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Periodically-driven systems are ubiquitous in science and technology. In quantum
dynamics, even a small number of periodically-driven spins leads to complicated dynamics.
Hence, it is of interest to understand what constraints such dynamics must satisfy.
We derive a set of constraints for each number of cycles. For pure initial states, the
observable being constrained is the recurrence probability. We use our constraints
for detecting undesired coupling to unaccounted environments and drifts in the driving
parameters. To illustrate the relevance of these results for modern quantum systems we
demonstrate our findings experimentally on a trapped-ion quantum computer, and on
various IBM quantum computers. Specifically, we provide two experimental examples
where these constraints surpass fundamental bounds associated with known one-cycle
constraints. This scheme can potentially be used to detect the effect of the environment
in quantum circuits that cannot be classically simulated. Finally, we show that, in
practice, testing an n-cycle constraint requires executing only O(

√
n) cycles, which

makes the evaluation of constraints associated with hundreds of cycles realistic.

The dynamics of isolated quantum systems become too hard to simulate on a classical computer or
solve analytically when more than a few dozen spins are involved. Yet, the unitary evolution that
characterizes isolated quantum systems is not arbitrary. It conserves purity, the von Neumann
entropy, and any other function that depends on the eigenvalues of the density matrix. However,
these conserved quantities are impractical since state tomography or other non-scalable techniques
are typically needed to evaluate them. Here we study isolated quantum systems under periodic
driving for two reasons. First, to gain a fundamental understanding of how the unitarity of isolated
quantum systems restricts the evolution of observables, and second, to show the relevance of these
restrictions to noise detection in state-of-the-art quantum computers. We start from the question:
is the evolution of observables in a periodically-driven system more restricted compared to non-
periodic driving? While is seems intuitively true, to the best of our knowledge no such constraints
have been shown. We derive such constraints and show that these inequalities are more restrictive
than other known bounds, which do not exploit periodicity. In Sec. 1 we introduce and derive
the periodicity inequalities, and in section 2 we experimentally demonstrate their added value by
exploring pure and mixed-state scenarios that are challenging for existing bounds as described
below.

Constraints on observables that are valid for arbitrary driving have been derived within the
frameworks of stochastic and quantum thermodynamics. These constraints include, the second law
in quantum microscopic setups fluctuation theorems [1, 2, 3], thermodynamic uncertainty relation
[4, 5, 6, 7], passivity based constraints [8, 9, 10], and more. We do not include constraints that
involve non-observable, information-like, quantities as in resource theory and other frameworks
[10, 11]. As it turns out, thermodynamic constraints loose their predictive power in the zero-
temperature limit [12, 13, 14]. In appendix I, we show this explicitly for the second law and the
Jarzynski fluctuation theorem. However, in quantum computers and simulators the input state is
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typically pure, which makes many thermodynamic-based constraints unsuitable for evolution-noise
detection. Another challenge for thermodynamic-like constraints involves coherence in the energy
basis. Fluctuation theorems, for example, are based on the two-point measurement scheme. The
first measurement is carried on the initial state, which leads to wavefunction collapse. Crucially
this measurement changes the evolution from a unitary evolution to a mixture of unitaries.

We show the added value of our inequalities by: i) demonstrating that the periodicity bounds
can detect violation of periodicity even if the system is isolated; ii) showing that the periodicity
constraints remains useful for detecting unaccounted coupling to an environment, in the zero-
temperature temperature limit; iii) breaking a recently derived bound on the maximal temperature
of detectable environments.

Preliminaries: A Simple Inequality For Unitary Evolution
Let ρf be the density matrix that is obtained from ρ0 by unitary transformation. Due to the
non-negativity of the L2 norm it holds that,

tr[(ρ0 − ρf )2] ≥ 0,

Next, we expand this expression and use the cyclic property of the trace to obtain the following
form

tr[ρ2
0] + tr[ρ2

f ]− 2tr[ρ0ρf ] ≥ 0, (1)

Since the evolution ρ0 → ρf is unitary,is unitary,the purity is conserved, tr[ρ2
0] = tr[ρ2

f ], and
we obtain

tr[ρ0(ρ0 − ρf )] ≥ 0. (2)

Next, we use the fact that for unitary evolution purity conservation can be generalized to any
trace value tr[(ρ0−aI)2] = tr[(ρf−aI)2] where I is the identity operator and a is any real number.
The proof follows trivially by expending the parentheses. Thus, if r0 is some Hermitian operator
(potentially traceless) and evolves unitarily to rf , i.e. rf = Ur0U

† where U is a unitary matrix,
then by repeating the steps that lead to (2) together with tr[r2

0] = tr[r2
f ] we obtain

tr[r0(r0 − rf )] ≥ 0. (3)

1 Periodicity inequalities
1.1 The two-cycle inequality
Next, we consider a periodically-driven system, i.e. the density matrix after each cycle satisfies

ρk+1 = UρkU
†, (4)

where U is a unitary evolution operator. The fact that U does not depend on k reflects the
assumption of periodic driving. From linearity, it follows that the object

r0 =
N∑
j=0

αjρj , (5)

where αj ∈ R and ρj is the density matrix after j cycles, also satisfies rk+1 = UrkU
†. In the

following, we use the term ‘stencil’ for r. According to (3) it holds that

tr[r0(r0 − rM )] ≥ 0, (6)
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Figure 1: Illustration of the protocol for obtaining the k cycle recurrence probability Rk which appears in
the periodicity inequalities [eqn. (11)-(13) etc.]. The recurrence probability Rk expresses to what extent the
system has returned to its initial state after k cycles. The different Rk are statistically independent, and the
measurement of Rk do not affect Rj>k since they are evaluated in different experiments. Hence, despite the
quantum evolution and the multiple measurements in this protocol, there is no wavefunction “collapse” that
modifies the evolution.

where rM = UMr0U
†M .Consider the simple case where r0 = ρ1 − ρ0, and rM = r1 = ρ2 − ρ1, the

inequality (6) leads to

0 ≤ tr[(ρ1 − ρ0)(−ρ0 + 2ρ1 − ρ2)]
= tr[ρ2

0] + 2tr[ρ2
1]− 3tr[ρ0ρ1]

−tr[ρ1ρ2] + tr[ρ0ρ2]. (7)

Rk = tr[ρ0ρk] is the key quantity in our work and we shall refer to it as the recurrence probability.
For a pure state, ρ0 is the projector on to the initial state, ρ0 = |φ0〉 〈φ0|. Therefore, tr[ρ0ρk] is the
probability to measure the system in the initial state |φ0〉 after k cycles. Rk is an inner product,
and can therefore be thought of as the amount of overlap with the initial state even for mixed ρ0.
That is, Rk still expresses to what extent the density matrix returns to its initial value after k
cycles.

Using purity conservation in unitary evolution, tr[ρ2
0] = tr[ρ2

1], it holds that

3R0 − 3R1 − tr[ρ1ρ2] +R2 ≥ 0. (8)

However, −tr[ρ1ρ2] is presently in an inconvenient form as both ρ1 and ρ2 are unknown. To
overcome this we use the fact that the driving is periodic,

tr[ρjρj+k] = tr[ρjU jρkU†j ]
= tr[U†jρjU jρk]
= tr[ρ0ρk] = Rk. (9)

Applying eq. (9) in eq. (8) we get

R2 − 4R1 + 3R0 ≥ 0, (10)

which is the simplest inequality in our approach since it contains only two cycles, or three time
points including the initial state. Periodicity was assumed for the driving and the density matrix
does not evolve periodically in the general case. Note that the coefficients in (10) sum up to zero.
When the evolution is the identity operator,so that Rk = 1, this property leads to a saturation of
the inequality 10 of the form 0 ≥ 0.

Operationally, the inequality in (10) is evaluated as illustrated in Fig. 1. The R0 measurement
can be skipped if the state preparation and measurement errors (SPAM) are negligible. After the
initial state is evolved for one cycle, R1 is measured. Next, in a third set of measurements, R2 is
measured, and so on.
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Note that the one-cycle inequality R0 ≥ R1 becomes trivial for pure states since R0 = 1 and
1 ≥ R1 always holds as the recurrence probability cannot exceed one. In contrast, (10) provides
a non-trivial prediction for pure ρ0, which is a typical starting point for quantum devices. In
Appendix II, we further discuss the two-cycle inequality and its added value for mixed states.

1.2 A recipe for constructing multi-cycle inequalities
The following recipe can be used to obtain more general periodicity bounds:

• Choose a stencil of the form r0 =
∑N
j=0 αjρj (αi are real numbers).

• Choose M to set the shift value in rM = UMr0.

• Expand the parenthesis in tr[r0(r0 − rM )] ≥ 0.

• Replace tr[ρmρm+k]→ Rk = tr[ρ0ρk].

The last stage includes the m = 0 case: tr[ρ2
k]→ R0 = tr[ρ2

0]. The number of cycles is determinied
by largest index of Rk that appears in rM . Thus the number of cycles in the resulting inequality
is n = N +M .

1.3 The discrete derivative inequalities Sn

The two-cycle inequality (10) was obtained by using the stencil r0 = ρ1 − ρ0 which has the
form of a first-order discrete time derivative. Next, we exploit higher-order discrete derivative to
generate additional stencils. We denote by r(n)

0 the shifted discrete derivative r(1)
0 = ρ1−ρ0, r

(2)
0 =

ρ2 − 2ρ1 + ρ0, ... The second derivative r(2)
0 is centered at k = 1, The third derivative is centered

at k = 2 and so on. This shift ensures that the derivative does not include negative indices. For
rM we choose r1. Applying the recipe in Sec. (1.2) to the stencils r0 = ( 1

2 )nr(n−1)
0 , and denoting

the resulting inequalities by Sn where n is the number of cycles, the first few inequalities are

S2 = 1
8(R2 − 4R1 + 3R0) ≥ 0, (11)

S3 = 1
32(−R3 + 6R2 − 15R1 + 10R0) ≥ 0, (12)

S4 = 1
128(R4 − 8R3 + 28R2 − 56R1 + 35R0) ≥ 0. (13)

The Sn inequalities can be written as Sn =
∑n
k=0 w

(n)
k Rk ≥ 0 where the coefficients w(n)

k alternate
sign as a function of k and satisfy

∑n
k=0 w

(n)
k = 0 and

∑n
k=0

∣∣∣w(n)
k

∣∣∣ = 1. As shown later, when n

is sufficiently large the coefficients take the form: w(n)
k → (−1)k√

πn
e−

k2
n .

1.4 Low-cost evaluation of the Sn periodicity inequalities
We introduce the notation A±ρn = ρn±1, and show in Appendix III that the Sn inequalities can
be written as

Sn = tr[ρ0(1
2 −

1
4A− −

1
4A+)nρ0]. (14)

The expression ( 1
2 −

1
4A− −

1
4A+)n describes a classical n-step random walk with probability 1/4

to move one step forward, 1/4 to move one step backward, and 1/2 to stay in place. For large n,
the probability distribution for moving moving k steps forward is given by the normal distribution
with single-step variance σ2

0 :

1√
2πσ2

0n
e
− k2

2σ2
0n = 1√

πn
e−

k2
n , (15)
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where we have used: σ2
0 = 1

2 · 0 + 2 · 1
4 · 1 = 1

2 . Applying this result to eq. (14) we find

Sn =
n∑

k=−n

(−1)k√
πn

e−
k2
n R|k|

= 1√
πn

R0 + 2
n∑
k=1

(−1)k√
πn

e−
k2
n−1Rk.

(16)

Expression (16) suggests that the coefficients w(n)
k decay very fast as a function of k and therefore

the series Sn can potentially be truncated at some value L without significantly changing the value
of Sn. Operationally, it means that fewer than n cycles are needed for evaluating Sn. This is a
useful feature for detecting small evolution noise, that may require evaluating Sn with large n.

Next, we set a bound on the error incurred by truncating the sum at L < n.

n∑
k=L

(−1)k√
πn

e−
k2
n Rk ≤

n∑
k=L

1√
πn

e−
k2
n

≤
∞∑
k=L

1√
πn

e−
k2
n

' +1
2erfc(

L√
n

) 1
2
√
πn

e−
L2
n . (17)

For convenience we set L = ξ
√
n and get

2
n∑

k=L

1√
πn

e−
k2
n ' erfc(ξ) + 1√

πn
e−ξ

2
. (18)

From (16) and (18) we finally obtain that S(L)
n the L-cycle truncated version of the Sn satisfies

S(L=ξ
√
n)

n = Sn −
n∑

k=L
wkRk

≥ −2
n∑

k=L
(−1)k 1√

πn
e−

k2
n Rk

≥ −erfc(ξ)− 1√
πn

e−ξ
2
. (19)

This inequality should be used as follows: n is fixed by the Sn that needs to be evaluated, the
required accuracy ε is used to determine ξ via ε = erfc(ξ) + 1√

πn
e−ξ

2
and finally, the truncation

value is L = ξ
√
n. For example, to get an error of 5 × 10−3 in the calculation of S1000 (1000

cycles), only L = 64 cycles need to be measured (ξ = 2). For an accuracy of 10−5, 99 cycles are
needed (ξ = π), and 126 measured cycles already yield an accuracy of 2×10−8. We emphasize that
in practice the accuracy is limited by statistical noise. For example in the experiment in section
2.3 the truncation error is 1/65 of the 3σ-width when taking 24 points (ξ = 2.1). For 30 points
(ξ = 2.63), the truncation error is already 1/1000 of the 3σ width.

1.5 Optimized three-cycle inequality
In the following, we explore the continuum of three-cycle inequalities, i.e. we are not using the
discrete derivative stencil as in the previous sections. The goal is produce bounds that can perform
better at detecting evolution noise. Consider the general three-cycle stencil,

r0 = ρ0 + xρ1 + yρ2, (20)
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where x and y can take any real value. Using the recipe in Sec. 1.2 we get the following inequality:

L(x, y) = −yR3 + (−x+ 2y − xy)R2

+ (−1 + 2x− y − (x− y)2)R1

+ (1− x+ x2 + y2 − xy)R0 ≥ 0. (21)

We notice that the left hand side, which we denote by L(x, y), is a second-order polynomial in x
and y, where the coefficients of x, y, xy, x2, y2, 1 depend on {Rn}3

n=0.
If the evolution is unitary and periodic, L(x, y) ≥ 0 for any value of x and y. Yet, in the

presence of evolution noise, L(x, y) might be positive for some choices of x and y and negative for
other choices. It is also possible that L(x, y) is not negative for any choice of x and y. In that case,
the evolution noise is not detectable with four-point periodicity inequalities. To test if the noise is
detectable we check if min

x,y
[L(x, y)] < 0 by finding the optimal x and y that minimize L.

In a given physical scenario that consists of an initial condition and a driving protocol, {Rn}3
n=0

are just constant positive numbers and L(x, y) is a second-order polynomial with known and fixed
coefficients. Next we check which type of paraboloid L(x, y) is. Evaluating the second-derivative
test for a paraboloid ∂2

xL∂
2
yL − (∂x∂yL)2 ≥ 0, we find ∂2

xL∂
2
yL − (∂x∂yL)2 = (R0 − R1)(3R0 −

4R1 +R2) = 8(R0 −R1)S2. If S2 < 0 it means that L(x, y) is hyperbolic paraboloid and for some
value of x, y it must be negative. L(x, y) < 0 implies detection, but this is not surprising since
the noise is already detectable with two cycles since S2 < 0. S2 corresponds to x = −1, y = 0.
The more interesting case is S2 > 0 where L(x, y) is a paraboloid. Now detection L(x, y) < 0
is not guaranteed. Furthermore, the motivation for using an optimized bound for evolution noise
detection is that S2 and S3, which use {Rn}3

n=0, failed to detect it. To determine if L(x, y) is a
convex or concave paraboloid we check the limit x → ∞, y = 0. Since L(x, y) is positive in this
limit we conclude L(x, y) is convex. Consequently, the most negative value of L(x, y) occurs when
∂xL(x, y) = 0 and ∂yL(x, y) = 0, we denote the solution to these two equations by xmin and ymin.
Finding xmin, ymin we get that L(xmin, ymin) ≥ 0 is equal to

(2R0 −R1 − 2R2 +R3)
(R0 −R2)(3R0 − 4R1 +R2)

(
R2

0 −R0(R1 +R3)− (R1 −R2)2 +R1R3
)
≥ 0. (22)

This bound is non-linear in the expectation values Rk since these expectation values are being
used to choose the optimal x and y for detection. If the inequalities that involve R0, R1 and R2
hold, i.e. R0 −R2 ≥ 0 and 3R0 − 4R1 +R2 ≥ 0 , then the non-linear bound (22) simplifies to

R2
0 −R0(R1 +R3)− (R1 −R2)2 +R1R3 ≥ 0. (23)

The non-linearity in this inequality is different from the density matrix non-linearity that is usually
considered in quantum information and quantum thermodynamics (e.g. purity, von Neumann
entropy Svn = −tr[ρ ln ρ], etc.) as here it appears outside the trace. An experimental measurement
of this inequality is given in Sec. 2.4.

While optimized bounds become more burdensome to derive as the number of cycles increases,
the existence of these bounds can enable the detection of violations with a relatively small number
of measurements.

2 Numerical and Experimental demonstrations
We present numerical simulations and experimental results from IBM superconducting quantum
processors and a trapped ion quantum computer (TIQC). Each example illustrates a different
feature of the new bounds.

2.1 Detecting parameter drift during the evolution
There are only two assumptions made in deriving the periodicity inequalities, unitarity and periodic
driving. A violation of the periodicity inequalities can arise from breaking either one or both of
these assumptions. In this section we confirm that a non-periodic shift in the control parameters
would manifest as a violation of these bounds by numerically investigating such a possibility.
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Figure 2: (a) In this circuit the σxσx interaction (Rxx ) changes form one cycle to the next (k dependence).
(b) For a small drift of dθ = 10−3 the non periodicity is detectable after five cycles, i.e. S5 < 0. When
dθ = 3 × 10−3, dour cycle are enough for detecting the non-periodicity. Interestingly, it is possible to detect
the non-periodicity by running only three cycles by applying the optimized 3-cycle periodicity inequality (23).
To the best of our knowledge, the periodicity inequalities are the first constraints on unitary dynamics that
are customized for periodic driving and as such the detection of non-periodicity is presently unique to these
inequalities.

In Fig. 2a we numerically study a four-qubit system where the driving cycle is composed of
four single-qubit rotations around the x-axis by angle of 0.1rad Rx(0.1) where Rx(θ) = e−i

1
2 θσ is a

single qubit rotation around the x-axis of the Bloch sphere. These rotations are followed by nearest
neighbor xx interactions between qubit j and qubit j + 1 that leads to the following evolution:
U

[j,j+1]
k = exp[i θk2 (σ(i)

x σ
(i+1)
x ]. In order to simulate a drift of the control parameters, we chose

θk = θ0 + (k − 1)dθ. dθ represents the drift of the parameter θ from one cycle to the next. The
circuit is repeated for up to five cycles. Choosing θ0 = 0.3 rad and dθ = 10−3rad, the first violation
is observed after five cycles where S5 = −1.56×10−5. If the drift is stronger, for example such that
dθ = 3× 10−3rad, the first violation is observed after three cycles when employing the three-cycle
optimized inequality (23), which yields the value S3 opt = −1.5 × 10−5. The unoptimized three
cycle bound yields S3 = +1.4× 10−4. Alternatively, an additional cycle can be used to detect the
drift without resorting to an optimized bound S4 = −5.1× 10−5. Other values appear in Fig. 2b.

The violation of the periodicity inequality shown in this example highlights the power of these
inequalities over thermodynamic bounds, which could only detect errors arising from non-unitarity.
In this case, we detect the drift error in the device by exploiting tighter bounds arising from the
periodicity of the intended evolution.

2.2 Evolution noise detection with a pure initial state
In some setups, such as digital quantum computers, pure-state initial conditions are more natural
to use compared to mixed states, which require some dedicated preparation protocol (e.g. see [15]
and [16]). It is natural, then, to ask if pure states can be used to detect evolution noise. Presently,
constraints on observables in unitary dynamics are derived within the frameworks of stochastic and
quantum thermodynamics. Thus, they are the relevant reference for the periodicity inequalities
we present. Unfortunately, thermodynamic constraints become impractical to use when the initial
state is sufficiently pure. As discussed in Appendix I, some thermodynamic inequalities become so
loose that no evolution noise can violate them. In other thermodynamic constraints, the resources
needed for evaluating and measuring them diverge as the initial state becomes pure. Hence,
thermodynamic constraints are presently not suitable for detecting evolution noise in quantum
computers and simulators. The periodicity inequalities studied here are free from this limitation.
We present a proof-of-principle experiment for evolution noise detection using pure states. Our
setup, shown in Figure 3(a), is composed of a two-qubit system coupled to a one-qubit environment
(’e’). The initial state is created by single-qubit gates, which are not shown in the figure. The
single cnot gate between the upper two qubits constitutes the periodic unitary driving. While this
environment is artificial, it has the advantage that we can easily decouple it from the system and
verify that there is no noise detection in this case.
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Figure 3: (a) a circuit for demonstrating heat leak detection with a pure initial state. The initial condition is
|ψ0〉 〈ψ0| in the upper two qubits which constitute the system and the bottom environment qubit is initially in
|0〉 〈0|. The recurrence probability of the two upper spins is measured after one cycle in one experiment, and
after two cycles in a different experiment. (b) The experimental values of S2 for various input states carried out
on the IBM Bogota processor. The negative value for |ψ0〉 = |+a0b〉 indicates the detection of the environment.
When the environment is decoupled for the same input state (“No env.” in the figure) S2 yields a positive value
as expected. This experiment illustrates detection of evolution noise using pure state which is impossible in
thermodynamically-inspired frameworks.

The experiment is composed of three sub-experiments for measuring R0, R1 and R2. We test
several different input states: |00〉 , |01〉 , |10〉 , |11〉, and |1+〉. Our goal is to observe a violation of
S2 when the environment is connected, and no violation when it is not. Figure 3(b) shows that
states in the computational basis cannot detect the evolution noise but the superposition state in
the computation basis |1+〉 can. The error bars correspond to ±3σ statistical uncertainty. The
last bar in Figure 3(b) shows that, as expected, when the environment qubit is decoupled S2 is
positive and there is no detection. That is, we confirm that our inequality does not always yield
negative values regardless of the coupling to the environment qubit.

Interestingly, the circuit is completely classical for binary input, i.e. diagonal states in the
computational basis. In this case, it acts as a simple permutation in the computation basis 0a1b ↔
1a1b. The positive values for all four elements of the computation basis [Fig. 3(b)] imply that no
classical binary input (including stochastic inputs with classical correlations) can be used to detect
the noise induced by the environment qubit ’e’, in this circuit. Yet, a quantum superposition of
two classical binary states can detect the coupling to the environment. While this example does
not involve a strong quantum feature, such as entanglement, it naturally raises the question if
entangled states can lead to detection of noise that cannot be detected using classically-correlated
states. The key point of this experiment is the demonstration of noise detection using a unitary
constraint when starting in a pure state. A task that, to the best of our knowledge, is not possible
using the known thermodynamic constraints.

To conclude this section we point out that while a violation indicates a deviation from a perfect
periodic unitary driving, isolating the cause such as parameter drift, decoherence, spontaneous
emission, or other evolution noise mechanisms, requires further tests.

2.3 Detection of realistic noise
Following the controlled artificial environment demonstration above, it is interesting to check
whether this method can detect the real physical environment of quantum processors. The following
experiment shows that the real environment is indeed detectable when exploring larger numbers
of cycles. The one-cycle circuit we use is shown in the inset of Fig. 4 where θ = 1. The value of
θ was chosen arbitrarily and it is not optimal. Other values might detect weaker evolution noise
or to observe a violation with fewer cycles. Qubits 1 and 2 of the IBM Santiago processor are
initialized in the state |00〉. Figure 4(a) shows the values of Sn as a function of the number of
cycles. The width of the line corresponds ±3σ uncertainty. Hence, starting from 17 cycles, one
can see a violation beyond the 3σ uncertainty. This result shows that these inequalities can detect
the intrinsic processor noise when using a pure state as the input state.

Figure 4b shows the results of a similar experiment carried out on the IBM Casablanca
processor, for 65 cycles and θ = 0.1. The value of θ was modified from the previous experiment
as we now wish to demonstrate the utility of the scaling feature presented in Sec. 1.4. In this
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Figure 4: Inset: the circuit used for evaluating the Sn inequalities under the intrinsic noise of the IBM processors.
The initial condition is the ground state. Ry is a single qubit rotation around the y axis. (a) For qubits 2 &
3 of the Santiago processor and θ = 1.0, the environment leads to a violation after 17 cycles, i.e. S17 < 0.
(b) Running the same experiment on qubits 5 & 6 of the Casablanca processor and θ = 0.1, no violation is
observed for the 65 cycles we were able to run in this experiment. (c) Using the extrapolation described in Sec.
1.4 based on the favorable

√
n scaling, a violation is observed after 130 cycles. The extrapolation can be used

to detect a heat leak using the first 65 cycles (blue) or even just the first 28 cycles (red).

case, there is no violation within the number of cycles measured, but it seems that if more cycles
were measured a violation could have been observed. Fortunately, from the analysis in Sec. 1.4
we know that for large enough n the contribution of the last cycles decays like a gaussian in the
number of cycles w(n)

k ∝ e−k2/n. Consequently, only the first ξ
√
n terms contribute to the value of

Sn. ξ is roughly 3 but its exact value depends on the required accuracy of the clipped sum with
respect to the full sum. This suggests the 65 cycles we have measured can be used to evaluate
Sn with n > 65. Setting ξ = π and M = 65, we can extrapolate up to

⌊
(65/π)2⌋ = 428 with an

error of 10−5, which is not observable on the scale of Fig 4c. The blue curve, which overlaps with
the red curve until n ∼ 140, is generated by taking the measured {Rk}65

k=0 and setting Rk = 0 for
k ≥ 66 in the expression for Sn. We find negative values that indicate the presence of evolution
noise starting from n = 130. We conclude that the noise is detectable with only 65 cycles. This
illustrates the efficiency of the Sn inequalities.

It seems that perhaps even 65 samples are more than enough for observing the violation. The
red curve is Sn with Rk data from only 28 cycles. The red band shows extrapolation based on
only 28 points. According to eq. (18) at 140 cycles, for example, the error should be smaller than
1 × 10−3, which is too big to confirm a violation. Yet, in practice, at n = 140 the extrapolation
based on 28 points is almost indistinguishable from the one exploiting 65 points. The bound given
in eq. (18) on the truncation error of Sn is rather loose since it assumes that the signs of the
coefficients w(n)

k do not alternate as a function of k, and that all recurrence probabilities are one.
Thus, in practice, the contribution of the terms with high cycle number to the sum can be much
smaller. In general, it is possible to start with a small number of cycles, and then add more cycles
until convergence is achieved at the extrapolated point. Potentially, other initial states can lead
to earlier detection of evolution noise, but the goal of this example is to illustrate the advantage
of the

√
n scaling and not to find the optimal detection scheme.

2.4 Noise Detection Beyond the Hot-Environment Limit
Evolution noise created by hot environments deserves special attention. In the extreme case where
the environment is fully mixed, i.e. infinite temperature, the observed system experiences unital
dynamics. Unital maps are characterized by the fact that the fully-mixed state is a fixed point
of these maps [17, 18]. Decoherence processes are another example of unital map. For practical
purposes, it is enough that the temperature is significantly larger than the energies of the system.
Although not unitary, unital dynamics are consistent with second-law-like inequalities [19, 20, 14]
and passivity-based inequalities [21, 8, 9]. Thus, unital dynamics cannot violate these inequalities,
and therefore these inequalities cannot be used to detect unital noise. One can expect that if the
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Figure 5: An experiment that confirms the capability of the periodicity inequalities to detect hot environments
which cannot be detected using two-point passivity-based bounds [see eq. (25)]. Running the circuit (a) for
two and three cycles, we observe in (b) that the S2 and S3 inequalities are not violated, but the optimized
three-cycle inequality is violated and therefore confirms the coupling to the hot qubit ’e’. The experiment was
done on the Ourense IBM processor. See main text for details.

environment is slightly less hot so that the system thermalizes to a state, which slightly deviates
from a fully mixed state, it will still be hard to detect the noise this environment induces on the
system. In Ref. [9] a theorem was derived on the environment temperature Tenv that can still be
detected: there is no observable C in the Hilbert space of the system that satisfies

〈C〉final − 〈C〉inial ≥ 0, (24)

for any unitary or unital transformation, that can yield 〈C〉final − 〈C〉inial ≤ 0, i.e. be violated,
when the system is coupled to temperature Tenv > Tundetec where

Tundetec = max(Eenv)−min(Eenv)
min(Bvis

n − Bvis
n−1)

, (25)

{Eenv} are the energy levels of the environment, and Bvis
n is the n-th eigenvalue of − ln ρinitial

sys
(sorted in an increasing order of their size). Hence, if the temperature of the environment exceeds
Tundet, it is undetectable by inequalities of the form (24). However, this bound is based on the
one-cycle scheme with just one final state, in contrast to the multi-cycle approach presented in this
paper. Thus, the periodicity inequalities have the potential to detect this type of environment. In
the following experiment, we use the circuits shown in Figure 5(a). To generate thermal qubits
for the environment and the system, an ensemble of pure states is used (see [15]). The inverse
temperatures βh = 0.6, βc = 3.5 and βe = 0.5 are chosen so that the condition given in eq.
(25) guarantees that the environment is too hot to be detected using one-cycle inequalities on
observables. As indicated by the negative value of the 3rd bar in Figure 5(b), by evaluating the
optimized three-cycle inequality (23) the heat leak becomes detectable.

In summary, this experiment illustrates another added value of the periodicity inequalities with
respect to similar inequalities, and that the optimized 3-cycle bound can detect environments that
the S3 cannot detect, although both of them use the same experimental data.

2.5 A three-qubit gate in trapped ions and superconducting circuits
Next, we explore the results of Sn for some common gates with simple outputs and consider the
regime in which these results would provide benefit as diagnostic. Consider a gate U such as cnot,
Toffoli (ccnot), Fredkin (cswap), etc. that satisfies U |ψA〉 = |ψB〉 , U |ψB〉 = |ψA〉 i.e. U is a
two-state permutation so that U2 is the identity operator. If the initial condition is ρ0 = |ψA〉 〈ψA|
or ρ0 = |ψB〉 〈ψB |, the ideal output is Rn = {1, 0, 1, 0, 1, ...}. As a result Sn =

∑bn/2c
k=0 w2k = 1/2.

When the predicted Rn is so simple, there are many ways to quantify the deviation of the device
from its expected behavior. For example, one can use|Rexpn −Rn|. However, this quantity is always
positive and a large value of |Rexpn −Rn| can appear due to coherent error, e.g. miscalibrated gates
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Figure 6: When a circuit changes the initial state to an orthogonal state, and in the next cycle returns to the
initial state it holds that Sn = 1/2. (a) Sn values for various quantum processors where the circuit contains a
single Toffoli gate. The plot shows that the TIQC exceeds the performance of various IBM processors which
are further away from 1/2. (b) The comparison of the theoretical and experimental values of the recurrence
probabilities, |Rexp

n −Rn|, seems like a reasonable choice for comparing different processors. Yet, this quantity
strongly fluctuates and in this case, no processor is consistently better at all time points. In contrast, the Sn

shows a clear and consistent difference between the various processors. (c) Same as (a), but this time the cycle
contains two consecutive Toffoli gates. In this case, the ideal evolution yields Sn = 0. Here as well, the TIQC
performs better than the tested IBM superconducting quantum processors.

that change the intended unitary. Thus, |Rexpn −Rn| may not be associated with noise created by
an environment. In contrast, negative values of Sn are a clear indication of evolution noise.

In our last experiment, we run sequentially the Toffoli gate with the initial state |1A1B0C〉
where A and B are the controlling qubits. The experiment is carried out both on the IBMQ
superconducting processors and on a TIQC. The TIQC results are obtained on the University of
Maryland Trapped Ion (UMDTI) quantum computer, which is described in [22]. This experiment
is performed using a linear chain of five 171Yb+ ions in a room-temperature Paul trap under
ultrahigh vacuum with the qubit encoded in two hyperfine ground states of Yb+. We re-analyze
raw data from results reported in [23], where three of the five ions are treated as qubits while the
others remain idle. For more information on the UMDTI hardware, see Appendix IV.

Figure 6(a) shows the Sn plots for various IBM processors and the UMDTI as a function of
the number of cycles n. The |Rexpn −Rn| deviation with respect to the ideal output is depicted in
Figure 6(b). While the |Rexpn −Rn| fluctuates, the Sn curves are monotonically decreasing. Using
tools that are beyond the present paper one can prove that the Sn series must monotonically
decrease if the evolution is unitary and periodic [24, 25]. On the other hand, the fluctuations
of |Rexpn −Rn| and other measures, which are based on distance from the expected output, may
be artificial. For example, if the noise is caused by spontaneous emission, the initial state is an
excited state, and the ideal recurrence probabilities are Rn = {1, 0, 1, 0, ..}, then for odd n values,
the noise will decrease |Rexpn −Rn| as it will take the system closer to the ground state and reduce
the overlap with the initial excited state. Note that the deviation from 1/2 in Figure 6(b) can arise
from a coherent error in the implementation. It appears that the TIQC data is the closest to the
predicted 1/2 value. Thus, an increase in the Sn plot is an indication for evolution noise, which is
not observed here.

In our next test, we group pairs of Toffoli gates as a single cycle. The recurrence probability for
this two-Toffoli cycle is R′n = R2n = {1, 1, 1...}. Since

∑n
k=0 w

(n)
k = 0 it follows that for an ideal

evolution S′n =
∑n
k=0 w

(n)
k R2k =

∑n
k=0 w

(n)
k = 0 for all n. Figure 6(c), shows the experimental

values of S′n for the various quantum processors. The same trends as in Figure 6a are observed.
Note that in 6(b) Casablanca is more noisy for n=3 and n=7 but it is the other way around for
n=5. We conjecture that the reason there are strong fluctuations in |Rexpk −Rk| and even lack of
consistency regarding which processor is more noisy is related to coherent errors. These findings
indicate that it is advantageous to check the performance of devices in terms of Sn when the ideal
values of Rk are 1,0,1,0,... or 1,1,1,1,... compare to direct evaluation of the individual Rk values,
i.e. |Rexpk −Rk|.
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Concluding remarks
We have presented a set of multi-cycle inequalities valid for periodically-driven quantum systems.
Presently, we do not claim that these bounds will mature into a practical method for diagnosing
evolution noise in quantum circuits, but our results present a clear case that this research direction
warrants further investigation. The goal of this paper is to show that it is possible to formulate
constraints that are customized to periodic driving and that they have an added value with respect
to other known constraints. The periodicity inequalities have three appealing features. The first is
the operational advantage: they use pure states and only the recurrence probability is measured.
The second is that they treat the circuits as black boxes. The third is the

√
n scaling law, which

states that only the first ∝
√
n cycles contribute to the Sn inequality.

The construction of Sn has additional potential beyond the inequalities studied in this paper.
For example, we have shown it is directly related to purity loss and therefore may have further
application beyond detecting evolution noise, e.g. for devising a simple protocol for entanglement
entropy measurement [24, 25].

Going beyond digital quantum circuits, our method could find applications in other scenarios
with periodic driving, such as the simulation of Floquet many-body systems which have applications
in the study of time crystals [26] and prethermalization [27]. Typical experimental sequences allow
the calculation of bound violations based on existing data, e.g. in [28].

R.U. is grateful for support from Israel Science Foundation (Grant No. 2556/20). A.M.G. is
supported by a JQI Postdoctoral Fellowship. N.M.L. acknowledges financial support from NSF
grant no. PHY-1430094 to the PFC@JQI, and the Maryland-ARL Quantum Partnership, grant
no. W911NF1920181.

Appendix I - The Zero Temperature Problem in Thermodynamic Constraints
There is a broad family of thermodynamic and thermodynamically-inspired constraints. Reviewing
how exactly the zero temperature problem manifests in each one is beyond the scope of the present
paper. In this appendix, we give as examples the Jarzynski fluctuation theorem, the second law in
microscopic quantum systems, and passivity-based inequalities. he Jarzynski equality in systems
whose Hamiltonian returns to its initial value reads

〈〈e−βW 〉〉 =
∑

pipi→je
−β(Ej−Ei) = 1,

where pi→j is the transition probability generated by the unitary driving, and W is the work
invested in creating this transition. It is tempting to ignore all input states save the ground state,
which is solely occupied in the β → ∞ limit, however, the exponentially small probabilities are
multiplied by an exponentially large factor (e.g. in the transition to the ground state from some
other input state). Thus, all input states are important in the ultra-cold limit. This manifests in
an exponentially diverging number of shots [13]

N = eβ〈W 〉,

which makes this scheme impractical for pure-state initial conditions.

The second law in microscopic systems and passivity inequalities
For an isolated system that starts in thermal equilibrium the relevant statement of the second
law is: energy cannot be extracted by applying a periodic force on the system. The translation
to quantum systems is as follows: given a time independent system Hamiltonian Hs the initial
density of the system is the Gibbs state

ρβ = e−βHs/tr[e−βHs ], (26)

where β is the inverse temperature. A periodic driving force refers to a periodic driving Hamiltonian
V (t) that satisfies V (t) = V (τ) = 0 where τ is the end of the process. The accumulated effect of

Accepted in Quantum 2022-03-22, click title to verify. Published under CC-BY 4.0. 12



the time dependent Hamiltonian H = Hs+V (t) can be described by a unitary evolution operator,
such that the final density matrix is ρ0 = UρβU

†. The second law in the case states that the final
average energy of the bare Hamiltonian is equal to or larger than that of the initial state,

〈Hs〉f = tr[ρfHs] ≥ tr[ρβHs] = 〈Hs〉β . (27)

This result can be derived in several ways. In particular, it is a special case of the Clausius-like
inequalities for small quantum systems ([14] and references therein).

When β is finite this statement is not trivial because the excited states are populated according
to (26). Thus, the system can be reduce its energy by moving population to lower states. However,
it turns out the unitary transformation (created by the periodic driving) cannot do that. Non-
unitary dynamics, such as cooling can reduce the energy but this always involves heating up some
other object. Thus, an experimental violation of (27) can be used to deduce that the system is not
sufficiently isolated and interaction with an unaccounted environment takes place.

The key point in the context of this paper is that when β → ∞, i.e. the ultra-cold limit, for
all practical purposes only the ground state is initially populated. In this case, it does not matter
if the dynamics are unitary or not, and if more objects are involved. The system is already in the
minimum possible energy and therefore it can only increase. Since (27) cannot be violated in this
case, it cannot be used to detect an environment.

A similar problem exists in passivity-based frameworks. In these framework the basic inequality
stems from the passivity of the operator B = F (ρ0), where ρ0 is the initial state and F (x) is a
monotonically-decreasing function in x ∈ [0, 1]. When β →∞, ρ0 → |0〉 〈0| and therefore the basic
passivity inequality

tr[ρfB]− tr[ρ0B] ≥ 0,

becomes trivially satisfied for pure states since B = − |0〉 〈0| (up to a multiplicative positive
constant) for any F , and the passivity prediction is

tr[ρf |0〉 〈0|] ≤ 1,

which always holds even if the evolution is not unitary. Thus it cannot be used to detect non-unitary
environments.

Appendix II - The Two-Cycle Inequality
As a basis for comparison, the usual one-cycle inequality, eq. (2), yields R0 ≥ R1 and R0 ≥ R2
which for pure states is trivial since R0 = 1 and R0, R1 ≤ 1. The inequality (10) can be assigned
with different interpretations via different rearrangements:

R2 ≥ 4R1 − 3R0, (28)
1
4(R2 + 3R0) ≥ R1, (29)

(R0 −R1) ≥ 1
4(R0 −R2) ≥ 0. (30)

Inequality (28) provides a lower bound on R2 (the two-point bound yields an upper bound R2 ≤
R0), while (29) offers a refined upper bound on R1. Since R0 ≥ 1

4 (R2 + 3R0) this bound is always
tighter than the two-point bound R0 ≥ R1. Interestingly this bound is using the information on
R2, so the two endpoints are used for bounding the midpoint. Inequality (30) compares the change
in the recurrence probability in the first half to the cumulative change R0 − R2. It suggests that
the change cannot occur just in the second half of the evolution; at least a quarter must take place
in the first half. Similarly one can write 3(R0 − R1) ≥ R1 − R2 and directly compare the two
halves. Note however that in this form the right-hand side might become negative. Another added
value of the form (30) is that it makes it easier to compare with the two-point inequalities R0 ≥ R1
and R0 ≥ R2. The inequality (30) shows that R0 − R1 is not just non-negative but also larger
than another non-negative number, 1

4 (R0 −R2). Thus, it is tighter than the two-point prediction
R0 −R1 ≥ 0.
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Appendix III - Derivation of Equation (14)
The n-th discrete shifted derivative can be written (1−A+)nρ0 where An+ρm = ρm+n and An−ρm =
ρm−n. Note, that A+ and A− commute. Using this notation Sn can written as

Sn = 1
22n tr[(1−A+)n−1ρ0[(1−A+)n−1 −A+(1−A+)n−1ρ0]. (31)

Next, we use the shift invariance property tr[ρnρm] = tr[ρ0ρm−n] to obtain

Sn = 1
22n tr[ρ0(1−A−)n−1[(1−A+)n−1 −A+(1−A+)n−1ρ0], (32)

or
Sn = 1

22n tr[ρ0(1−A−)n−1(1 +A−)n−1(1−A+)ρ0]. (33)

Next, we apply the hermitian conjugate of the expression inside the trace. It still gives Sn since
it is real but changes A+ to A− and vice versa and we get the alternative expression

Sn = 1
22n tr[ρ0(1−A−)n−1(1 +A−)n−1(1−A−)ρ0]. (34)

Combining Eq. (33) and Eq. (34) we get

Sn = 1
22n tr[ρ0(1−A−)n−1(1 +A−)n−1(2−A− −A+)ρ0]. (35)

Finally, since (1−A−)n(1−A+)n = (2−A− −A+)n we get eq. (14)

Sn = 1
22n tr[ρ0(2−A− −A+)nρ0]

= tr[ρ0(1
2 −

1
4A− −

1
4A+)nρ0].

Appendix IV - The University of Maryland Trapped-Ion Quantum Computer
The UMDTI quantum computer is described in [22]. Briefly, two-photon Raman transitions are
used to control the qubit state, encoded in two magnetic-field-insensitive hyperfine ground states
of 171Yb+ ions held in a linear chain in a Paul trap. Individual manipulation of each qubit is
performed by splitting one of the Raman laser beams into several beams, each controlled by an
independent acousto-optic modulator channel and focused onto a single ion in the chain. Single-
qubit gate operations are executed by creating laser pulses of controlled phase and duration while
two-qubit gates are compiled from single-qubit gates and a laser-driven entangling Ising gate (XX
or eiχσxσx) following the Mølmer-Sørensen gate scheme [29, 30, 31], which creates entanglement
between pairs of qubits via the shared harmonic oscillator modes of the ion chain in the trap. These
modes act as an information bus with which the qubits are temporarily entangled. Modulation of
the Raman beam amplitude is used to leave the qubits disentangled from these motional degrees
of freedom at the end of the gate operation [32, 33].
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