
Flow of time during energy measurements and the resulting
time-energy uncertainty relations
I. L. Paiva1, A. C. Lobo2, and E. Cohen1

1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002,
Israel

2Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil

Uncertainty relations play a crucial role
in quantum mechanics. Well-defined
methods exist for the derivation of such
uncertainties for pairs of observables.
Other approaches also allow the formula-
tion of time-energy uncertainty relations,
even though time is not an operator in
standard quantum mechanics. However,
in these cases, different approaches are as-
sociated with different meanings and in-
terpretations for these relations. The one
of interest here revolves around the idea
of whether quantum mechanics inherently
imposes a fundamental minimum dura-
tion for energy measurements with a cer-
tain precision. In our study, we investi-
gate within the Page and Wootters time-
less framework how energy measurements
modify the relative “flow of time” between
internal and external clocks. This provides
a unified framework for discussing the sub-
ject, allowing us to recover previous results
and derive new ones. In particular, we
show that the duration of an energy mea-
surement carried out by an external sys-
tem cannot be performed arbitrarily fast
from the perspective of the internal clock.
Moreover, we show that during any energy
measurement the evolution given by the
internal clock is non-unitary.

1 Introduction
In standard quantum mechanics, while the canon-
ical conjugate variables of position and momen-
tum are treated as observables, the same does not
hold for the pair time-energy. While energy (asso-
ciated with a Hamiltonian) is an observable, time
is treated as an external parameter. Since time
and position are part of the same object in rela-

tivistic theories, the lack of symmetry in their sta-
tus in quantum mechanics seems to make the in-
compatibility of this theory with relativity deeper
than the incompatibility of earlier non-relativistic
theories. An answer to this conundrum was the
development of the relativistic quantum field the-
ory, which is, to this day, the main tool to de-
scribe the standard model of elementary parti-
cles. This approach “downgrades” the status of
the position observable to a parameter, putting it
alongside time, while “upgrading” quantum parti-
cles to the status of fields. In turn, this gives place
to the arena of the “classical” Minkowski space-
time, upon where the quantum relativistic fields
are defined. Yet, this move does not solve many
fundamental issues present in quantum mechan-
ics. In particular, the problem of constructing a
consistent quantum theory of gravity remains.

A more recent venue to reconsider this problem
is to look back at Einstein’s operational approach
that led to the discovery of special relativity in
the first place. He achieved a better understand-
ing of space and time not by asking deep meta-
physical questions, such as what space and time
are, but by answering much more seemingly mun-
dane questions, like how physicists in relative mo-
tion synchronize the measurements of length and
time between events with rods and clocks. An ap-
proach to quantum mechanics that abides by this
operational perspective has been coined relational
quantum mechanics. It may become instrumen-
tal in describing spacetime and gravity quantum
mechanically [1]. The main idea is to recognize
that clocks and rulers are physical objects and, as
such, they must obey quantum mechanical laws.
Also, physical quantities are always given rela-
tive to some reference object or quantity, and so
one is led to the concept of quantum reference
frames [2–4]. As it will be seen, this approach is
central to the discussion here.
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A related question to the aforementioned rel-
ativistic asymmetry of quantum mechanics con-
cerns the existence of a time-energy uncertainty
relation. On the one hand, this type of rela-
tion is expected to exist in view of relativis-
tic ideas together with Heisenberg’s uncertainty
principle, which establishes an uncertainty rela-
tion for position and momentum. However, stan-
dard approaches for obtaining uncertainty rela-
tions, which are appropriate for the study of the
relation between two observables [5–9], do not
work for time-energy. As a result, there exist
multiple ways to address this problem [10–13].
For instance, Mandelstam and Tamm introduced
a time-energy uncertainty relation based on the
fact that, in many cases, for a general observable
O, the ratio ∆O/〈Ȯ〉, where ∆O is the variance
of O and Ȯ is its time derivative, defines an in-
terval of time [14]. Also, Anandan and Aharonov
presented a geometric time-energy uncertainty re-
lation based on the concept of orthogonal-time,
defined as the time that it takes for the state
of a system to become orthogonal to its initial
state [15]. A similar idea to the latter was later
examined by Margolus and Levitin in Ref. [16].

However, the approach that is of particular in-
terest here and whose first studies precede the
aforementioned two has to do with time-energy
relations associated with the process of measure-
ments of energy. More specifically, relations that
determine how fast such measurements can be
made given a certain desirable precision. First,
Landau and Peierls argued in favor of an un-
certainty relation with a particular model for
measuring energy [17]. However, Aharonov and
Bohm showed that their model did not provide
an optimal energy measurement scheme and, in
fact, it is possible to design energy measurements
that can be performed arbitrarily fast [18]. Nev-
ertheless, a vast number of measurements are
bounded by an uncertainty relation. Investigat-
ing the reasons behind it, Aharonov, Massar, and
Popescu showed that arbitrarily fast measure-
ments require prior knowledge about the Hamil-
tonian [19]. In case the Hamiltonian is unknown,
as they showed, some time must be spent in the
estimation of it. Only after that, the measure-
ment of energy can be performed arbitrarily fast.

In common, these discussions considered mea-
surements carried out by external systems to the
system of interest. However, as analyzed by

Aharonov and Reznik, one can also consider the
case where the system’s energy is measured by
a part of it [20]. They suggested that, in this
case, the measurement can never be performed
arbitrarily fast. However, Massar and Popescu
showed that if one considers the proper time (i.e.,
internal time) of the system of interest, there ex-
ists no limit on the speed of the measurement [21].

These studies, directly or indirectly, involve the
idea of quantum frames of reference and, in par-
ticular, clock frames. The point in common is
that they all use a physical system to represent
a clock. However, the way these approaches were
constructed makes it non-trivial to discuss the
different scenarios (i.e., internal or external mea-
surements with an analysis of the internal or ex-
ternal time) in a unified way. In fact, each of these
results relies on specific measurement schemes.
Their approach included a single clock system.
Because of that, in the works that studied both
internal and external times (Refs. [20, 21]), an
analysis of the composed state of the relevant
systems after the end of the von Neumann inter-
action was carried out to draw conclusions about
the duration of the measurement according to the
two distinct notions of time.

Regarding the idea of quantum clocks, Page
and Wootters introduced a framework for the
study of timeless quantum mechanics [22]. As-
suming the state of the joint system composed by
a clock and a system of interest satisfy a certain
constraint, known as the Wheeler-DeWitt equa-
tion, they showed that the unitary Schrödinger
dynamics of the system of interest could be recov-
ered in their timeless framework. This approach
was further developed in Refs. [23–37] and is sim-
ilar to other approaches in the literature, e.g., in
Refs. [38, 39]. It has also been realized experi-
mentally [40,41].

Among the studies in this area, multiple clocks
and how quantum systems evolve from their per-
spective were considered [27, 31, 32]. Inspired by
it, we introduce the discussion about the passage
of time during a von Neumann measurement (or
pre-measurement since the final “collapse” is not
involved) of energy in the timeless framework.
This allows us to analyze how the “flow of time”
changes during the measurement in an internal or
external clock and from the perspective of each
of them. Besides the interesting aspects of this
analysis on its own, it also provides a unified
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and simplified framework for the study and un-
derstanding of time-energy uncertainty relations
associated with the process of energy measure-
ments, as formulated by Landau and Peierls [17]
and further developed in Refs. [18,19,21].

One of the main differences proposed by our ap-
proach is the explicit use of two physical clocks:
one internal and the other external to the sys-
tem of interest. As a result, we do not need to
rely on analysis of phase factors multiplying the
wave function of the system after the measure-
ment is completed, as done in previous works.
In addition, as already mentioned, the model we
consider allows us to observe how the measure-
ment interaction changes the relative flow of time
between the different clocks during the measure-
ment. Furthermore, with this unified framework,
we can also draw conclusions about the existence
or absence of a time-energy uncertainty relation
for the internal time when the measurement is
carried out by an external system and for the ex-
ternal time when the measurement is carried out
by an internal subpart of the system of interest.
To the best of our knowledge, the existence or
not of a time-energy uncertainty relation in these
two scenarios was not known prior to the present
work.

Another feature revealed by our results is the
appearance of non-unitarity from the internal’s
clock perspective regardless of the measurement
being conducted by an external or an internal sys-
tem. This is another contribution of this arti-
cle. In previous discussions of time-energy uncer-
tainty relations, the particularities of the models
and the way they were solved did not allow for
this property to be observed. Furthermore, in the
context of the Page and Wootters framework, to
the best of our knowledge, this work is the first
to point out that the effective Hamiltonian of a
system from a clock’s perspective is not always
Hermitian.

The article is organized as follows. In Section
2, we present an overview of Page and Wootters
framework. Following that, in Section 3, we in-
troduce our model for the measurement of energy
carried out by both an external system or an in-
ternal part of the system of interest. This allows
to analyze the relative flow of time between the
different clocks. This leads to a two-fold study:
the subsequent time-energy uncertainty relations
in Section 4 and the emergence of non-unitarity

in Section 5. Finally, we discuss the results pre-
sented here as well as some remaining questions
that deserve further examination in Section 6.

2 Quantum mechanics in the timeless
framework
The timeless framework consists of a clock sys-
tem, whose state is given by a vector in a Hilbert
space HA, and the rest of the system, represented
by a state in a Hilbert space HR, whose evolution
is studied. The joint system |Ψ〉〉 ∈ HA ⊗ HR is
assumed to be closed and, hence,

HT |Ψ〉〉 = 0, (1)

where HT is the total Hamiltonian acting on sys-
tems A and R. This equation is known as the
Wheeler-DeWitt equation. Observe that the im-
position of |Ψ〉〉 being an eigenstate with null
eigenvalue by Eq. (1) is not as restrictive as it
seems [24]. In fact, Hamiltonians that differ by
constant terms are physically equivalent, which
is associated with quantum states being defined
up to a global phase. Then, Eq. (1) just reads
as |Ψ〉〉 not evolving with respect to an external
time.

The clock system should have an observable
TA associated with its time. It is desirable that
such operator is covariant under translations gen-
erated by the Hamiltonian HA, i.e., |t0 + tA〉 =
e−iHAtA/h̄|t0〉, where |t0〉 and |t0 + tA〉 are taken
to be clock states. This does not require TA to
be a self-adjoint canonical conjugate to HA. In
fact, it is possible to construct TA as a positive
operator-valued measure (POVM), which means
that the clock states are not necessarily eigen-
states of TA [42–44]. Such operators obtained
from these constructions are symmetric but need
not be self-adjoint. Here, however, for simplicity
we assume an ideal clock, i.e., [TA, HA] = ih̄I,
TA|tA〉 = tA|tA〉, and HA = −ih̄∂/∂tA. Al-
though the Hamiltonians of these clocks are un-
bounded from bellow and, hence, unrealistic, they
help us avoid technicalities associated with real
clocks [45, 46] while providing approximations of
them [47, 48]. Thus, corrections to the results
presented here are expected when dealing with
non-ideal clocks.

Moreover, let HR denote the Hamiltonian of
the system of interest and Hint(TA) represent the
time dependent term of the evolution of system
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R set by clock A, which is an interaction between
A and R, we have

HT = HA +HR +Hint(TA). (2)

Observe that, in particular, Hint is being assumed
to be independent of HA. Replacing Eq. (2)
in Eq. (1), applying a scalar product by an
eigenstate |tA〉 of TA on the left, and defining
|ψ(tA)〉 ≡ 〈tA|Ψ〉〉, it holds that

ih̄
∂

∂tA
|ψ(tA)〉 = [HR +Hint(tA)] |ψ(tA)〉, (3)

which is the Schrödinger equation that gives the
evolution of system R with respect to the time
measured by clock A. Then, the usual unitary
evolution of a quantum system is recovered from
the static picture introduced by Page and Woot-
ters.

As a result, |Ψ〉〉 can be written as

|Ψ〉〉 =
∫
dtA |tA〉 ⊗ |ψ(tA)〉. (4)

Because |Ψ〉〉 contains information about |ψ(tA)〉
at every tA, it is referred to as the history state.

The results in Refs. [27, 31, 32] are central to
this work. In their approach, system R is as-
sumed to contain a clock B, and the rest of it
is simply referred to as system S. Then, while
system B gives the internal time of the system
R = B + S, system A provides time as observed
by an external system. In this case, the total
Hamiltonian is

HT = HA +HB +HS +Hint(TB), (5)

where TB is the time operator associated with
clock B. Although the time dependent term Hint

can be taken to be a function of both TA and TB
in a more general scenario, we assume it does not
depend on TA for simplicity. However, nothing
significant changes in our analysis if Hint is also
a function of TA.

With the previous HT , the analog of the
Schrödinger equation becomes

ih̄
∂

∂tA
|ψ(tA)〉 = (HB +HS +Hint(TB)) |ψ(tA)〉.

(6)
This implies that the effective Hamiltonian acting
on system R is

HA
eff ≡ HB +HS +Hint(TB). (7)

Figure 1: Representation of the relevant parts in a mea-
surement of energy carried out by an external system.
The external apparatus E uses an external clock A for
time reference during the measurement of energy of sys-
tem R, composed of an internal clock B and system
S.

Even though this result is a particular case of Eq.
(3), it is of special interest here because it allows
us to study the relation between the “flow of time”
in clocks A and B.

While the designation of which clock is internal
or external to the system of interest seems to be
arbitrary up until now, they will acquire a more
concrete meaning in the next section, where mea-
surements of energy are studied. Furthermore, in
the next section, the evolution will be considered
not only from clock A’s perspective but also in
the frame of clock B.

3 Measurements of energy with quan-
tum clocks

3.1 Measurement carried out by an external
system

In this subsection, we study the von Neumann
measurement of the total energy of system R
in the Page and Wootters timeless framework.
Specifically, we consider the case where the mea-
surement is carried out by an external system.
Then, in addition to the systems already intro-
duced up until now, we also consider an external
pointer system E, and the history state |Ψ〉〉 is
an element of the space HA ⊗ HR ⊗ HE . This
scenario is illustrated in Fig. 1. For simplicity,
the free evolution of system E will be neglected.

The measurement interaction can be repre-
sented by the von Neumann interaction HV N ≡
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g(TA)HRPE , where HR ≡ HB +HS +Hint(TB),
PE is the conjugate momentum of the pointer E,
and g is a non-negative function that differs from
zero exclusively during the duration of the mea-
surement. For notation purposes, we assume the
measurement starts in clock A at tA = 0 and ends
at tA = τ . Moreover, we let∫ ∞

−∞
g(t)dt =

∫ τ

0
g(t)dt = K, (8)

where K is a positive real constant associated
with the strength (hence, the precision) of the
measurement.

In addition, we assume that PE only takes non-
negative values. As we shall see, the duration
of the measurement in clock B will linearly de-
pend on PE . Thus, this condition will assure
that the clocks considered here are “good” clocks
in the sense that they do not move backward in
time and, in particular, that the duration of the
measurement is non-negative. While this require-
ment on PE means that the measurement device’s
pointer cannot be well-localized in an ideal way,
it does not forbid it to be localized up to some
order. In fact, if PE has a sufficient large average
value, it is possible for the measurement device’s
pointer to have a small variance since its state
can be built in such a way that PE ’s variance is
large.

With that, the total Hamiltonian of the com-
posed system is HT = HA + HR + g(TA)HRPE .
Then, in a similar manner Eqs. (3) and (6) were
derived in the previous section, we obtain the
Schrödinger equation

ih̄
∂

∂tA
|ψ(tA)〉 = [HR + g(tA)HRPE ] |ψ(tA)〉,

(9)
where |ψ(tA)〉 ≡ 〈tA|Ψ〉〉. This means that, from
the perspective of clock A, the evolution is gen-
erated by the effective Hamiltonian

H1 ≡ HR + g(tA)HRPE , (10)

which is the usual Hamiltonian of a time-
independent system during a measurement. This
is expected since, in standard quantum mechan-
ics, time is an external parameter, as it is in this
case.

Using the Heisenberg equation of motion to
study the evolution of TB with respect to clock
A, we conclude that

d

dtA
TB = − i

h̄
[TB, H1] = I + g(tA)PE . (11)

This shows that, when g vanishes, the flow of
time in both clocks is the same. In fact, in this
case, from the perspective of clock A, the variance
of TB at any instant originates from its initial
variance. In particular, if both clocks start local-
ized and synchronized, they remain localized and
synchronized.

Yet, clock B ticks faster than clock A when-
ever g is non-null, i.e., during the measurement
of energy. If g is a function whose integral over
time grows smoothly, then the transition to a
faster ticking also happens smoothly. However,
this is not always the case. A dramatic example
can be observed by assuming a highly idealized
case where g is the delta function. In this case,
from the perspective of clock A, there is a sudden
“jump” of the pointer of clock B.

While the dependence of TB on PE might seem
surprising, it reflects the fact that clock B inter-
acts with the pointer. However, not every inter-
action with a clock leads to a change in its flow
of time. To understand the change observed in
the case of interest here, it suffices to analyze the
term g(tA)HBPE from the von Neumann inter-
action. Although it is usually thought of as a
term that causes a shift (generated by PE) of a
quantity associated with HB in the measurement
device’s pointer, it can be also understood as a
term causing a shift (generated byHB) of a quan-
tity associated with PE in the pointer (i.e., time)
of clock B. Generally, by this reasoning, interac-
tions with clocks intermediated by their Hamilto-
nian should affect their flow of time by quantities
associated with the interacting system.

Now, using Eq. (1) and defining |φ(tB)〉 ≡
〈tB|Ψ〉〉, we obtain the following Schrödinger
equation from the perspective of clock B:

ih̄[I + g(TA)PE ] ∂

∂tB
|φ(tB)〉 = HA|φ(tB)〉

+ [I + g(TA)PE ] [HS +Hint(tB)]|φ(tB)〉.
(12)

Moreover, recalling that PE is assumed to only
take non-negative values, which implies that I +
g(TA)PE is invertible, the effective Hamiltonian
is

H2 ≡ [I + g(TA)PE ]−1HA+HS+Hint(tB). (13)

Observe that the function g that controls the
measurement continues to be a function of the
operator TA, while it was a function of the pa-
rameter tA when considering A’s perspective. In
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Figure 2: Localizability of events with multiple clocks.
A well-localized event in clock A has a variance in clock
B, and vice-versa.

a scenario like this, a well-localized event in clock
A has a variance from clock B’s perspective, a re-
sult illustrated in Fig. 2 and previously discussed,
for instance, in Ref. [32]. This means, in partic-
ular, that the start and end of the measurement,
which are well-localized in A, have variance in B.

Moreover, in a sense, Hamiltonian H2 corre-
sponds to a measurement of HA. However, the
measurement function g is controlled by the time
in clock A, which is an observable from the per-
spective of B. Because of it, the measurement
Hamiltonian would have been symmetrized in
more standard treatments of the process, which
is not the case here. In fact, H2 is non-Hermitian
and, as a consequence, the evolution of clock A
from the perspective of clock B is non-unitary, a
characteristic that will be further discussed later
in this work. For now, observe that the Heisen-
berg equation of motion for TA with respect to
tB gives

d

dtB
TA = − i

h̄
[TA, H2] = [I + g(TA)PE ]−1. (14)

This result is expected in view of Eq. (11) since
it gives the inverse of the passage of time on clock
B with respect to clock A. However, once again,
it should be noticed that here the argument of g
is an operator, and no longer a parameter. Then,
with respect to clock B, if TA starts with a vari-
ance, the duration of the measurement will have
a variance as well. Nevertheless, on average, the
“flow of time” during the measurement of energy
is expected to be smaller in clock A, from the
perspective of both clock A and clock B.

Even though Eq. (14) shows consistency across
different clock perspectives, it raises questions
about the use of the Heisenberg equation here.

While Schrödinger’s and Heisenberg’s representa-
tions are unitarily equivalent, since the evolution
from clock B’s perspective is, in general, non-
unitary, it is not trivial to obtain the Heisenberg
equation from the effective Hamiltonian in the
Schrödinger equation. Nevertheless, this can be
done with the introduction of an “indefinite met-
ric” in the Hilbert space, a method introduced by
Dirac [49] and briefly explained in Appendix A.

3.2 Measurement carried out by an internal
system
This subsection considers, once more, the to-
tal energy measurement of system R, although,
this time, the measurement in question is carried
out by an internal system. A concrete example
of this type of measurement of total energy of
an isolated system was given by Aharonov and
Reznik [20]. They considered an isolated planet
with a large radius R ejecting a tiny portion m
of its total mass radially outwards with a known
speed. Then, using the relativistic correspon-
dence of mass and energy, they showed that it
is possible to infer the total energy of the planet
by measuring how long it takes for m to fall back.

Here, we use an abstract model for these mea-
surements, similarly to what was done in the pre-
vious subsection. We assume that system R has
access to an apparatus I, and the history state
|Ψ〉〉 is an element of HA ⊗ HR ⊗ HI , as repre-
sented in Fig. 3. Note that the apparatus may
be assumed to be an internal degree of freedom
of the system whose energy is left out of the mea-
surement.

Similarly to what was done in the previous sec-
tion, the free evolution of the pointer I will be
neglected. As a result, the measurement can be
represented by the following von Neumann inter-
action

HV N ≡
1
2[g(TB)HR +HRg(TB)]PI , (15)

where HR = HB +HS +Hint(TB), PI is the con-
jugate momentum of apparatus I, presupposed to
only take non-negative values, and g is the same
function introduced in the previous section. Ob-
serve the necessary symmetrization of the prod-
uct g(TB)HR due to the lack of commutativity
between TB and HB, as previously considered,
for instance, in Ref. [21]. Also, we assume that,
in clock B, the measurement starts at tB = 0 and
ends at tB = τ .
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Figure 3: Representation of the relevant parts in a mea-
surement of energy carried out by an internal part. In
this case, the internal apparatus I measures the energy
of the remaining parts, i.e., system R, composed of clock
B and system S. Clock A is an external clock, which
does not interact with any other system during this pro-
cess. For the measurement, the internal clock B is used
as a reference for time.

Since the total Hamiltonian of the composed
system is HT = HA + HR + HV N , in a similar
manner Eqs. (3) and (6) were derived in the pre-
vious section, we obtain the Schrödinger equation

ih̄
∂

∂tA
|ψ(tA)〉 = H3|ψ(tA)〉, (16)

where |ψ(tA)〉 ≡ 〈tA|Ψ〉〉 and

H3 ≡ HR + 1
2[g(TB)HR +HRg(TB)]PI (17)

is the effective Hamiltonian from the perspective
of clock A. With that, the Heisenberg equation
of motion for TB with respect to tA is

d

dtA
TB = − i

h̄
[TB, H3] = I + g(TB)PI . (18)

On the other hand, using Eq. (1) and defining
|φ(tB)〉 ≡ 〈tB|Ψ〉〉, we obtain

ih̄[I + g(tB)PI ]
∂

∂tB
|φ(tB)〉 =

=
[
HA −

ih̄

2 g
′(tB)PI

]
|φ(tB)〉

+ [I + g(tB)PI ][HS +Hint(tB)]|φ(tB)〉,
(19)

where it was used the fact that I + g(tB)PI can
be inverted. This means that, from the perspec-
tive of clock B, the evolution is generated by the
effective Hamiltonian

H4 ≡[I + g(tB)PI ]−1
[
HA −

ih̄

2 g
′(tB)PI

]
+HS +Hint(tB),

(20)

which, similarly to H2, is a non-Hermitian oper-
ator.

Then, using the Heisenberg equation of motion
to study the evolution of TA with respect to tB,
we conclude that

d

dtB
TA = − i

h̄
[TA, H4] = [I + g(tB)PI ]−1, (21)

which, as expected, up to the difference that the
argument of g is, now, a parameter, the inverse
of the relation between the passage of time in the
two clocks given by Eq. (18). Here, again, the use
of the Heisenberg equation is justified with the
introduction of an indefinite metric in the Hilbert
space, as discussed in Appendix A.

4 Time-energy uncertainty relations

Now, we shall discuss how the comparison be-
tween the flow of interior and the exterior time
during an energy measurement provides insights
into time-energy uncertainty relations associated
with the von Neumann measurement of energy.
As already mentioned, knowing the Hamiltonian
beforehand makes a difference when studying
these relations since, otherwise, the process of ef-
fectively measuring the Hamiltonian includes a
preliminary step of estimating it [19]. Here, we
focus on the cases the Hamiltonian of system R
is known and leave the study of estimation of
Hamiltonians to future work.

It should be noticed that, because of the ex-
plicit inclusion of the frames associated with the
internal and external clocks, our analysis becomes
slightly more subtle than others presented up un-
til now. While, like the previous works, we can
consider which time (internal or external) one
wants to optimize when an internal or external
system carries out the measurement, we have to
also specify with respect to which clock frame (in-
ternal or external) the question is being asked.
However, our approach has the advantage of in-
troducing a unified framework to analyzing time-
energy uncertainty relations, which qualifies us
to recover previous results and determine the ex-
istence or absence of such relations in scenarios
where it is still unknown.
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4.1 Measurement carried out by an external
system

First, we consider measurements carried out by
an external system from the perspective of A.
Observe that the measurement function g is con-
trolled by clock A and, then, nothing in the von
Neumann measurement procedure we follow im-
poses a limit on how small the interval where
g does not vanishes is, i.e., how fast the mea-
surement can be performed. As a consequence,
the external time can be arbitrarily minimized
without requiring any compromising of the mea-
surement accuracy, i.e., without imposing any re-
striction on the constant K. This corresponds
to the result obtained by Aharonov and Bohm
in Ref. [18], which shows the nonexistence of an
uncertainty relation in this scenario.

Now, a question that has not been dealt with
in the literature thus far concerns the possibility
of optimizing the internal time in this scenario.
For that, observe that Eq. (11) lead to

TB(τ)− TB(0) = τI +KPE . (22)

This result is represented in Fig. 4a. It shows
that the internal duration of the measurement
decreases with τ , i.e., with the external duration,
which can, in principle, be as small as desirable.
However, this can only reduce the internal du-
ration up to KPE . Thus, in order to obtain an
arbitrarily small internal duration, it is necessary
to decrease the value of the constant K. More
precisely,

〈TB(τ)− TB(0)〉 ≥ K〈PE〉 > 0. (23)

Here, the inequality refers to statistics associated
with repeated implementations of the measure-
ment protocol. The average on the left-hand side
refers to the average duration of the experiment
in clock B. On the other part of the inequality,
〈PE〉 is the average value of the conjugate mo-
mentum of the pointer E.

Inequality (23) means that there exists a trade-
off between the precision of the measurement
(which is associated with K) and how long the
measurement lasts in the internal clock, i.e., there
exists a time-energy uncertainty relation in the
sense of Landau and Peierls [17] discussed in the
Introduction, i.e., quantum mechanics imposes a
minimum duration for measurements of energy

Figure 4: Representation of the duration of energy mea-
surements in internal and external clocks. Clock A is
external and clock B is internal to the measured sys-
tem. (a) When an external system carries out the mea-
surement, its duration in B is longer on average. (b)
However, when an internal part of the system is respon-
sible for the measurement, its duration in the external
clock is shorter on average.

with a desired precision. Note that such a rela-
tion is independent of the variance of the opera-
tor TB. Also, the existence of such an inequality
cannot be attributed to disturbances on clock B
caused by the measurement since they vanish, as
explained in Appendix B.

Moreover, taking variances into consideration,
we obtain a different type of uncertainty relation.
In fact, observe that the variance ∆TB in the du-
ration of the experiment in clock B from clock
A’s perspective is associated with the variance
∆PE of PE . More precisely, ∆TB grows with
∆PE . Then, in order to obtain a smaller ∆TB, it
is necessary to decrease ∆PE . However, ∆PE is
also associated with the precision of the measure-
ment since a smaller ∆PE implies that pointer of
the measurement device is more delocalized. As
a result, a smaller ∆TB leads to an increase in
the precision of the measurement, implying an
uncertainty relation of the type ∆E∆TB ≥ 1,
where ∆E is the uncertainty of the energy mea-
surement.

Now, from the perspective of clock B, the anal-
ysis of the measurement carried out by an exter-
nal system leads mostly to the same conclusions.
In fact, with some probability, we can say that
the measurement starts in a certain instant tBi
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and ends at tBf in clock B. Then, Eq. (14) im-
plies that

tBf − tBi =
∫ tBf

tBi

[I + g(TA(tB))PE ] dTA
dtB

(tB) dtB

(24)
or, equivalently,

tBf − tBi = TA(tBf )− TA(tBi ) +KPE . (25)

Note that, on average, TA(tBf ) − TA(tBi ) gives τ .
Then, the only difference in the analysis from B’s
perspective is that the time in clock A is given
by an operator and, hence, has a variance asso-
ciated with it, which, in turn, leads to a vari-
ance in the duration of the measurement. This
leads to an uncertainty relation for the duration
of the measurement and its precision associated
with the variances of both clocks A and B. How-
ever, in terms of the uncertainty relations of main
interest here, conclusions about their existence or
not are independent of perspective.

4.2 Measurement carried out by an internal
system

We consider now the measurement carried out by
an internal system from the perspective of clock
B. Again, we start by pointing out that nothing
in our description disallows the measurement to
be conducted arbitrarily fast. Then, there exists
no uncertainty relation in this case, a conclusion
that corroborates the result obtained by Massar
and Popescu in Ref. [21].

Furthermore, still from the perspective of clock
B, we can address the question about the ex-
istence of such a relation for the external time,
which, to the best of our knowledge, has not
been answered in the literature prior to this work.
Note that Eq. (21) implies that

TA(τ)− TA(0) =
∫ τ

0
[I + g(tB)PI ]−1dtB, (26)

as represented in Fig. 4b. With the hypothesis
that the evaluation of PI is non-negative, it holds
that the norm of the last integral is bounded by
τ (independently of K), i.e., the the duration of
the measurement in clock A can be as small as
its duration in clock B — in fact, it is, in gen-
eral, smaller since the evaluation of I + g(tB)PI
is always greater or equal one. Considering that
the duration can be arbitrarily small in clock B,

there exists no time-energy uncertainty relation
for clock A from the perspective of clock B.

This is a rather surprising result. In fact, Mas-
sar and Popescu briefly consider this scenario in
Ref. [21], where they presented a conjecture stat-
ing that an uncertainty relation should hold.

Before jumping into A’s perspective, it should
be noted once again the existence of an uncer-
tainty relation for the duration of the measure-
ment in clock A associated with the variance of
TA.

Now, from the perspective of clock A, the con-
clusions are, once again, similar. Suppose the
measurement starts and ends at tAi and tAf , re-
spectively. Then, Eq. (18) implies that

tAf − tAi =
∫ tAf

tAi

[I + g(TB(tA))PI ]−1 dTB
dtA

(tA) dtA.

(27)
Since the evaluation of g(TB)PI is assumed to
be non-negative, the average of the right-hand is
not greater than the average of the integral of
dTB/dtA, which is τ . Hence, the only difference
in the analysis from A’s frame is the variance as-
sociated with TB, which leads to an uncertainty
relation for the duration of the measurement in
both clocks A and B. Here, again, it should be
noted that disturbances on clock B do not affect
this analysis since they can be taken to be null,
as discussed in Appendix B.

5 Emergence of non-unitarity

As noticed earlier in the context of energy mea-
surements, an interesting feature of the dynamics
generated by the measurement of energy is that,
from the perspective of the internal clock, it is
non-unitary regardless of whether an external or
an internal system carries out the measurement.

In relativistic theories, energy and mass are
tightly related. Then, while measuring the energy
of a system that includes an internal clock, there
is a sense in which the mass of the system and, in
particular, the mass of the clock is being weighed.
Could, then, the non-unitarity observed in this
work be related to gravitational effects? After all,
non-unitarity is expected to play a role in quan-
tum gravity, see e.g. [50–53]. However, gravita-
tionally interacting clocks have been considered
in the literature [26,32,54], and it was shown that
they lead to unitary dynamics. In fact, in these
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studies, the interaction term between two clocks
A and B was of the type λHAHB. Then, it can be
checked that the effective Hamiltonian of B with
respect to A is (I + λHB)−1HB. Similarly, the
effective Hamiltonian of A with respect to B is
(I+λHA)−1HA. Since these two effective Hamil-
tonians are Hermitian, the evolution generated by
them is unitary.

Then, why is the result different here? The
answer to this question lies in the fact that the
von Neumann interaction includes products of the
time operator of a clock by the individual Hamil-
tonian of the same or other clocks. In fact, if
such a condition is matched, the dynamics of the
clocks associated with the time operator in the in-
teraction is non-unitary with respect to the clock
whose individual Hamiltonian appears multiply-
ing it. To see that, consider a system composed of
n clocks C1, C2, . . . , Cn and let the total Hamil-
tonian be

HT =
∑
k

HCk
+ f(TCr1

, . . . , TCrm
)HCs +Hint,

(28)
where m < n, the indices r1, r2, . . . , rm, and s are
different elements of {1, 2, . . . , n}, and Hint is not
a function of Hs. Then, from the perspective of
Cs we can write

ih̄[I + f(TCr1
, . . . , TCrm

)] ∂

∂tCs

|ψ(tCs)〉 =

=

∑
k 6=s

HCk
+Hint

 |ψ(tCs)〉,
(29)

i.e., the effective Hamiltonian, which is to be com-
pared with H2, is

HCs
eff ≡ [I+f(TCr1

, . . . , TCrm
)]−1

∑
k 6=s

HCk
+Hint

 ,
(30)

assuming that I + f(TCr1
, TCr2

, . . . , TCrm
) is in-

vertible. This Hamiltonian is manifestly non-
Hermitian. More specifically, the parts associated
with clocks Cr1 , Cr2 , . . . , Crm are non-Hermitian
and, hence, have non-unitary evolution because
of the lack of commutativity between their indi-
vidual time and Hamiltonian operators.

The only scenario that remains to be analyzed
now corresponds to the case where an interac-
tion between the time operator and the individual
Hamiltonian of the same clock exists. For that,

suppose the total Hamiltonian is given by

HT =
∑
k

HCk
+ 1

2[f(TCs)HCs +HCsf(TCs)] +Hint

=
∑
k

HCk
+ f(TCs)HCs −

ih̄

2 f
′(TCs) +Hint,

(31)
where, once again, Hint is assumed to not depend
on HCs . From clock Cs’s perspective, this leads
to

ih̄[I+f(tCs)] ∂

∂tCs

|ψ(tCs)〉 =

=

∑
k 6=s

HCk
− ih̄

2 f
′(tCs) +Hint

 |ψ(tCs)〉,

(32)
which shows that the effective Hamiltonian is

HCs
eff = [I+f(tCs)]−1

∑
k 6=s

HCk
− ih̄

2 f
′(tCs) +Hint

 ,
(33)

assuming that I + f(tCs) is invertible. This
Hamiltonian is be compared with H4. Although
there is no commutation problem, the Hamilto-
nian in this case is also non-Hermitian because of
the imaginary unit multiplying f ′(tCs).

Despite the differences between the discussion
in the present work and the gravitationally inter-
acting clocks studied in Ref. [32], there exists an
aspect that leads to a similar analysis. In Ref.
[32], factors like (I + λHA)−1 and (I + λHB)−1

were interpreted as “redshift” operators. Also,
these operators were combined with the time
derivative present in their respective Schrödinger
equation, resulting in derivatives with respect to
new time operators: ∂/∂t̂A ≡ (I + λHB)∂/∂tA
and ∂/∂t̂B ≡ (I + λHA)∂/∂tB. In a similar
manner, the term between brackets on the left-
hand side of Eq. (29) can be interpreted as a
sort of “redshift” operator, which, combined with
the tCs-derivative operator, results in a derivative
with respect to a time operator t̂s. This allows
us to write

ih̄
∂

∂t̂s
|ψ〉 =

∑
k 6=s

HCk
+Hint

 |ψ〉. (34)

Observe that, with these coordinates, the uni-
tarity of the dynamics is restored. However, a
complete change to clock Cs’s referential leads to
the observation of the “redshift,” an analogy that

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 10



leads to the conclusion that clock Cs is not an
inertial frame of reference.

A similar analysis can be made with Eq. (32).
However, in this case, the non-unitarity of the
dynamics persists even when the derivative with
respect to an operator t̂s, which consists of the
tCs-derivative operator combined with the “red-
shift” factor, is considered.

6 Discussion

Using the Page and Wootters framework, we have
studied how the relation between internal and ex-
ternal “flow of time” in quantum clocks changes
during energy measurements performed either by
an external or internal system. Some of these
measurements, as was discussed, cause distur-
bances in the energy of the systems, which are in-
dependent of the duration of the measurements.
While there is no penalty for performing a fast
energy measurement (in terms of disturbances
added to it), the change in the flow of time be-
tween an external and an internal clock reveals a
minimum duration in the internal clock of a mea-
surement with a given precision carried out by
an external system. Any other scenario consid-
ered here led to the conclusion of an absence of
a time-energy uncertainty relation in the sense of
Landau and Peierls [17].

Importantly, the time-energy uncertainty rela-
tions considered here assume the Hamiltonian be-
ing measured to be known beforehand. However,
as mentioned in the Introduction, if this is not
the case, the Hamiltonian has to be estimated.
While Ref. [19] shows the existence of a minimum
duration in an external clock for an external sys-
tem to estimate the Hamiltonian of the system
of interest, a discussion about the relation of this
time interval and the interval observed in an in-
ternal clock remains to be conducted. Moreover,
the scenario where an internal system attempts
to estimate its total Hamiltonian has yet to be
investigated. An interesting aspect of the proof
provided by Aharonov, Massar, and Popescu in
Ref. [19] is that it involves the time necessary
for the state of a system to become orthogonal
to its initial state under a designed evolution.
Then, the type of uncertainty relation that arrives
from it is of the geometric type, briefly mentioned
in the Introduction and originally discussed by
Anandan and Aharonov in Ref. [15] — followed

by Margolus and Levitin in Ref. [16].

While we concentrated on the measurement’s
unitary interaction in this work, it is well-known
that von Neumann’s description of a measure-
ment includes a “collapse” (or post-selection) in
case the pointer is found in a superposition at
the end of the process. The inclusion of this fi-
nal step in our analysis adds various new sub-
tleties. On the one hand, since time and energy
of a clock are canonically conjugated, there exists
an uncertainty relation for a measurement carried
out by an internal system, meaning that time in
the internal clock can only be known up to a cer-
tain precision given a desired precision for the
measurement of energy. This is a Heisenberg-like
uncertainty relation and is captured by entropic
time-energy uncertainty relations recently intro-
duced by Boette et al. [55] and Coles et al. [56].
On the other hand, the inclusion of a “collapse”
in our description would necessarily violate Eq.
(1). This is a known problem in the measurement
of quantum clocks and, more generally, of any
quantum system satisfying the Wheeler-DeWitt
equation. A typical solution to this problem con-
sists of the inclusion of ancilla systems that act
as the measurement device and register the mea-
surement outcome [24, 32, 35, 39]. This perspec-
tive solves at least the operational problem of
computing the probability of the outcome of (pos-
sibly many) measurements. Since our approach
includes measurement devices, this problem has
been, then, already dealt with (at least from this
perspective). A different approach consists of up-
dating the state with a “collapse” and, then, ap-
plying a map to transform the resulting state into
a state that satisfies the Wheeler-DeWitt equa-
tion. This procedure, however, cannot be formu-
lated in a perspective-neutral manner [57]. We
have not addressed this approach here.

Observe that the system S introduced in Sec-
tion 3 served exclusively to enlarge the general-
ity of our measurement model, not affecting the
time-energy uncertainty relations nor the non-
unitarity of the evolution. This is the case be-
cause the interaction between system S and clock
B was assumed to be mediated by TB. If interac-
tions mediated by HB were allowed, they would
be given by a term that contains the product
OSHB, where OS is an observable of S. This, in
turn, causes a shift (generated by HB) associated
with OS in the pointer (i.e., time) of clock B, as
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discussed in Section 3. Although this effect alone
would not necessarily lead to non-unitary dynam-
ics, it could in some cases. Further analysis of
generic interactions that lead to non-unitarity is
left for a future work. Here, for simplicity, as
already stated, we have restricted our study to
interactions between S and B modeled by a func-
tion of TB on the clock space.

Finally, there still exist many remaining ques-
tions concerning the emergence of non-unitarity
observed in our study. An immediate analysis
can attribute it to the asymmetry imposed by the
von Neumann measurement, as it was already dis-
cussed throughout the text. However, since this
type of evolution always concerns the evolution
of the external clock from the perspective of the
internal one, it may be connected with the deco-
herence of the internal clock during the measure-
ment. This is a perspective that deserves further
examination. More precisely, one may investigate
the connection between non-unitarity emergent
in this work with decoherence and, in particular,
with Refs. [58] and [59], where time dilation was
associated with decoherence. Moreover, following
the approach of Refs. [60] and [61], the concepts
of shared and mutual asymmetry may shed some
light on the non-unitary dynamics manifested in
this work. Also, it could be that the clock is not
an inertial frame of reference. In this case, devi-
ations of the metric η discussed in Appendix A
from the identity could be used as an indicator of
non-inertiality.

Acknowledgements

We thank the anonymous referees for the thor-
ough reading of this work and the construc-
tive comments. We are also grateful to Yakir
Aharonov, Renato Moreira Angelo, Pedro Ruas
Dieguez, Cristhiano Duarte, Luis Pedro García-
Pintos, and Marcin Nowakowski for helpful dis-
cussions and constructive remarks regarding this
text. This research was supported by grant
number FQXi-RFP-CPW-2006 from the Foun-
dational Questions Institute and Fetzer Franklin
Fund, a donor-advised fund of Silicon Valley
Community Foundation, by the Israeli Innova-
tion authority (grants 70002 and 73795), by the
Pazy foundation, and by the Quantum Science
and Technology Program of the Israeli Council of
Higher Education.

References

[1] C. Rovelli, Relational quantum mechanics,
Int. J. Theor. Phys. 35, 1637 (1996).

[2] Y. Aharonov and T. Kaufherr, Quantum
frames of reference, Phys. Rev. D 30, 368
(1984).

[3] S. D. Bartlett, T. Rudolph, and R. W.
Spekkens, Reference frames, superselection
rules, and quantum information, Rev. Mod.
Phys. 79, 555 (2007).

[4] R. M. Angelo, N. Brunner, S. Popescu, A. J.
Short, and P. Skrzypczyk, Physics within a
quantum reference frame, J. Phys. A Math.
Theor. 44, 145304 (2011).

[5] W. Heisenberg, Über den anschaulichen In-
halt der quantentheoretischen Kinematik und
Mechanik, Z. Phys. 43, 172 (1927).

[6] E. H. Kennard, Zur Quantenmechanik ein-
facher Bewegungstypen, Z. Phys. 44, 326
(1927).

[7] H. P. Robertson, The uncertainty principle,
Phys. Rev. 34, 163 (1929).

[8] E. Schrödinger, Zum Heisenbergschen Un-
schärfeprinzip, Sitz. Preus. Acad. Wiss. 19,
296 (1930).

[9] L. Maccone and A. K. Pati, Stronger uncer-
tainty relations for all incompatible observ-
ables, Phys. Rev. Lett. 113, 260401 (2014).

[10] M. Bauer and P. A. Mello, The time-energy
uncertainty relation, Ann. Phys. 111, 38
(1978).

[11] P. Busch, On the energy-time uncertainty re-
lation. Part I: Dynamical time and time in-
determinacy, Found. Phys. 20, 1 (1990).

[12] P. Busch, On the energy-time uncertainty re-
lation. Part II: Pragmatic time versus energy
indeterminacy, Found. Phys. 20, 33 (1990).

[13] V. V. Dodonov and A. V. Dodonov, Energy-
time and frequency-time uncertainty rela-
tions: Exact inequalities, Phys. Scr. 90,
074049 (2015).

[14] L. Mandelstam and I. G. Tamm, The uncer-
tainty relation between energy and time in
non-relativistic quantum mechanics, J. Phys.
(USSR) 9, 249 (1945).

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 12

https://doi.org/10.1007/BF02302261
https://doi.org/10.1007/BF02302261
https://doi.org/10.1103/PhysRevD.30.368
https://doi.org/10.1103/PhysRevD.30.368
https://doi.org/10.1103/PhysRevD.30.368
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1088/1751-8113/44/14/145304
https://doi.org/10.1088/1751-8113/44/14/145304
https://doi.org/10.1088/1751-8113/44/14/145304
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1016/0003-4916(78)90223-3
https://doi.org/10.1016/0003-4916(78)90223-3
https://doi.org/10.1016/0003-4916(78)90223-3
https://doi.org/10.1007/BF00732932
https://doi.org/10.1007/BF00732932
https://doi.org/10.1007/BF00732932
https://doi.org/10.1007/BF00732933
https://doi.org/10.1007/BF00732933
https://doi.org/10.1007/BF00732933
https://doi.org/10.1088/0031-8949/90/7/074049
https://doi.org/10.1088/0031-8949/90/7/074049
https://doi.org/10.1088/0031-8949/90/7/074049
https://doi.org/10.1088/0031-8949/90/7/074049
https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1007/978-3-642-74626-0_8


[15] J. Anandan and Y. Aharonov, Geometry of
quantum evolution, Phys. Rev. Lett. 65, 1697
(1990).

[16] N. Margolus and L. B. Levitin, The maxi-
mum speed of dynamical evolution, Physica
D 120, 188 (1998).

[17] L. Landau and R. Peierls, Erweiterung des
Unbestimmtheitsprinzips für die relativistis-
che Quantentheorie, Z. Phys. 69, 56 (1931).

[18] Y. Aharonov and D. Bohm, Time in the
quantum theory and the uncertainty relation
for time and energy, Phys. Rev. 122, 1649
(1961).

[19] Y. Aharonov, S. Massar, and S. Popescu,
Measuring energy, estimating Hamiltonians,
and the time-energy uncertainty relation,
Phys. Rev. A 66, 052107 (2002).

[20] Y. Aharonov and B. Reznik, “Weighing” a
closed system and the time-energy uncer-
tainty principle, Phys. Rev. Lett. 84, 1368
(2000).

[21] S. Massar and S. Popescu, Measurement of
the total energy of an isolated system by an
internal observer, Phys. Rev. A 71, 042106
(2005).

[22] D. N. Page and W. K. Wootters, Evolu-
tion without evolution: Dynamics described
by stationary observables, Phys. Rev. D 27,
2885 (1983).

[23] W. K. Wootters, “Time” replaced by quan-
tum correlations, Int. J. Theor. Phys. 23, 701
(1984).

[24] V. Giovannetti, S. Lloyd, and L. Maccone,
Quantum time, Phys. Rev. D 92, 045033
(2015).

[25] C. Marletto and V. Vedral, Evolution with-
out evolution and without ambiguities, Phys.
Rev. D 95, 043510 (2017).

[26] A. R. H. Smith and M. Ahmadi, Quantizing
time: interacting clocks and systems, Quan-
tum 3, 160 (2019).

[27] P. A. Höhn, A. R. H. Smith, and M. P. E.
Lock, Trinity of relational quantum dynam-
ics, Phys. Rev. D 104, 066001 (2021).

[28] F. Giacomini, E. Castro-Ruiz, and Č.
Brukner, Quantum mechanics and the co-
variance of physical laws in quantum refer-
ence frames, Nat. Commun. 10, 494 (2019).

[29] N. L. Diaz and R. Rossignoli, History state
formalism for Dirac’s theory, Phys. Rev. D
99, 045008 (2019).

[30] N. L. Diaz, J. M. Matera, and R. Rossignoli,
History state formalism for scalar particles,
Phys. Rev. D 100, 125020 (2019).

[31] P. A. Höhn and A. Vanrietvelde, How to
switch between relational quantum clocks,
New J. Phys. 22, 123048 (2020).

[32] E. Castro-Ruiz, F. Giacomini, A. Belenchia,
and Č. Brukner, Quantum clocks and the
temporal localisability of events in the pres-
ence of gravitating quantum systems, Nat.
Commun. 11, 2672 (2020).

[33] A. R. H. Smith and M. Ahmadi, Quantum
clocks observe classical and quantum time di-
lation, Nat. Commun. 11, 5360 (2020).

[34] A. Ballesteros, F. Giacomini, and G. Gu-
bitosi, The group structure of dynamical
transformations between quantum reference
frames, Quantum 5, 470 (2021).

[35] M. Trassinelli, Conditional probabilities of
measurements, quantum time, and the
Wigner’s-friend case, Phys. Rev. A 105,
032213 (2022).

[36] I. L. Paiva, M. Nowakowski, and E. Cohen,
Dynamical nonlocality in quantum time via
modular operators, arXiv:2104.09321 (2021).

[37] V. Baumann, M. Krumm, P. A. Guérin, and
Č. Brukner, Noncausal Page-Wootters cir-
cuits, Phys. Rev. Res. 4, 013180 (2022).

[38] M. Reisenberger and C. Rovelli, Spacetime
states and covariant quantum theory, Phys.
Rev. D 65, 125016 (2002).

[39] F. Hellmann, M. Mondragon, A. Perez,
and C. Rovelli, Multiple-event probability
in general-relativistic quantum mechanics,
Phys. Rev. D 75, 084033 (2007).

[40] E. Moreva, G. Brida, M. Gramegna, V. Gio-
vannetti, L. Maccone, and M. Genovese,
Time from quantum entanglement: an exper-
imental illustration, Phys. Rev. A 89, 052122
(2014).

[41] E. Moreva, M. Gramegna, G. Brida, L.
Maccone, and M. Genovese, Quantum time:
Experimental multitime correlations, Phys.
Rev. D 96, 102005 (2017).

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 13

https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1007/BF01391513
https://doi.org/10.1007/BF01391513
https://doi.org/10.1007/BF01391513
https://doi.org/10.1103/PhysRev.122.1649
https://doi.org/10.1103/PhysRev.122.1649
https://doi.org/10.1103/PhysRev.122.1649
https://doi.org/10.1103/PhysRev.122.1649
https://doi.org/10.1103/PhysRevA.66.052107
https://doi.org/10.1103/PhysRevA.66.052107
https://doi.org/10.1103/PhysRevA.66.052107
https://doi.org/10.1103/PhysRevLett.84.1368
https://doi.org/10.1103/PhysRevLett.84.1368
https://doi.org/10.1103/PhysRevLett.84.1368
https://doi.org/10.1103/PhysRevLett.84.1368
https://doi.org/10.1103/PhysRevA.71.042106
https://doi.org/10.1103/PhysRevA.71.042106
https://doi.org/10.1103/PhysRevA.71.042106
https://doi.org/10.1103/PhysRevA.71.042106
https://doi.org/10.1103/PhysRevD.27.2885
https://doi.org/10.1103/PhysRevD.27.2885
https://doi.org/10.1103/PhysRevD.27.2885
https://doi.org/10.1103/PhysRevD.27.2885
https://doi.org/10.1007/BF02214098
https://doi.org/10.1007/BF02214098
https://doi.org/10.1007/BF02214098
https://doi.org/10.1103/PhysRevD.92.045033
https://doi.org/10.1103/PhysRevD.92.045033
https://doi.org/10.1103/PhysRevD.95.043510
https://doi.org/10.1103/PhysRevD.95.043510
https://doi.org/10.1103/PhysRevD.95.043510
https://doi.org/10.22331/q-2019-07-08-160
https://doi.org/10.22331/q-2019-07-08-160
https://doi.org/10.22331/q-2019-07-08-160
https://doi.org/10.1103/PhysRevD.104.066001
https://doi.org/10.1103/PhysRevD.104.066001
https://doi.org/10.1038/s41467-018-08155-0
https://doi.org/10.1038/s41467-018-08155-0
https://doi.org/10.1038/s41467-018-08155-0
https://doi.org/10.1103/PhysRevD.99.045008
https://doi.org/10.1103/PhysRevD.99.045008
https://doi.org/10.1103/PhysRevD.99.045008
https://doi.org/10.1103/PhysRevD.100.125020
https://doi.org/10.1103/PhysRevD.100.125020
https://doi.org/10.1088/1367-2630/abd1ac
https://doi.org/10.1088/1367-2630/abd1ac
https://doi.org/10.1088/1367-2630/abd1ac
https://doi.org/10.1038/s41467-020-16013-1
https://doi.org/10.1038/s41467-020-16013-1
https://doi.org/10.1038/s41467-020-16013-1
https://doi.org/10.1038/s41467-020-16013-1
https://doi.org/10.1038/s41467-020-18264-4
https://doi.org/10.1038/s41467-020-18264-4
https://doi.org/10.1038/s41467-020-18264-4
https://doi.org/10.22331/q-2021-06-08-470
https://doi.org/10.22331/q-2021-06-08-470
https://doi.org/10.22331/q-2021-06-08-470
https://doi.org/10.1103/PhysRevA.105.032213
https://doi.org/10.1103/PhysRevA.105.032213
https://doi.org/10.1103/PhysRevA.105.032213
https://doi.org/10.1103/PhysRevA.105.032213
https://doi.org/10.48550/arXiv.2104.09321
https://doi.org/10.48550/arXiv.2104.09321
http://arxiv.org/abs/2104.09321
https://doi.org/10.1103/PhysRevResearch.4.013180
https://doi.org/10.1103/PhysRevResearch.4.013180
https://doi.org/10.1103/PhysRevD.65.125016
https://doi.org/10.1103/PhysRevD.65.125016
https://doi.org/10.1103/PhysRevD.65.125016
https://doi.org/10.1103/PhysRevD.75.084033
https://doi.org/10.1103/PhysRevD.75.084033
https://doi.org/10.1103/PhysRevD.75.084033
https://doi.org/10.1103/PhysRevA.89.052122
https://doi.org/10.1103/PhysRevA.89.052122
https://doi.org/10.1103/PhysRevA.89.052122
https://doi.org/10.1103/PhysRevD.96.102005
https://doi.org/10.1103/PhysRevD.96.102005
https://doi.org/10.1103/PhysRevD.96.102005


[42] P. Busch, M. Grabowski, and P. J. Lahti,
Operational quantum physics, Lecture Notes
in Physics Monographs, Vol. 31 (Springer,
1995).

[43] P. Busch, P. Lahti, J.-P. Pellonpää, and
K. Ylinen, Quantum measurement, Theo-
retical and Mathematical Physics, Vol. 23
(Springer, New York, 2016).

[44] L. Loveridge and T. Miyadera, Relative
quantum time, Found. Phys. 49, 549 (2019).

[45] H. Salecker and E. P. Wigner, Quantum limi-
tations of the measurement of space-time dis-
tances, Phys. Rev. 109, 571 (1958).

[46] A. Peres, Measurement of time by quantum
clocks, Am. J. Phys. 48, 552 (1980).

[47] J. B. Hartle, Quantum kinematics of space-
time. II. A model quantum cosmology with
real clocks, Phys. Rev. D 38, 2985 (1988).

[48] A. Singh and S. M. Carroll, Modeling po-
sition and momentum in finite-dimensional
Hilbert spaces via generalized Pauli opera-
tors, arXiv:1806.10134 (2018).

[49] P. A. M. Dirac, Bakerian lecture—The phys-
ical interpretation of quantum mechanics,
Proc. R. Soc. A 180, 1 (1942).

[50] S. W. Hawking, The unpredictability of
quantum gravity, Commun. Math. Phys. 87,
395 (1982).

[51] W. G. Unruh and R. M. Wald, Evolution
laws taking pure states to mixed states in
quantum field theory, Phys. Rev. D 52, 2176
(1995).

[52] R. Penrose, On gravity’s role in quantum
state reduction, Gen. Relativ. Gravit. 28, 581
(1996).

[53] R. Gambini, R. A. Porto, and J. Pullin, Fun-
damental decoherence from quantum gravity:
a pedagogical review, Gen. Relativ. Gravit.
39, 1143 (2007).

[54] E. C. Ruiz, F. Giacomini, and Č. Brukner,
Entanglement of quantum clocks through
gravity, Proc. Natl. Acad. Sci. 114, E2303
(2017).

[55] A. Boette, R. Rossignoli, N. Gigena, and
M. Cerezo, System-time entanglement in a
discrete-time model, Phys. Rev. A 93, 062127
(2016).

[56] P. J. Coles, V. Katariya, S. Lloyd, I. Mar-
vian, and M. M. Wilde, Entropic energy-time
uncertainty relation, Phys. Rev. Lett. 122,
100401 (2019).

[57] J. M. Yang, Switching quantum reference
frames for quantum measurement, Quantum
4, 283 (2020).

[58] R. Gambini and J. Pullin, Relational physics
with real rods and clocks and the measure-
ment problem of quantum mechanics, Found.
Phys. 37, 1074 (2007).

[59] I. Pikovski, M. Zych, F. Costa, and Č.
Brukner, Universal decoherence due to grav-
itational time dilation, Nat. Phys. 11, 668
(2015).

[60] T. Martinelli and D. O. Soares-Pinto, Quan-
tifying quantum reference frames in com-
posed systems: Local, global, and mutual
asymmetries, Phys. Rev. A 99, 042124
(2019).

[61] R. S. Carmo and D. O. Soares-Pinto, Quanti-
fying resources for the Page-Wootters mech-
anism: Shared asymmetry as relative entropy
of entanglement, Phys. Rev. A 103, 052420
(2021).

[62] W. Pauli, On Dirac’s new method of field
quantization, Rev. Mod. Phys. 15, 175
(1943).

[63] T. D. Lee and G. C. Wick, Negative met-
ric and the unitarity of the S-matrix, Nucl.
Phys. B 9, 209 (1969).

[64] F. G. Scholtz, H. B. Geyer, and F. J. W.
Hahne, Quasi-Hermitian operators in quan-
tum mechanics and the variational principle,
Ann. Phys. 213, 74 (1992).

[65] C. M. Bender and S. Boettcher, Real spectra
in non-Hermitian Hamiltonians having PT
symmetry, Phys. Rev. Lett. 80, 5243 (1998).

[66] T. D. Lee, Some special examples in renor-
malizable field theory, Phys. Rev. 95, 1329
(1954).

[67] T. T. Wu, Ground state of a Bose system of
hard spheres, Phys. Rev. 115, 1390 (1959).

[68] R. C. Brower, M. A. Furman, and M. Moshe,
Critical exponents for the Reggeon quantum
spin model, Phys. Lett. B 76, 213 (1978).

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 14

https://doi.org/10.1007/978-3-540-49239-9
https://doi.org/10.1007/978-3-540-49239-9
https://doi.org/10.1007/978-3-540-49239-9
https://doi.org/10.1007/978-3-319-43389-9
https://doi.org/10.1007/978-3-319-43389-9
https://doi.org/10.1007/978-3-319-43389-9
https://doi.org/10.1007/s10701-019-00268-w
https://doi.org/10.1007/s10701-019-00268-w
https://doi.org/10.1103/PhysRev.109.571
https://doi.org/10.1103/PhysRev.109.571
https://doi.org/10.1103/PhysRev.109.571
https://doi.org/10.1119/1.12061
https://doi.org/10.1119/1.12061
https://doi.org/10.1103/PhysRevD.38.2985
https://doi.org/10.1103/PhysRevD.38.2985
https://doi.org/10.1103/PhysRevD.38.2985
https://doi.org/10.48550/arXiv.1806.10134
https://doi.org/10.48550/arXiv.1806.10134
https://doi.org/10.48550/arXiv.1806.10134
https://doi.org/10.48550/arXiv.1806.10134
http://arxiv.org/abs/1806.10134
https://doi.org/10.1098/rspa.1942.0023
https://doi.org/10.1098/rspa.1942.0023
https://doi.org/10.1098/rspa.1942.0023
https://doi.org/10.1007/BF01206031
https://doi.org/10.1007/BF01206031
https://doi.org/10.1007/BF01206031
https://doi.org/10.1103/PhysRevD.52.2176
https://doi.org/10.1103/PhysRevD.52.2176
https://doi.org/10.1103/PhysRevD.52.2176
https://doi.org/10.1103/PhysRevD.52.2176
https://doi.org/10.1007/BF02105068
https://doi.org/10.1007/BF02105068
https://doi.org/10.1007/BF02105068
https://doi.org/10.1007/s10714-007-0451-1
https://doi.org/10.1007/s10714-007-0451-1
https://doi.org/10.1007/s10714-007-0451-1
https://doi.org/10.1007/s10714-007-0451-1
https://doi.org/10.1073/pnas.1616427114
https://doi.org/10.1073/pnas.1616427114
https://doi.org/10.1073/pnas.1616427114
https://doi.org/10.1103/PhysRevA.93.062127
https://doi.org/10.1103/PhysRevA.93.062127
https://doi.org/10.1103/PhysRevA.93.062127
https://doi.org/10.1103/PhysRevLett.122.100401
https://doi.org/10.1103/PhysRevLett.122.100401
https://doi.org/10.1103/PhysRevLett.122.100401
https://doi.org/10.22331/q-2020-06-18-283
https://doi.org/10.22331/q-2020-06-18-283
https://doi.org/10.22331/q-2020-06-18-283
https://doi.org/10.1007/s10701-007-9144-6
https://doi.org/10.1007/s10701-007-9144-6
https://doi.org/10.1007/s10701-007-9144-6
https://doi.org/10.1007/s10701-007-9144-6
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1103/PhysRevA.99.042124
https://doi.org/10.1103/PhysRevA.99.042124
https://doi.org/10.1103/PhysRevA.99.042124
https://doi.org/10.1103/PhysRevA.99.042124
https://doi.org/10.1103/PhysRevA.99.042124
https://doi.org/10.1103/PhysRevA.103.052420
https://doi.org/10.1103/PhysRevA.103.052420
https://doi.org/10.1103/PhysRevA.103.052420
https://doi.org/10.1103/PhysRevA.103.052420
https://doi.org/10.1103/PhysRevA.103.052420
https://doi.org/10.1103/RevModPhys.15.175
https://doi.org/10.1103/RevModPhys.15.175
https://doi.org/10.1103/RevModPhys.15.175
https://doi.org/10.1016/0550-3213(69)90098-4
https://doi.org/10.1016/0550-3213(69)90098-4
https://doi.org/10.1016/0550-3213(69)90098-4
https://doi.org/10.1016/0003-4916(92)90284-S
https://doi.org/10.1016/0003-4916(92)90284-S
https://doi.org/10.1016/0003-4916(92)90284-S
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRev.95.1329
https://doi.org/10.1103/PhysRev.95.1329
https://doi.org/10.1103/PhysRev.95.1329
https://doi.org/10.1103/PhysRev.115.1390
https://doi.org/10.1103/PhysRev.115.1390
https://doi.org/10.1016/0370-2693(78)90279-4
https://doi.org/10.1016/0370-2693(78)90279-4


[69] M. E. Fisher, Yang-Lee edge singularity and
φ3 field theory, Phys. Rev. Lett. 40, 1610
(1978).

[70] C. M. Bender, D. C. Brody, and H. F. Jones,

Complex extension of quantum mechanics,
Phys. Rev. Lett. 89, 270401 (2002).

Accepted in Quantum 2022-04-05, click title to verify. Published under CC-BY 4.0. 15

https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401


A Non-unitarity and the Heisenberg picture

Although most of our analysis is centered around the unitary dynamics given by the external clock A,
the dynamics — and, in particular, the Heisenberg equation — from the perspective of the internal
clock B was used to show some level of consistence across the different perspectives. However, the
Heisenberg and the Schrödinger pictures are unitarily equivalent and one may question whether the
use of the Heisenberg equation in the non-Hermitian scenario is valid. The main goal of this appendix
is to justify this use.

When analyzing non-Hermitian Hamiltonians, like the effective ones from clock B’s perspective
found in Section 3, a method introduced by Dirac [49] and further studied, for instance, in Refs. [62–64]
comes in handy. It entails the replacement of the usual inner product in the Hilbert space by a product
associated with an indefinite Hermitian metric η, i.e.,

〈ψ|φ〉η ≡ 〈ψ|η|φ〉. (35)

The spectrum of η is simply composed of −1 and 1.
Then, in addition to the Hermitian conjugate O† of an operator O, it is also possible to define its

conjugate O∗ as
O∗ ≡ η−1O†η. (36)

Observables that are self-adjoint in this sense are called η-pseudo-adjoint. Physical observables and,
in particular, the non-Hermitian Hamiltonian of interest H, must be η-pseudo-adjoint. With that, it
can be observed that the η-norm of a state vector is kept constant throughout the evolution generated
by H. As a result, the expected value

〈O〉 = 〈ψ|O|ψ〉η = 〈ψ|ηO|ψ〉 (37)

of a non-explicitly time-dependent operator O is such that

d

dt
〈O〉 = − i

h̄
〈[O,H]〉, (38)

which allows us to recover the Heisenberg picture.
It should be emphasized that the metric η diverges from the identity only if the Hamiltonian is non-

Hermitian, like Hamiltonians H2 and H4. As a result, Hamiltonians H1 and H3 lead to the familiar
structure of quantum mechanics.

The main concern about the introduction of indefinite metrics that takes into consideration some
symmetries of the Hamiltonian is the fact that it typically introduces ghost states, i.e., states with
negative norm, which lacks a clear physical interpretation [62]. However, it could be the case that the
system has some extra symmetry and, when this symmetry is considered, the metric becomes positive-
definite, which transforms the ghost states into standard states, i.e., states with positive norm.

A particular example of the above is given by PT -symmetric Hamiltonians, which are invariant under
the composition of parity inversion time reversal [65] — see also [66–69]. The former is represented
by the parity operator P and the latter by the time reversal operator T . A remarkable characteristic
of PT -symmetric Hamiltonians is that their eigenvalues are real. Now, if we consider the conjugation
with respect to the indefinite metric PT , the resultant theory contains ghost states. This is a problem
that puzzled many in the community for decades. However, it was later observed that systems with
unbroken PT -symmetry have a third symmetry C such that the resulting CPT metric is positive-
definite [70].

While Hamiltonians H2 and H4 are, in general, not PT -symmetric and their induced metric may
lead to ghost particles a priori, one may wonder if an extended analysis could lead to the introduction
of a positive-definite metric given a measurement function g. If this turns out to indeed be the case,
there will be a sense in which the resultant evolution is still unitary.
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B Measurement and disturbance of the system’s dynamics
In this appendix, we study disturbances on system R, and in particular on clock B, caused by measure-
ments of energy. The goal is to show that they do not influence the time-energy uncertainty relations
analyzed in Section 4.

To start, we observe that the standard von Neumann measurement of energy does not disturb the
evolution of the observable of interest of the measurement. This can be seen with the measurement
of HR given by H1, which corresponds to the standard treatment of the measurement in quantum
mechanics. In fact, it can be checked that the tA-derivative of HR vanishes and, as a consequence,
[dHR/dtA, HR] = 0, which means that the evolution of HR is not disturbed by the measurement
interaction.

Moving on, we study whether the measurement of energy carried out by the internal system disturbs
system R’s dynamics from the external clock’s perspective. In this regard, it can be obtained that

d

dtA
HR = − i

h̄
[HR, H3] = −1

2
{
g′(TB), HR

}
PI . (39)

and [
d

dtA
HR, H3

]
= − ih̄2

{
g′′(TB), HR

}
PI , (40)

where {·, ·} denotes the anticommutator. This means that the dynamics of system R is affected by the
measurement of its energy by an internal system. Despite this, by using the Heisenberg equation of
motion for the position QI of the pointer, it holds that

QI(tAf )−QI(tAi ) =
∫ tAf

tAi

[1
2 {g(TB(tA)), HB}+ g(TB(tA))HS + g(TB(tA))Hint(TB(tA))

]
dtA, (41)

where the measurement was assumed to start and end at tAi and tAf , respectively, depending on the
uncertainty of TB from the perspective of A. Then, the shift in the pointer is proportional to the
weighted average energy of system R during the measurement’s interaction had it not affected the
system’s dynamics. To be more precise, the previous result can be rewritten as

QI(tAf )−QI(tAi ) = K[HB +HS + H̄int], (42)

where

H̄int ≡
1
K

∫ tAf

tAi

g(TB(tA))Hint(TB(tA)) dtA. (43)

Before concluding, observe that the disturbance to the evolution of system R depends on derivatives
of the measurement control function g. Most importantly, g can be chosen in such a way that the net
disturbance is null.
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