillator’s energies calculated
from Eq. (4), E1,2 = |a1,2|2, and from the master equation for density matrix (42), E1,2 =〈
â†1,2â1,2

〉
. It is seen that Eq. (4) and the master equations for the density matrix (42)

lead to identical time dependencies in all regimes, including EASC regime (Fig. 8).
Thus, we conclude that the EI coupling has a noticeable effect in the quantum limit.

D Influence of the counter-rotating and diamagnetic terms on the envi-
ronmental - induced coupling

Usually, the transition to the ultra-strong coupling regime is determined by the manifes-
tation of influence of the counter-rotating and diamagnetic terms on the system behavior
[71]. The Hamiltonian of system of two coupled oscillators taking into account these terms
can be presented in the form [71]

ĤS = ĤJC + ĤCRW + Ĥdia (81)

Here ĤJC = ω0 â
†
1â1 + ω0 â

†
2â2 + Ω

(
â†1â2 + â1â

†
2

)
is the Jaynes-Cumming Hamiltonian

[10], ĤCRW = Ω
(
â†1â
†
2 + â1â2

)
is the counter-rotating term, Ĥdia = D1

(
â†1 + â1

)2
+

D2
(
â†2 + â2

)2
is the diamagnetic terms where D1,2 ≥ Ω2/ω0 [71]. For simplicity, we con-
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Figure 8: Dependence of the energy of the first (a) and the second (b) oscillators calculated from
Eq. (4), E1,2 = |a1,2|2, and from the master equation for density matrix (42), E1,2 =

〈
â†1,2â1,2

〉
, in

the EASC regime. ρ (ω) ∼ ω2; γ1 = 0.001ω0; γ2 = 0.002ω0; the Rabi coupling strength Ω = 0.08ω0.

sider the case D1 = D2 = Ω2/ω0.
Using the Heisenberg equations, we obtain the equations for average values of operators

〈a1,2〉 and
〈
â+

1,2

〉

d
dt


〈a1〉
〈a2〉〈
a+

1

〉〈
a+

2

〉
 =


−i ω0 − 2iΩ2/ω0 −iΩ −2iΩ2/ω0 −iΩ

−iΩ −i ω0 − 2iΩ2/ω0 −iΩ −2iΩ2/ω0
2iΩ2/ω0 iΩ i ω0 + 2iΩ2/ω0 iΩ
iΩ 2iΩ2/ω0 iΩ i ω0 + 2iΩ2/ω0



〈a1〉
〈a2〉〈
a+

1

〉〈
a+

2

〉


(82)
Without taking into account the counter-rotating and diamagnetic terms the equations for
〈a1,2〉 and

〈
â+

1,2

〉
are divided into two independent subsystems:

d

dt

(
〈a1〉
〈a2〉

)
=
(
−i ω0 −iΩ
−iΩ −i ω0

)(
〈a1〉
〈a2〉

)
(83)

and similar for
〈
â+

1,2

〉
. The interaction of the system with the environment leads to the

relaxation of the oscillator amplitudes, i.e. 〈a1,2〉. The relaxation processes depend on
the eigenstates of coupled system (see Appendices A and B). The eigenstates of coupled
system described by Eq. (83) are symmetric and anti-symmetric modes. The difference
of the eigenstates from the states of individual oscillators leads to the appearance of the
environmental-induced coupling (see Appendices A and B).

The eigenstates and eigenfrequencies of the system of equations (82) taking into ac-
count the counter-rotating and diamagnetic terms differ from ones of the system of equa-
tions (83). This leads, among other things, to a change in the relaxation processes in
the system. However, the changes in the eigenstates and eigenfrequencies caused by the
counter-rotating and diamagnetic terms become significant only when the coupling strength
Ω is at least greater than 0.1ω0 [71, 80]. Indeed, the eigenstates of Eq. (83) are symmetric
and anti-symmetric states for all values of the coupling strength. The counter-rotating and
diamagnetic terms modify the eigenstates but the corresponding change is proportional to
Ω/ω0 and is not significant when Ω/ω0 << 1, see Fig. 9. The eigenfrequencies of symmetric
and anti-symmetric eigenstates of the system (83) are ωS,A = ω0±Ω, while the correspond-
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Figure 9: (a) Dependence of eigenfrequencies of Eq. (82) (solid blue lines) and Eq. (83) (dashed black
lines) on the coupling strength. (b) The dependence of the components of eigenstates of Eq. (82)
(〈a1〉, 〈a2〉,

〈
a+

1
〉
,
〈
a+

2
〉
) (solid blue lines) and Eq. (83) (〈a1〉, 〈a2〉) (dashed black lines) on the

coupling strength Ω.

ing eigenfrequencies of the system (82) are ω̃S,A =
√
ω2

0 ± 2Ωω0 + 4Ω2 ≈ ω0±Ω+ 3Ω2

2ω0
+ ....

It is seen that the change in the eigenfrequencies is proportional to Ω2/ω0 and becomes
comparable with the frequency splitting (2 Ω) only when Ω/ω0 ∼ 1, see Fig. 9.

Thus, the changes in the eigenfrequencies and eigenstates caused by the counter-
rotating and diamagnetic terms are of the order of Ω/ω0 compared to the changes related
to the Jaynes-Cumming interaction, i.e. Ω

(
â†1â2 + â1â

†
2

)
. For this reason, the changes in

the relaxation processes caused by the counter-rotating and diamagnetic terms are also of
the order of Ω/ω0 compared to changes in the relaxation processes related to the Jaynes-
Cumming interaction.
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