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Thermal machines exploit interactions with
multiple heat baths to perform useful tasks,
such as work production and refrigeration. In
the quantum regime, tasks with no classical
counterpart become possible. Here, we
consider the minimal setting for quantum ther-
mal machines, namely two-qubit autonomous
thermal machines that use only incoherent
interactions with their environment, and in-
vestigate the fundamental resources needed
to generate entanglement. Our investigation
is systematic, covering different types of
interactions, bosonic and fermionic environ-
ments, and different resources that can be
supplied to the machine. We adopt an
operational perspective in which we assess the
nonclassicality of the generated entanglement
through its ability to perform useful tasks such
as Einstein-Podolsky-Rosen steering, quantum
teleportation and Bell nonlocality. We provide
both constructive examples of nonclassical
effects and general no-go results that demar-
cate the fundamental limits in autonomous
entanglement generation. Our results open
up a path toward understanding nonclassical
phenomena in thermal processes.

1 Introduction
Classical thermal machines, such as the steam engines
which emerged with the industrial age, produce
work, heating, or cooling, by exploiting heat currents
between environments at different temperatures. The
study of fundamental performance limits for such
machines was integral to the development of the
theory of thermodynamics. Similarly, the study
of quantum thermal machines plays a key part in
ongoing research aiming to advance understanding
of thermodynamics in the quantum regime [3, 4].
Such machines incorporate quantum effects in their
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operation but function according to the same basic
modus operandi. It is hence a compelling question
whether there is a fundamental sense in which
quantum thermal machines can be said to be different
from their classical counterparts.

This question can be addressed from many angles,
and many traditional thermodynamic tasks have been
studied in the quantum regime [28]. The resources
available to the machine will influence the answer,
and it therefore seems particularly interesting to
consider a minimal scenario in which no source of
coherent control, work input or external driving is
present and quantum thermal machines rely only on
time-independent internal and system-environment
interactions. Such machines are referred to as
autonomous [33, 34]. Autonomous quantum thermal
machines performing classical thermodynamic tasks
have been explored e.g. for heating [17, 26, 38, 39, 50],
cooling [8, 14, 16, 29, 30, 32], heat management
[25, 41] and keeping time [15, 58].

A complementary approach, which we pursue here,
is to consider tasks that have no classical analogue;
the paradigmatic example being that of entanglement
generation. Interestingly, despite their simplicity,
it turns out that autonomous machines are able
to generate quantum correlations between initially
independent systems. Two qubits and two out-
of-equilibrium heat baths are sufficient to enable
an entanglement engine that generates steady state
entanglement [5] by exploiting a heat current through
the machine [27]. This can also be extended to
multipartite systems [48]. In the simplest setting,
the entanglement is weak and noisy, but it was
found that stronger entanglement can be achieved in
more sophisticated machines [31, 43, 47, 55]. While
these examples showcase the possibility of generating
entanglement in quantum thermal machines and
its nontrivial relationship to the resources made
available, little is known about the fundamental
limitations of such entanglement generation, the
comparative power of different types of machines or
their general ability to produce useful entanglement.
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Figure 1: (Top) Two-qubit autonomous quantum thermal machine for generating entanglement. Two qubits with energy gap
E interact via a time-independent Hamiltonian and are individually coupled to thermal baths at temperatures TA and TB .
The heat current through the system drives the qubits into an entangled steady state. In this work, the baths may be bosonic
or fermionic with or without population inversion, the interaction may be simple flip-flop or contain a ‘charge’ term, and the
entanglement is quantified either directly in the steady state or after postselection by local filtering on one or both qubits.
(Bottom) Summary of results. We consider the generation of entanglement useful for steering, teleportation, or nonlocality
for different combinations of bath type, interaction type, and postselection. In the deterministic setting, the right-hand side of
the table shows whether such generation is possible. In the heralded setting, it shows a lower bound on the maximal heralding
efficiency for which it is possible.

Here, we systematically investigate entanglement
generation in autonomous thermal machines. Our
approach consists in analysing classes of machines
that are characterised by exploiting qualitatively
different resources. As resources, we consider
combinations of different types of thermal baths,
different qubit-qubit interactions, and the possibility
to either utilise the steady state of the machine
directly or to first apply local filtering. These
different resources are labeled 1-3 in Fig. 1. For
the baths, we consider the two fundamental particle
types, bosons and fermions. For the latter, we
also consider the possibility of exploiting population
inversion, i.e. negative temperature baths (this is not
relevant in the bosonic case, where the energy spectra
are unbounded from above). For the interaction,
we consider an energy-preserving flip-flop interaction,
where the qubits can coherently exchange a single
excitation, and we also allow for a direct term,
increasing the energy of double-excited states. The
latter can be thought of e.g. as a Coulomb term
for charged fermions. Finally, we also consider

heralding using local filters diagonal in the local
energy eigenbasis. Here, the amount entanglement
conditioned on successful filtering is quantified. In
contrast to previous works investigating heralded
autonomous entanglement generation [47, 48], our
filtering process does not require higher-dimensional
quantum systems and may be viewed as an add-on to
the simplest machine.

Furthermore, in order to meaningfully quantify
and compare autonomous entanglement generation,
we adopt an operational approach. Previously, the
quality of the entanglement produced in autonomous
machines was primarily considered based on one of
the well-known entanglement monotones, e.g. en-
tanglement concurrence [20, 59] or entanglement
negativity [53]. In the minimal, two-qubit, scenario
these monotones can detect every entangled state
and successfully identify the maximally entangled
states. However, away from this extremal case, they
typically do not reveal much knowledge about the
nonclassicality of the state. For instance, there are
states with an infinitesimal entanglement concurrence
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that can be used to violate a Bell inequality1 while
other states with sizable entanglement concurrence
cannot (e.g. noisy Werner states [56]). More generally,
entanglement measures only represent a partial order
under local operations and classical communication
[54]. In practice, this means e.g. that one state
can be more entangled than another according
to the concurrence, but vice versa according to
the negativity [52]. This motivates us to depart
from these ideas and instead take an operational
perspective in which entanglement is detected and
quantified based on its ability to perform concretely
useful tasks. To this end, we focus on three types of
operational nonclassicality: Einstein-Podolsky-Rosen
steering, quantum teleportation and Bell nonlocality.
We choose these tasks as they are paradigmatic both
in the foundations of quantum theory (see e.g. the
reviews [7, 24, 51]) and in quantum information
processing (see e.g. [10, 36, 42, 49]). Moreover, they
also represent increasingly sophisticated notions of
nonclassicality. Notably, steering and teleportation
also enable other important forms of nonclassicality,
namely quantum contextuality [45] and semi-device-
independent quantum information entanglement de-
tection [46].

For the various classes of quantum thermal ma-
chines and the different notions of operationally
useful entanglement, we obtain both constructive
examples of nonclassicality and no-go results. The
formers account for the ability of the machines to go
beyond classical limitations and they allow for general
comparisons between the performance of different
quantum thermal machines. The latters represent
fundamental limitations in the ability of quantum
thermal machines to produce useful entanglement
when granted particular resources. Together, these
results provide insight both to the abilities and
limitations of autonomous entanglement generation.
Figure 1 shows a sketch of the machines we consider
and summarises our main results. For the most
elementary machine, introduced in Ref. [5], we
surprisingly find that both bosonic and fermionic
baths and interactions with and without the charge
term all enable steering. This highlights the relevance
of our operational approach: steering is possible in
this machine but one can prove that the output state
with the largest entanglement concurrence reported
in Ref. [5] is, in fact, not steerable. However,
we prove no-go theorems for both teleportation
and a violation of the Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality: both are impossible with
the most elementary machine regardless of bath and
interaction type. Next, we show that, for fermionic
baths, population inversion enables teleportation, but

1For example, the pure family of states |φα〉 =
√
α|00〉 +√

1− α|11〉 is entangled, and hence according to [18] Bell non-
local, for all α ∈ (0, 1). Its concurrence, however, is C(|φα〉) =√

4α(1− α), which can be arbitrarily small.

that it remains impossible to violate the CHSH
inequality. Finally, we include local filtering and
find that Bell nonlocality is then possible. In
fact, such heralded entanglement generation enables
the asymptotic generation of even the maximally
entangled state. For bosons and charged fermions,
teleportation is possible at high heralding efficiency.
Moreover, when combined with population inversion,
we find that violations of the CHSH inequality can
be sustained up to an efficiency of 20%. This
enables efficient generation of the strongest form of
nonclassicality from thermal resources.

The remainder of the paper is structured as follows.
In Sec. 2, we describe the two-qubit thermal machines,
which we consider. In Sec. 3, we define the operational
measures of nonclassicality, which we use to quantify
the usefulness of the states generated by the machines.
In Sec. 4, we study the simplest machines, which
do not use population inversion nor postselection,
in Sec. 5, we allow for inversion for machines with
fermionic baths, and in Sec. 6 we further allow for
local filtering, resulting in non-deterministic, heralded
machines. Finally, in Sec. 7 we conclude.

2 Scenario
Throughout, we adopt natural units in which Planck’s
constant and Boltzmann’s constant are both unity,
i.e. ~ = kB = 1. Our machine consists of two resonant
qubits, labeled A and B, with excited state energy
E and free Hamiltonians HA = E|1〉〈1|A ⊗ 1B and
HB = 1A ⊗ E|1〉〈1|B, where we have set the ground-
state energy to zero. For simplicity, we normalise the
excited state energy to E = 1. The qubits interact
via a time-independent Hamiltonian of the form

Hu
int = g (|01〉〈10|+ |10〉〈01|) + u|11〉〈11|. (1)

Here, the first term describes a flip-flop interaction
with strength g ≥ 0, while the second term, with
strength u ≥ 0, increases the energy of the double-
excited state |11〉. We refer to this term as the
‘charge’ term, as it would e.g. arise from the Coulomb
repulsion between electrons in charged-quantum-dot
qubits, as considered in [5]. Thus, for ‘uncharged’
qubits, we set u = 0 whereas for ‘charged’ qubits we
have u > 0. Each qubit, A and B, is individually
coupled to a bath of temperature TA and TB
respectively (see the top part of Fig. 1) with coupling
strength γA, γB respectively. Under a weak system-
bath coupling with respect to the bare energies of
the qubits, γA, γB � E, the dynamics of the two-
qubit state ρ = ρAB can be described with a Lindblad
master equation. Throughout this work, we assume
in addition that the inter-qubit coupling strength g
remains smaller or of the order of γA and γB, we
work in the parameters’ range g ≤ (γA, γB) � E, u.
This parameters range ensure that dissipation to the
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environments is correctly described by local jump
operators, i.e. jump operators acting locally onto each
qubit separately [9, 11, 19, 21, 34, 37]. In the case
of a strong inter-qubit coupling, the possibility of
thermal-state entanglement is not precluded (ground
state can be entangled). In Ref. [27], it was shown
that the strong-coupling regime does not provide
any advantage with respect to the weak inter-qubit
coupling regime for the creation of entanglement in
an out-of-equilibrium situation. We now discuss
the exact form of the local master equation for the
different models we consider.

Bosons without charge. For bosons, the bath
statistics is described by a Bose-Einstein distribution
nBE(ε, T ) =

(
e

ε
T − 1

)−1. Assuming a weak system-
bath coupling strength γ, the rate of receiving
excitations at energy ε from a bath at temperature
T is then given by Γ+

BE(γ, ε, T ) = γnBE (ε, T ),
and the rate of loosing excitations into the bath is
Γ−BE(γ, ε, T ) = γ (1 + nBE (ε, T )) [6]. For bosons, we
will consider only the uncharged interaction (u = 0).
In this case, excitations can only be lost or gained at
energy E and the dynamics of the two-qubit state is
then described by a Lindblad master equation

∂ρ

∂t
= i [ρ,Htot]+

∑
k∈{A,B}

Γ+
k

(
JkρJ

†
k −

1
2{J

†
kJk, ρ}

)

+
∑

k∈{A,B}

Γ−k
(
J†kρJk −

1
2{JkJ

†
k , ρ}

)
, (2)

where Htot = HA + HB + H0
int is the total system

Hamiltonian, the rates are Γ±k = Γ±BE(γk, E, Tk) with
γk the strength of the coupling to bath k, and the local
jump operators are JA = |1〉〈0|⊗1 and JB = 1⊗|1〉〈0|.

Fermions without charge. For fermionic baths,
an uncharged interaction and the same parameters’
range g ≤ (γA, γB)� E, the dynamics of the system
is again described by a local master equation (2) but
with the modification that the bath statistics is now
given by the Fermi-Dirac distribution nFD(ε, T ) =(
1 + e

ε
T

)−1. The rates of receiving or loosing exci-
tations are then given by Γ+

FD(γ, ε, T ) = γnFD (ε, T )
and Γ−FD = γ (1− nFD (ε, T )) respectively, and in (2)
one has Γ±k = Γ±FD(γk, E, Tk).

Fermions with charge. For fermionic baths we
also consider the possibility of a charged interaction
(i.e. u > 0). In this case, when both qubits
are excited, the total energy is increased to 2E +
u. Dissipative transitions can therefore occur
both at energy E and at energy E + u, and
the master equation must be modified accordingly.
Defining the rates Γ+

kl = γknFD (E + lu, Tk) and
Γ−kl = γk (1− nFD (E + lu, Tk)), the Lindblad equa-

tion takes the form

∂ρ

∂t
= i [ρ,Htot]+

∑
k∈{A,B}
l∈{0,1}

Γ+
kl

(
JklρJ

†
kl −

1
2{J

†
klJkl, ρ}

)

+
∑

k∈{A,B}
l∈{0,1}

Γ−kl
(
J†klρJkl −

1
2{JklJ

†
kl, ρ}

)
, (3)

where the total system Hamiltonian is now Htot =
HA + HB + Hu

int and the jump operators are JA0 =
|1, 0〉〈0, 0|, JA1 = |1, 1〉〈0, 1|, JB0 = |0, 1〉〈0, 0| and
JB1 = |1, 1〉〈1, 0|. Here, the operators JA0 and
JB0 correspond to transitions at energy E and the
operators JA1 and JB1 correspond to transitions at
energy E + u.

At long times, the dynamics of both (2) and
(3) converges to a steady state ρsteady, which is
the solution to ∂ρ

∂t = 0. The steady state is
determined completely by the machine parameters
(g, γA, γB, TA, TB, u) and its exact form is in general
complicated. However, in the minimal model we
consider, made of two qubits interacting via a flip-
flop type Hamiltonian, the only non-vanishing off-
diagonal element in the steady state will be the
one sustained by the unitary evolution, hence by
the interaction Hamiltonian that induces exchanges
between the states |01〉 and |10〉 in the basis of the free
Hamiltonians. Therefore, in all the cases we consider,
the solution is of the form

ρsteady =


a1 0 0 0
0 a2 −α 0
0 −α∗ a3 0
0 0 0 1− a1 − a2 − a3

 , (4)

for some (a1, a2, a3) ≥ 0 such that |α| ≤ √a2a3
(positivity) and a1 + a2 + a3 ≤ 1 (normalisation).
Notably, when investigating the entanglement prop-
erties of (4), it is convenient to restrict α to be a
real, non-negative number. This comes at no loss
of generality since entanglement (as well as steering,
teleportation and nonlocality) is invariant under local
unitary operations. Specifically, if α = |α|eiᾱ, where
ᾱ is a phase, then we can apply the unitary U =
|0〉〈0|+ eiᾱ|1〉〈1| to qubit A in order to transform the
state (4) into

a1 0 0 0
0 a2 −|α| 0
0 −|α| a3 0
0 0 0 1− a1 − a2 − a3

 , (5)

In the following section, where we formulate criteria
for nonclassicality, we focus on states of the form (5).

3 Operationally useful entanglement
We quantify the nonclassicality of the quantum
correlations in ρsteady by their usefulness for three
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operational tasks, namely steering, teleportation and
nonlocality. In this section, we discuss each of them
separately.

3.1 Steering
Consider that one qubit is given to Alice and the other
qubit to Bob. By performing different projective
measurements {Aa|x}, where x is the setting and a
the outcome, Alice remotely prepares (unnormalised)
states σa|x = trA

(
Aa|x ⊗ 1ρ

)
for Bob. The set

{σa|x} is called an assemblage and it is said to be
steerable if it does not admit a local-hidden-state
model. This means that it cannot be explained by
a model in which Alice uses a local random variable,
λ, to stochastically prepare quantum states, σλ, for
Bob and chooses her output via local post-processing
[57]: σa|x =

∑
λ p(λ)p(a|x, λ)σλ. The state ρ is

steerable if there exists local measurements for Alice
that generate a steerable assemblage. In contrast, if a
local hidden state model for the assemblage exists for
every possible set of projective measurements, then ρ
is said to be unsteerable.

The (un)steerability of a given assemblage, ob-
tained from N projective measurements with O
possible outcomes each, can be determined through
the following semidefinite program

find {σ̄λ} such that σ̄λ ≥ 0,

∀(a, x) : σa|x =
ON∑
λ=1

D(a|x, λ)σ̄λ (6)

where D(a|x, λ) are all possible deterministic prob-
ability distributions of Alice. The assemblage is
steerable if and only if a solution to (6) cannot
be found. This semidefinite program becomes more
expensive to evaluate as the number of settings and
outcomes increases. In the interest of a reasonable
compromise, we will often consider detecting steer-
ability based on Alice performing a set of ten qubit
projective measurements whose Bloch vectors form
a regular dodecahedron on the Bloch sphere. Such
a dodecahedral measurement configuration has been
found useful in previous works for detecting quantum
correlations [40, 44].

However, it is less straightforward to assert the
unsteerability of a given state. For states of
two qubits, computable sufficient conditions (in
the form of linear programs) for steerability and
unsteerability respectively, under any number of
projective measurements, were provided in Ref. [35].
These are based on approximating the Bloch sphere
from both the inside and outside with polytopes
of increasing number of vertices in order to obtain
increasingly precise upper and lower bounds on the
so-called critical steering radius, which is necessary
and sufficient to determine the steerability of general
two-qubit states (when no limitation is placed on the
number of measurements) [35].

Moreover, since some states display stronger steer-
ing properties than others, one may consider one of
the many possible quantifiers of steering [10]. Here,
we will focus on the amount of isotropic (white)
noise that a state can undergo without becoming
unsteerable. This amounts to substituting a two-
qubit state according to ρ→ (1−q)ρsteady +q 14 where
q ∈ [0, 1] is the noise rate, and finding an upper bound
on q below which the state remains steerable.

Lastly, we note that every steerable state enables
a proof of another type of quantum correlations,
namely quantum contextuality [45]. Therefore, if a
state is steerable, it is also able to produce outcome
statistics that elude classical models in contextuality
experiments.

3.2 Teleportation
Quantum teleportation [2] allows Alice to send Bob a
qubit state |ψ〉 by means of shared entanglement ρ and
classical communication. In a standard teleportation
protocol, she jointly projects |ψ〉 and her part of ρ in
a basis of four maximally entangled states and sends
the outcome to Bob. Bob applies a local unitary
depending on the outcome. In an ideal setting, in
which ρ is maximally entangled, Bob then recovers
|ψ〉 exactly. However, also non-maximally entangled
states enable a degree of teleportation. The standard
quantifier for the task is the fidelity of teleportation,
f , which measures the closeness between Bob’s final
state and |ψ〉. It is given by f = 1+2F

3 where

F (ρ) = max
U
〈ψ−| (1⊗ U) ρ

(
1⊗ U†

)
|ψ−〉, (7)

is the so-called singlet fraction, where |ψ−〉 = |01〉−|10〉√
2

and U is a qubit unitary. Since the best classical
protocol achieves f = 2

3 , the state ρ is useful for
teleportation if and only if F > 1

2 [22]. Therefore,
when F > 1

2 , we say that the singlet fraction is
nontrivial.

In general, there is no closed expression for F but
when restricting to states of the form (5), we derive a
simple expression. A general qubit unitary is written
U = eiµ~n·~σ where ~n = (sin θ cosφ, sin θ sinφ, cos θ)
is some Bloch vector, µ is a rotation angle and
~σ = (σx, σy, σz) is a vector of Pauli matrices.
By direct calculation, one finds that the expression
〈ψ−|(1⊗ U)ρ

(
1⊗ U†

)
|ψ−〉 has no dependence on φ

and that its optimal value is achieved for θ = π
2 if

(1 + 2α− 2∆) ≥ 0 and for θ = 0 otherwise, where we
defined ∆ = a2 +a3, see (5). Similarly, one finds that
the optimal choice of µ is either µ = 0 or µ = π

2 . This
leads to

F =
{
α+ ∆

2 if (1 + 2α− 2∆) ≤ 0
max{α+ ∆

2 ,
1−∆

2 } otherwise
.

(8)
Consequently, if the singlet fraction is nontrivial, it is
equal to α + ∆

2 . A necessary and sufficient condition
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for a trivial singlet fraction becomes

α+ ∆
2 ≤

1
2 ⇔ F ≤ 1

2 (9)

A simpler, sufficient but not necessary condition
for a trivial singlet fraction is obtained by invoking
positivity of the density matrix, namely α ≤ √a2a3
in (8). Then, we have that

∆ ≤ 1
2 ⇒ F ≤ 1

2 . (10)

Lastly, it is relevant to note that every two-qubit
state that is useful for teleportation also enables
semi-device-independent entanglement certification
through an experiment in the spirit of quantum dense
coding [46]. Therefore, an advantage in teleportation
implies this alternative notion of quantum correla-
tions.

3.3 Nonlocality
Consider that Alice and Bob each perform measure-
ments x and y on the shared state ρ and record
their outcomes a and b. The resulting probability
distribution p(a, b|x, y) is said to be nonlocal if it
cannot be explained by a local-hidden-variable model,
in which Alice and Bob decide each their respective
outcomes based on a shared random variable λ [1]:
p(a, b|x, y) =

∑
λ p(λ)p(a|x, λ)p(b|y, λ). Nonlocality

is therefore a stronger form of nonclassicality than
steering. Here, we focus exclusively on the the
simplest and most popular Bell scenario. It has binary
inputs and outputs, a, b, x, y ∈ {0, 1}, and is fully
characterised by the CHSH inequality [13],

CHSH =
∑
x,y,a,b

(−1)a+b+xyp(a, b|x, y) ≤ 2. (11)

Quantum theory can produce a violation of at most
CHSH = 2

√
2, which is achieved with a maximally

entangled state [12].
Given an arbitrary two-qubit state ρ, the largest

CHSH-value (for the best pairs of local measure-
ments) can be determined via the Horodecki criterion
[23]. This criterion stipulates that the largest value
is CHSH = 2

√
λ1 + λ2 where λ1 and λ2 are the

two largest eigenvalues of the operator TTT , where
Tij = tr (ρσi ⊗ σj) for i, j ∈ {x, y, z}. For states
of the form (5), this operator simplifies into T =
diag(−2α,−2α, 1 − 2∆). Hence, the eigenvalues of
TTT are

(
4α2, 4α2, (2∆− 1)2), leading to

CHSH = 2
√

8α2 + (2∆− 1)2 −min{4α2, (2∆− 1)2}.
(12)

A handy upper bound on the CHSH parameter is
obtained by discarding the min-term, which leads to
the following sufficient condition for satisfying the
CHSH inequality

8α2 + (2∆− 1)2 ≤ 1 ⇒ CHSH ≤ 2. (13)

Figure 2: Steerability of steady state, in the space
(
g
γA
, γB
γA

)
for different choices of TA, using any number of projective
measurements. The range for the different parameters was
chosen to ensure the validity of our master equations and
in accordance with state-of-the-art experiments, see [5, 27].
The plot is generated using the linear programming methods
of Ref. [35] to bound the critical steering radius. The dots
represent sampled points and the shaded regions represent a
steerable steady state. The white region represents points for
which we are unable to determine whether the steady state
is steerable or not.

A useful, but weaker, sufficient condition is obtained
from (13) by invoking positivity (α ≤ √a2a3) and the
fact that the polynomial a2

2+a2
3+4a2a3−a2−a3 is non-

positive in the domain (a2, a3) ≥ 0 and a2 + a3 ≤ 1
2 .

One obtains

∆ ≤ 1
2 ⇒ CHSH ≤ 2. (14)

Note that (14) is identical to the condition (10) for
inability of teleportation.

4 Nonclassicality in the simplest ma-
chine

In this section we investigate the simplest autonomous
entanglement engine, i.e. the machine introduced in
section 2, for the case of bosonic and fermionic baths
and uncharged flip-flop interaction, and for fermionic
baths and charged flip-flop interaction. For each of
these cases, we consider the possibility of generating
steady state entanglement that is strong enough to
enable steering, teleportation and nonlocality. In
all cases, we find that steering is possible, while
teleportation and a violation of the CHSH inequality
are not.
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4.1 Bosons
When the baths are bosonic, we solve for the steady
state version of (2). This can be achieved analytically
by listing the density-matrix variables in (4) in a
vector ~x and solving an inhomogeneous system of
linear equations, 0 = A~x + b, where the matrix A
and the vector b depend on the machine parameters
(g, γA, γB, TA, TB). See [27] for an explicit derivation.
In Appendix A, we present the analytical expression
for ρsteady in the most relevant limit, namely TB → 0.
It is notable that the steady state does not explicitely
depend on the parameters (g, γA, γB) but instead only
on the ratios g/γA and γB/γA. Thus, the steady
state remains the same if all parameters (g, γA, γB) are
multiplied by a positive constant (see Appendix. A).
In fact, since this property occurs frequently, we
will exploit it several times in the manuscript to fix,
without any loss of generality, γA = 1. Throughout
the work, we ensure that all parameters remain in
a range satisfying the conditions for assessing the
dynamics with a local Lindblad master equation as
discussed above.

By inspecting the steady state, we show in
Appendix A that the condition (10) is satisfied for
every choice of machine parameters. Therefore, this
machine cannot produce entanglement strong enough
for teleportation. Moreover, by virtue of condition
(14), it immediately follows that there exists no steady
state that can violate the CHSH inequality.

However, there exist choices of machine parameters
for which the corresponding steady state becomes
steerable from Alice to Bob for sufficiently many

projective measurements. To investigate this, we
have employed the linear programming relaxations of
Ref. [35] for bounding the critical steering radius (see
section 3.1). In Figure 2, we illustrate the results
of a grid-search for steerability in the space of the
steady state, characterised by the ratios

(
g
γA
, γBγA

)
, at

different choices of temperature TA. We consider a
finite inter-qubit coupling strength g to ensure the
presence of quantum coherence in the steady state.
We see that different choices of TA correspond to
different parameter regions in which the steady state
is steerable. Notably, however, the steerability is
very fragile, in the sense that a small amount of
isotropic noise is sufficient to enable a local hidden
state model. For such reasons, we have also been
unable to detect steerability using the dodecahedral
measurement configuration for Alice (see section 3.1).
This suggests that one may need a sizable number
of projective measurements in order to generate a
steerable assemblage from the steady state.

4.2 Fermions without charge

For fermionic baths and uncharged interaction, we
have again solved the master equation (2) as a
function of the machine parameters by means similar
to the above discussed case of bosons. For fermions,
due to the Fermi-Dirac statistics, the most interesting
scenario emerges in the limit of a large temperature
gradient, i.e. when TA → ∞ and TB → 0. In this
limit, the steady state takes the form

ρsteady = 1
2N


γAγBt

2 + 2g2s2 0 0 0
0 2g2γAs −2igtγAγB 0
0 2itgγAγB γA

(
γBt

2 + 2g2s
)

0
0 0 0 2g2γ2

A

 , (15)

where t = γA + γB, s = γA + 2γB, and N =
t2
(
4g2 + γAγB

)
. This state always satisfies the

condition (10), which asserts that it can neither enable
teleportation nor a violation of the CHSH inequality
(see condition (14)). To prove this, we consider the
sum ∆ of the second and third diagonal element in
(15). One easily finds that the derivative of ∆ w.r.t. g
is non-positive and equals zero only at g = 0. In this
limit, we have ∆ ≤ 1

2 .
However, in analogy with the bosonic case, the

steady state (15) enables steering. As discussed
previously, it suffices to scan the parameter range
through the two ratios g

γA
and γB

γA
. We have conducted

a grid search in the corresponding two-dimensional
parameter space in order to determine the parameter
region in which steering is (im)possible. For this
qualitative assessment of steerability, we have used
the linear programming method of Ref. [35] and

the results are illustrated in Figure 3a. We find
that fermions enable steering at a much smaller
value of γB

γA
than bosons. In addition, we have also

quantitatively investigated the steering properties of
the steady state, specifically through considering its
robustness to isotropic noise, using a small number
of measurements. To this end, we have employed
the dodecahedral measurement configuration and at
best found that a noise rate of q ≈ 0.23% can be
tolerated. This corresponds to choosing g

γA
= 0.6

and γB
γA

= 8.5. Although this noise tolerance is very
small, it still improves on the case of bosons where
such a dodecahedral measurement configuration did
not detect steering.
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Figure 3: Steerability of steady state in the space of machine parameters using any number of projective measurements. The
range for the different parameters was chosen to ensure the validity of our master equations and according to state-of-the-art
experiments, see [5, 27]. The plots are generated using the linear programming methods of Ref. [35] to bound the critical
steering radius. The dots represent sampled points, and the blue (red) region represents (un)steerable steady states. The
white region represents points for which we are unable to determine whether the steady state is steerable or not. (a) Simplest
machine, fermions without charge, based on the steady state (15). (b) Fermions with population inversion; based on the
steady state (20). (c) Fermions with charge; based on the steady state (16) in the most relevant limit of TA → ∞.

4.3 Fermions with charge
The entanglement generated using the charged in-
teraction is expected to be at least as powerful as
that of the uncharged case. The reason is that the
former is an immediate generalisation of the latter
corresponding to allowing any non-zero value u > 0.
Again, the most interesting case is that of a cold bath
TB → 0. The strongest entanglement is obtained
in the limit of a large interaction, i.e. when u →

∞. The reason is that this completely suppresses
population in the |1, 1〉 subspace in the steady state,
which is desirable since such a population effectively
constitutes a form of noise due to the fact that the
coherence of the state is concentrated in the subspace
spanned by {|01〉, |10〉}, see (4). The steady state
solution of the Lindblad equation (3) can be expressed
on the form (4) with coefficients

a1 =

(
4g2

(
1 + e

1
TA

)
+ γAγBe

1
TA

)(
γB + te

1
TA

)
(

1 + e
1

TA

)(
4g2

(
γA

(
2 + e

1
TA

)
+ γB

(
1 + e

1
TA

))
+ γAγB

(
γB + te

1
TA

)) (16)

a2 = 4g2γA

4g2
(
γA

(
2 + e

1
TA

)
+ γB

(
1 + e

1
TA

))
+ γAγB

(
γB + te

1
TA

) (17)

a3 = 1− a1 − a2 (18)

α = 2igγAγB

4g2
(
γA

(
2 + e

1
TA

)
+ γB

(
1 + e

1
TA

))
+ γAγB

(
γB + te

1
TA

) . (19)

Note that the strongest entanglement is expected in
the limit TA →∞.

In Appendix B we prove that for any choice of
machine parameters, when transformed into the form
(5), this steady state satisfies the condition (9).
Consequently, it cannot be used for teleportation.
In the same Appendix, we prove that also condition
(13) is satisfied. Thus, it also cannot be used to
violate the CHSH inequality. This constitutes a
first no-go theorem, stating that neither teleportation

nor nonlocality can be achieved with the simplest
machine.

Since uncharged fermions already were found to
enable steering, it trivially follows that charged
fermions also enable steering. However, we find
that the machine parameter region in which steering
is possible is enlarged as compared to the case of
uncharged fermions (see Figure 3c). Moreover, the
steerability is somewhat more robust to isotropic
noise. To showcase this, we have considered the
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dodecahedral measurement configuration for Alice
and found at best q ≈ 0.75% at g

γA
= 0.3 and

γB
γA

= 2.1.

5 Nonclassicality in machine with pop-
ulation inversion
The inability to enable teleportation or nonlocality
in the simplest autonomous machines motivates us to
explore whether such nonclassicality can be achieved
by supplementing the machine with the additional
resource of population inversion. Specifically, we
focus on fermionic systems and consider that the hot
bath (bath A) is subjected to a population inversion
process, analogous to that in a laser, which allows
the bath states to have a larger population in the
excited state than in the ground state. This effectively
corresponds to introducing a negative temperature in
the Fermi-Dirac statistics of the bath, i.e. we allow
for TA < 0 which implies 1

2 < nFD ≤ 1. We will
show that this resource enables teleportation, but not
a violation of the CHSH inequality.

The idealised scenario, in which the inversion
resource becomes most pronounced, is when the bath
B is cold TB → 0+ and bath A has a vanishing,
negative, temperature, TA → 0−. The latter
corresponds to complete inversion, i.e. nFD = 1.
Notice that these limits eliminate any dependence
on charge term (u) in the interaction Hamiltonian,
which can be seen from examining the flow rates Γ±
(see section 2). Therefore, we need not distinguish
between charged and uncharged fermions. We have
solved the steady state case of the Lindblad equation
(3) and obtained the following solution:

ρsteady = 1
N


4g2γ2

B 0 0 0
0 4g2γAγB −2itgγAγB 0
0 2itgγAγB γAγB

(
4g2 + t2

)
0

0 0 0 4g2γ2
A

 .

(20)
Next, we investigate the usefulness of this steady state
for teleportation, nonlocality and steering.

5.1 Teleportation is possible
We show through an explicit example that there exists
a choice of machine parameters that corresponds to
a steady state (20) which is useful for teleportation.
To this end, we choose γA = γB and g =

√
5−1
4 γB.

Using (8), we evaluate the singlet fraction of the
corresponding steady state to be F (ρsteady) = 3+

√
5

8 ≈
0.65, which exceeds the classical limit F = 1

2 .
Equivalently, we may say that the teleportation
fidelity is f = 7+

√
5

12 ≈ 0.77, which exceeds the
classical limit f = 2

3 .
More generally, whenever the singlet fraction is

nontrivial, we can compute it from (8) and the steady

state (20):

F =
γAγB

(
8g2 + 4gt+ t2

)
2t2 (4g2 + γAγB) . (21)

This allows us to identify the teleportation fidelity
possible for different choices of machine parameters.
In particular, as we now show, there exists no choice
of machine parameters that enables a larger singlet
fraction than that obtained in the above example.

To this end, it is easily checked that in the limits
g → 0 and g → ∞, one has a trivial F ≤ 1

2 . Next,
we use the fact that the steady state is identical if all
the parameters (g, γA, γB) are multiplied by a positive
constant as discussed earlier in the paper. This allows
us to fix γA = 1 without loss of generality. Then, we
solve ∂F

∂g = 0 and obtain a single relevant solution,
namely

g =
√

1 + 4γB + 10γ2
B + 4γ3

B + γ4
B − 1− γ2

B
4(1 + γB) . (22)

Inserting this back into (21), we are left only
to optimise over γB, which is achieved again by
considering the roots of the derivative. One finds
γB = 1, which via (22) returns the optimal
teleportation strategy presented earlier.

5.2 Violation of the CHSH inequality is impos-
sible
Population inversion is, however, not a sufficiently
strong resource to generate entanglement that can
violate the CHSH inequality. To prove this, we show
that the steady state (20) satisfies the condition (13).
Thus, we define S := 8α2 + (2∆− 1)2 and show that
it can never exceed the value 1. Differentiating this
expression w.r.t g one finds only two relevant roots,
namely g = 0 and

g = |γ2
A − γ2

B|

2
√

γ3
A
γA

+ γ3
B
γA
− 4t2 + 6γAγB

. (23)

For the first root, one immediately obtains S = 1. To
investigate the second root, we use again properties
of our steady state (4) to fix γA = 1 without loss of
generality. The task then simplifies into maximising
the one-variable function

S =
2γB

(
1− 4γB + γ2

B
)

1− 2γB − 2γ2
B − 2γ3

B + γ4
B
. (24)

Calculating the roots of the derivative, one obtains
γB ∈ {−1, 1, 3 − 2

√
2, 3 + 2

√
2}. It is easily checked

that each of these roots (as well as the limit γB →∞)
satisfy S ≤ 1. Lastly, we check the limit g → ∞, in

which one obtains S =
(
γA−γB
γA+γB

)4
≤ 1. Thus, it holds

that S ≤ 1 which via (13) implies that the CHSH
inequality is satisfied. This constitutes our second
no-go theorem, stating that nonlocality can not be
achieved neither with the simplest machine, nor with
population inversion.
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Figure 4: Strength of steering vs. coupling rates in machine
with population inversion, as measured by the critical
isotropic noise rate q in the steady state (20) using the
dodecahedral measurement configuration on qubit A.

5.3 Steerability is enhanced
Since we already found that the simplest machine
enables steering, the same trivially follows for the
present machine. In Figure 3b we illustrate the
(un)steerable region, in the space of the ratios g

γA

and γB
γA

that characterise the steady state (20), using
the method of Ref. [35]. The parameter region
corresponding to a steerable steady state is found
to be larger than in the previous cases. Moreover,
as we show here, population inversion quantitatively
enhances steerability. Concretely, steering can be
demonstrated using the dodecahedral measurement
configuration (see section 3.1) at levels of isotropic
noise that are one order of magnitude higher than
that tolerated in the previously considered machines.
We have made a grid in the plane of

(
g
γA
, γBγA

)
and

for each point evaluated the largest noise rate q
that is compatible with a local hidden state model
given Alice’s measurement strategy. To this end, we

solve the semidefinite program (6), with the minor
modification that max q is introduced as an objective
function. In Figure 4, we illustrate the isotropic
noise tolerance of steerability enabled by the machine.
We find that for appropriate choices of machine
parameters, steering can be achieved at a noise rate
of q ≈ 10.9% (at g

γA
= 0.38 and γB

γA
= 1.9). It

is also interesting to note that the state optimal for
teleportation is not the most noise-tolerant in terms
of steerability. The noise tolerance of that state under
the dodecahedral strategy is q ≈ 8.1%.

6 Nonclassicality in machines with
heralding
In this section, we consider supplementing the
machine with local filters. This means that once
the steady state is generated, each qubit may be
subject to a measurement. If that measurement
returns the desired outcome (i.e. the state passes the
filter), then we consider the post-measurement two-
qubit state as final output state of the process. This
allows one to boost entanglement at the price of only
probabilistically completing the procedure.

We may write the filters as the following measure-
ments {F †AFA,1− F †AFA} and {F †BFB,1− F †BFB} on
qubit A and qubit B respectively. We choose the
Kraus operators to filter in the energy eigenbasis;
Fk = ak|0〉〈0| + bk|1〉〈1| for k ∈ {A,B}, for some
coefficients 0 ≤ (aA, bA, aB, bB) ≤ 1. The heralded
state becomes

ρherald = 1
psuc

(FA ⊗ FB) ρsteady

(
F †A ⊗ F

†
B

)
, (25)

where psuc is the heralding efficiency given by

psuc = tr
(
F †AFA ⊗ F †BFBρsteady

)
. (26)

The heralded state takes the form

ρherald = 1
M


4a2

1a
2
2g

2γ2
B 0 0 0

0 4a2
1b

2
2g

2γAγB −2ia1a2b1b2gγAγBt 0
0 2ia1a2b1b2gγAγBt a2

2b
2
1γAγB

(
4g2 + t2

)
0

0 0 0 4b21b22g2γ2
A

 , (27)

where M = t
(
4b22g2γA + a2

2γB
(
4g2 + γAt

))
. Next,

we investigate the relationship between nonclassical-
ity and this efficiency.

6.1 Heralding in the simplest machine
We now consider that ρsteady is the steady state
obtained from the simplest machine, based on either
bosonic or fermionic baths and interactions with and
without a charge term. Recall that although the

simplest machine did enable steering, teleportation
and nonlocality were out of reach. Therefore, we
numerically explore the trade-off between the singlet
fraction (for teleportation) and the CHSH parameter
(for nonlocality) respectively, against the heralding
efficiency psuc.

In both cases, we numerically find that in the
asymptotic limit psuc → 0 the machine is able to
generate a state that is essentially identical to the
maximally entangled state. This shows that in princi-
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Figure 5: Usefulness for teleportation, as measured by the
singlet fraction, vs. heralding efficiency for the autonomous
machine with bosonic baths. The optimisation is performed
in the limit TB → 0 and u → ∞ over the machine parameters
(g, γA, γB, TA) and the filter parameters (aA, bA, aB, bB).

ple, the simplest autonomous machine supplemented
with local filters enables optimal teleportation and a
maximal violation of the CHSH inequality. However,
to also account for a practically relevant scenario,
it is important to investigate the trade-off between
nonclassicality and psuc.

In the case of bosonic baths, we find that the
robustness of the nonlocality is very small. Already
at psuc = 0.2%, we are no longer able to herald a state
that can violate the CHSH inequality. Somewhat
surprisingly, the situation for teleportation is very
different. In Fig. 5 we illustrate the numerical results
for the singlet fraction versus the heralding efficiency.
Although the the singlet fraction rapidly drops from
the ideal value when psuc is perturbed away from the
asymptotic limit, the rate of decrease also rapidly
flattens around psuc ≈ 10%. This allows us to detect a
small but nontrivial singlet fraction up to psuc ≈ 45%.

In the case of charged fermions, we have considered
the limit TB → 0 and u → ∞. For a given value of
psuc, we have numerically searched over the machine
parameters (g, γA, γB, TA) and the filter parameters
(aA, bA, aB, bB) to maximise the singlet fraction and
the CHSH parameter respectively. The results are
displayed in Fig. 6 (left, top & middle). The
robustness of the singlet fraction to sizable efficiencies
is more pronounced than in the case of bosons. We
find a nontrivial singlet fraction up to psuc ≈ 55% and
a violation of the CHSH inequality up to psuc ≈ 3.5%.
This is again an improvement on the bosonic case, but
in general the efficiencies for generating nonlocality or
strongly nonclassical singlet fractions remain small.

6.2 Heralding with population inversion
The low efficiencies tolerated in the above scheme
motivate an exploration of an even more powerful
machine, which features both local filters and pop-
ulation inversion in the bath. Therefore, we consider
the application of local filters to the steady state in
(20).

Before addressing the trade-off between nonclassi-

Figure 6: Comparison of operational nonclassicality for
machines with fermionic baths, local filtering, and with (left
column) and without (right column) population inversion.
Numerical optimisation is performed in the limit TB → 0
and u → ∞ over the machine parameters (g, γA, γB, TA)
and the filter parameters (aA, bA, aB, bB). The optimisation
of the singlet fraction (top row) is performed in the limit
u → ∞ with a filter only on qubit B. The CHSH parameter
(middle row) is considered at u = 20, for TA = 0 without
inversion and for different negative temperatures TA with
inversion corresponding to having 100%, 88%, and 75%
of the population in the excited state. The optimal state
for teleportation is used to evaluate the isotropic noise
robustness (the parameter q) of steering for a dodecahedral
measurement configuration (bottom row).

cality and efficiency, let us present a simple argument
for the fact that in the limit psuc → 0, the machine
can generate a maximally entangled state. To this
end, we leverage the fact that every pure entangled
two-qubit state can be probabilistically converted into
a maximally entangled state through a local filter.
Given this knowledge, we need only to show that for
any given degree of purity close to unit, the machine
can produce an entangled steady state. To show this,
we take g � (γA, γB) and consider a series expansion
of the purity in g,

tr(ρ2
steady) = 1−

8g2 (γ2
A + γ2

B
)

γAγBt2
+O(g3). (28)

Also, we consider the entanglement concurrence [20,
59], which for a state of the form (4) becomes C(ρ) =
2
(
|α| −

√
a1 (1− a1 − a2 − a3)

)
. A series expansion
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gives

C(ρsteady) = 4g
t
− 8g2

t2
+O(g3). (29)

We see that when g → 0, the concurrence ap-
proaches zero linearly and the purity approaches one
quadratically. Any purity sufficiently close to one
can be achieved with a non-vanishing concurrence.
Consequently, this state can be filtered into a state
correspondingly close to the maximally entangled
state.

Now, we investigate steering, teleportation and
nonlocality versus the heralding efficiency. We choose
to only apply a filter to qubit B (FA = 1). The
reason is that we have found that also filtering also
on qubit A only yields a marginal improvement.
Therefore, a simpler setup, with a single local filter,
may be preferable. For fixed psuc, we have numerically
optimised the singlet fraction over the machine
parameters (g, γA, γB) and the filter parameters
(aB, bB) based on the steady state (20). Then, we
have taken the optimal state found for teleportation
and evaluated its white noise tolerance for steering via
the semidefinite program (6) using the dodecahedral
measurement configuration. The results are displayed
in Fig. 6 (right, top & bottom). As expected, we
find optimal teleportation and nearly optimal steering
(the small suboptimality is due to the choice of
the dodecahedral measurement configuration) in the
limit psuc → 0. The singlet fraction and the noise
robustness of steering both decrease gradually until
they reach the values reported in section 5 for the
deterministic setting (psuc = 1).

We have similarly optimised the CHSH parameter
numerically. In this case, we have considered values
away from the idealised limits for the charge inter-
action and the temperature gradient. Specifically,
we have fixed u = 20 and considered three different
choices of negative temperature TA, each of which
corresponding to a degree of population inversion.
The results are illustrated in Fig. 6 (right, middle).
We find that for complete population inversion (TA →
0−), the ability to violate the CHSH inequality is
nearly one order of magnitude more robust than
in the previous case without population inversion:
nonlocality is sustained up to heralding efficiencies of
psuc ≈ 20%. This gradually decreases as the degree of
population inversion is reduced.

7 Conclusions
In this work, we have investigated the abilities and
fundamental limitations in generating operationally
useful entanglement from the steady state of minimal
autonomous thermal machine. We found that even
the simplest such machine is able to generate steady
state entanglement that is strong enough for revealing
steering, that the introduction of population inversion
as an additional resource can boost entanglement to

the extent that also teleportation becomes possible,
and that the introduction of local filtering operations
to herald entanglement from the steady state can
enable Bell nonlocality at efficiencies up to about 20%.

A natural next step is to investigate operational
nonclassicality and its limitations in autonomous
entanglement engines based on either on more than
two qubits or two higher-level systems. Also,
taking the opposite point of view, it would be
interesting to address to what extent one must
introduce non-autonomous resources (e.g. work input
or time-dependent interactions) in order to generate
entanglement that is strong enough to circumvent our
no-go theorems on teleportation and CHSH violation
in the two-qubit scenario. Here, we showed that
local filtering is one possible avenue to such stronger
entanglement.

Finally, our focus here has been exclusively on
quantum thermal machines that perform a task that is
inherently nonclassical, i.e. entanglement generation.
However, many quantum thermal machines are
believed to outperform their classical counterparts at
tasks that in themselves are classical (heating, cool-
ing, extracting work etc.). Can these machines also
manifest operationally meaningful nonclassicality?
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A Simplest machine with bosons
The solution to the steady state Lindblad equation in the limit TB → 0 is given below on the form (4).

a1 = 4g2γ2
A(

γA − γB + te
1

TA

)2 (
4g2 + γAγB coth 1

2TA

)
a2 = γA

(
4g2 + (γA − γB)2

)
γB + te

2
TA
(
4g2 + γBt

)
− 2e

1
TA
(
−γ2

AγB + γ3
B + 2g2s

)
(

4g2
(
−1 + e

1
TA

)
+ γAγB

(
1 + e

1
TA

))(
γA − γB + te

1
TA

)2

a3 = 4g2γA

t+ γA

(
−1 + e

1
TA

)−1

(
4g2

(
−1 + e

1
TA

)
+ γAγB

(
1 + e

1
TA

))(
γB + γA coth 1

2TA

)2

α = −
2igγAγB

(
−1 + e

1
TA

)
(

4g2
(
−1 + e

1
TA

)
+ γAγB

(
1 + e

1
TA

))(
γA − γB + te

1
TA

) , (30)

where we have defined t = γA+γB and s = γA+2γB. Observe that this state is invariant under the transformation
(g, γA, γB) → c × (g, γA, γB), for any c > 0. Note also that the above is a special case of the general solution
to the Lindblad for two interacting qubits coupled individually to their own bath, as derived in Ref. [27] for
fermions and bosons.

A.1 Teleportation and CHSH violation is impossible

We prove that ∆ ≤ 1
2 for all machine parameters. Some simplifications give

∆ = γA

(
8g2 + (γA − γB)2

)
γB + te

2
TA
(
8g2 + γBt

)
− 2e

1
TA
(
−γ2

AγB + γ3
B + 4g2s

)
(

4g2
(
−1 + e

1
TA

)
+ γAγB

(
1 + e

1
TA

))(
γA − γB + te

1
TA

)2 . (31)

As previously discussed, we may fix, for instance, γA = 1. Then, differentiating w.r.t. g, one finds a single root

at g = 0, which corresponds to ∆ =
(

1 + e
1

TA

)−1
which is always smaller than 1

2 . We must also check the
(unphysical, w.r.t. our master equation) limit g →∞, where one finds

∆ = 2e
1

TA (1 + γB)− 2γB(
1− γB + e

1
TA (1 + γB)

)2 . (32)

Differentiating w.r.t γB, one finds a single root at γB = −1 (unphysical), which corresponds to a maximum.
Fixing this value eliminates TA and obtains ∆ = 1

2 . Hence, for every choice of machine parameters
(g, γA, γB, TA), we have ∆ ≤ 1

2 which implies that the singlet fraction and the CHSH value are both trivial.
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B Simplest machine with charged fermions
B.1 Teleportation is impossible
We work in the most relevant limit in which TB → 0 and u → ∞ and prove that F ≤ 1

2 for any choice of
(g, γA, γB, TA). To this end, we evaluate F = α + a2+a3

2 for the steady state when transformed into the form
(5). Some simplification gives

F =
γA

(
8g2

(
e

1
TA + 1

)
+ 4g

(
e

1
TA + 1

)
γB + γB

(
te

1
TA + γB

))
2
(
e

1
TA + 1

)(
4g2

((
e

1
TA + 1

)
γB +

(
e

1
TA + 2

)
γA

)
+ γBγA

(
te

1
TA + γB

)) . (33)

For simplicity, one may define x = 1
TA

. Evaluating the derivate w.r.t x, one finds that it is non-positive. Thus,
the above right-hand-side is strictly increasing with TA. Thus, we take the limit TA →∞ and obtain

F =
γA
(
16g2 + 8gγB + γBs

)
4 (4g2(2t+ γA) + γAγBs)

. (34)

We take the derivative w.r.t. g and find its roots. There is only one positive root, given by

g =
γ2
A − 4γ2

B +
√
s (γ3

A + 46γ2
AγB + 28γAγ2

B + 8γ3
B)

8(2t+ γA) . (35)

Inserting this in (34) we obtain an expression only in terms of (γA, γB). Once again, we can w.l.g. fix γA = 1.
This gives

F =
7 + 4γB(γB + 4) +

√
(2γB + 1)(2γB(2γB(2γB + 7) + 23) + 1)
8(4γB(γB + 2) + 3) . (36)

Taking the derivative, its root can be evaluated analytically but is too cumbersome to state here. Its decimal
approximation is γB ≈ 0.300 and gives F ≤ 0.3788, which is below the critical threshold of F = 1

2 .

B.2 CHSH inequality violation is impossible
We work in the most relevant limit in which TB → 0 and u→∞ and prove that the CHSH inequality is satisfied
for any choice of (g, γA, γB, TA). To this end, we use the previous result that the machine does not enable a
non-trivial singlet fraction, i.e. F ≤ 1

2 , which via (9) implies a2 + a3 ≤ 1− 2α. Inserted into our condition (13)
for satisfying the CHSH inequality, it reduces to

8α2 + (1− 4α)2 ≤ 1, (37)

which is satisfied when α ≤ 1
3 .

In order to show that the machine always respects this condition, we prove a bound on α for all steady states.
In the relevant limit (TB → 0 and u→∞), the magnitude of the off-diagonal element is

α = 2γAγBg

4g2
(
γA

(
e

1
TA + 2

)
+ γB

(
e

1
TA + 1

))
+ γAγB

(
γB + te

1
TA

) . (38)

Defining x = 1
TA

and calculating the derivative w.r.t. x, one finds that it is non-positive. Thus, to maximise α,
we take the limit TA →∞. This gives

α = 2gγAγB

γAγBs+ 4g2 (3γA + 2γB) . (39)

Differentiating w.r.t. g, one obtains the single positive root

g = 1
2

√
γAγBs

3γA + 2γB
, (40)

which leads to
α = 1

2

√
γAγB

3γ2
A + 8γAγB + 4γ2

B
. (41)

Differentiating w.r.t. γA, the single positive root is γA = 2√
3γB. This leads to the following maximal value for

the magnitude of the coherence term:

α =
√

2−
√

3
4 ≈ 0.129. (42)

Thus, the condition (37) is always satisfied.
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