Proposal for room-temperature quantum repeaters with nitrogen-vacancy centers and optomechanics
Institute for Quantum Science and Technology, and Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
Published: | 2022-03-17, volume 6, page 669 |
Eprint: | arXiv:2203.06611v3 |
Doi: | https://doi.org/10.22331/q-2022-03-17-669 |
Citation: | Quantum 6, 669 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We propose a quantum repeater architecture that can operate under ambient conditions. Our proposal builds on recent progress towards non-cryogenic spin-photon interfaces based on nitrogen-vacancy centers, which have excellent spin coherence times even at room temperature, and optomechanics, which allows to avoid phonon-related decoherence and also allows the emitted photons to be in the telecom band. We apply the photon number decomposition method to quantify the fidelity and the efficiency of entanglement established between two remote electron spins. We describe how the entanglement can be stored in nuclear spins and extended to long distances via quasi-deterministic entanglement swapping operations involving the electron and nuclear spins. We furthermore propose schemes to achieve high-fidelity readout of the spin states at room temperature using the spin-optomechanics interface. Our work shows that long-distance quantum networks made of solid-state components that operate at room temperature are within reach of current technological capabilities.

Featured image: Room-temperature quantum repeater architecture. Here, we just show four nodes and three links to demonstrate the basic logic of the quantum repeater protocol, which proceeds in four steps. Step 1 is to generate the entanglement between two remote NV electron spins using the spin-optomechanics interface. Step 2 is the memory mapping, which stores the entanglement between two electron spins into the entanglement between two nuclear spins. Step 3 is the same as step 1 for generating the entanglement between two remote NV electron spins. Step 4 is to perform the entanglement swapping that establishes the entanglement only between the first and the last nuclear spins.
ERRATUM
The erratum to this paper has corrected the wrong attenuation length used in the previous paper which produced incorrect repeater rate and fidelity estimates. In this updated version, we investigated the performance of nonmultiplexed and multiplexed repeaters and found that multiplexing is an indispensable part of the proposal that allows for boosted rates and feasible entanglement fidelities at long distances. In particular, Section 4 was substantially rewritten, and Fig. 7 was updated to take into account multiplexing and spin decoherence. In the Appendix, we also added S7 to discuss how to choose the number of multiplexing channels and links to optimize repeater rates and fidelities.
Popular summary
Motivated by these considerations, we propose a complete solid-state quantum repeater architecture that can operate under ambient conditions. We leverage the unique characteristics of nitrogen-vacancy centers in diamond, which have excellent electron spin and nuclear spin coherence even at room temperature. We show that spin-optomechanical interfaces make it possible to create high-fidelity entanglement between remote electron spins at room temperature, circumventing the phonon-induced broadening of the optical transitions. We furthermore show that the same interfaces can also be used to read out the spin states. While we focus on quantum repeaters for this initial proposal, there is a clear path to extend our approach to allow the implementation of fault-tolerant distributed quantum computing as well. Our proposal is a significant step towards the practical implementation of the quantum internet, which will stimulate many exciting new experiments and theoretical studies.
► BibTeX data
► References
[1] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
https://doi.org/10.1103/RevModPhys.74.145
[2] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Science 335, 303 (2012).
https://doi.org/10.1126/science.1214707
[3] M. Jakobi, C. Simon, N. Gisin, J.-D. Bancal, C. Branciard, N. Walenta, and H. Zbinden, Phys. Rev. A 83, 022301 (2011).
https://doi.org/10.1103/PhysRevA.83.022301
[4] H. J. Kimble, Nature 453, 1023 (2008).
https://doi.org/10.1038/nature07127
[5] C. Simon, Nature Photonics 11, 678 (2017).
https://doi.org/10.1038/s41566-017-0032-0
[6] S. Wehner, D. Elkouss, and R. Hanson, Science 362 (2018).
https://science.sciencemag.org/content/362/6412/eaam9288
[7] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).
https://doi.org/10.1103/RevModPhys.83.33
[8] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Scientific Reports 6, 20463 (2016).
https://doi.org/10.1038/srep20463
[9] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
https://doi.org/10.1038/35106500
[10] S. Kumar, N. Lauk, and C. Simon, Quantum Science and Technology 4, 045003 (2019).
https://doi.org/10.1088/2058-9565/ab2c87
[11] F. Kimiaee Asadi, N. Lauk, S. Wein, N. Sinclair, C. O'Brien, and C. Simon, Quantum 2, 93 (2018).
https://doi.org/10.22331/q-2018-09-13-93
[12] A. Tchebotareva, S. L. N. Hermans, P. C. Humphreys, D. Voigt, P. J. Harmsma, L. K. Cheng, A. L. Verlaan, N. Dijkhuizen, W. de Jong, A. Dréau, and R. Hanson, Phys. Rev. Lett. 123, 063601 (2019).
https://doi.org/10.1103/PhysRevLett.123.063601
[13] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, Nature 558, 268 (2018).
https://doi.org/10.1038/s41586-018-0200-5
[14] A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoğlu, Nature Physics 12, 218 (2016).
https://doi.org/10.1038/nphys3605
[15] R. Stockill, M. J. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. J. Miller, C. Matthiesen, C. Le Gall, and M. Atatüre, Phys. Rev. Lett. 119, 010503 (2017).
https://doi.org/10.1103/PhysRevLett.119.010503
[16] F. K. Asadi, S. C. Wein, and C. Simon, Quantum Science and Technology 5, 45015 (2020).
https://doi.org/10.1088/2058-9565/abae7c
[17] J. Borregaard, M. Zugenmaier, J. Petersen, H. Shen, G. Vasilakis, K. Jensen, E. Polzik, and A. Sørensen, Nature Communications 7, 11356 (2016).
https://doi.org/10.1038/ncomms11356
[18] O. Katz and O. Firstenberg, Nature communications 9, 1 (2018).
https://doi.org/10.1038/s41467-018-04458-4
[19] X.-L. Pang, A.-L. Yang, J.-P. Dou, H. Li, C.-N. Zhang, E. Poem, D. J. Saunders, H. Tang, J. Nunn, I. A. Walmsley, et al., Science advances 6, eaax1425 (2020).
https://doi.org/10.1126/sciadv.aax1425
[20] H. Li, J.-P. Dou, X.-L. Pang, T.-H. Yang, C.-N. Zhang, Y. Chen, J.-M. Li, I. A. Walmsley, and X.-M. Jin, Optica 8, 925 (2021).
https://doi.org/10.1364/OPTICA.424599
[21] K. B. Dideriksen, R. Schmieg, M. Zugenmaier, and E. S. Polzik, Nature Communications 12, 1 (2021).
https://doi.org/10.1038/s41467-021-24033-8
[22] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, Science 336, 1283 (2012).
https://doi.org/10.1126/science.1220513
[23] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nature Materials 8, 383 (2009).
https://doi.org/10.1038/nmat2420
[24] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Nature Communications 4, 1743 (2013).
https://doi.org/10.1038/ncomms2771
[25] S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, Phys. Rev. Lett. 101, 047601 (2008).
https://doi.org/10.1103/PhysRevLett.101.047601
[26] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Nature 526, 682 (2015).
https://doi.org/10.1038/nature15759
[27] N. Y. Yao, L. Jiang, A. V. Gorshkov, P. C. Maurer, G. Giedke, J. I. Cirac, and M. D. Lukin, Nature Communications 3, 800 (2012).
https://doi.org/10.1038/ncomms1788
[28] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, Nature Physics 9, 168 (2013).
https://doi.org/10.1038/nphys2519
[29] K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, Phys. Rev. Lett. 103, 256404 (2009).
https://doi.org/10.1103/PhysRevLett.103.256404
[30] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, Physical review letters 105, 220501 (2010).
https://doi.org/10.1103/PhysRevLett.105.220501
[31] A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, Science 360, 764 (2018).
https://doi.org/10.1126/science.aar6939
[32] R. A. Norte, J. P. Moura, and S. Gröblacher, Phys. Rev. Lett. 116, 147202 (2016).
https://doi.org/10.1103/PhysRevLett.116.147202
[33] R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, Phys. Rev. A 99, 053825 (2019).
https://link.aps.org/doi/10.1103/PhysRevA.99.053825
[34] F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, and J. Wrachtrup, Nature Physics 9, 139 (2013).
https://doi.org/10.1038/nphys2545
[35] A. Reiserer, N. Kalb, M. S. Blok, K. J. M. van Bemmelen, T. H. Taminiau, R. Hanson, D. J. Twitchen, and M. Markham, Phys. Rev. X 6, 021040 (2016).
https://doi.org/10.1103/PhysRevX.6.021040
[36] P. Cappellaro, L. Jiang, J. S. Hodges, and M. D. Lukin, Phys. Rev. Lett. 102, 210502 (2009).
https://link.aps.org/doi/10.1103/PhysRevLett.102.210502
[37] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310 (2005).
https://doi.org/10.1103/PhysRevA.71.060310
[38] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Nature 497, 86 (2013).
https://doi.org/10.1038/nature12016
[39] S. C. Wein, J.-W. Ji, Y.-F. Wu, F. Kimiaee Asadi, R. Ghobadi, and C. Simon, Phys. Rev. A 102, 033701 (2020).
https://doi.org/10.1103/PhysRevA.102.033701
[40] Y. Matsuzaki, X. Zhu, K. Kakuyanagi, H. Toida, T. Shimo-Oka, N. Mizuochi, K. Nemoto, K. Semba, W. J. Munro, H. Yamaguchi, and S. Saito, Phys. Rev. Lett. 114, 120501 (2015).
https://doi.org/10.1103/PhysRevLett.114.120501
[41] P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, Phys. Rev. Applied 4, 044003 (2015).
https://doi.org/10.1103/PhysRevApplied.4.044003
[42] See Supplemental Material for more details, which includes Refs auffeves2010controlling,brion2007adiabatic,zhang2015proposal.
[43] P. Bai, Y. H. Zhang, and W. Z. Shen, Scientific Reports 7, 15341 (2017).
https://doi.org/10.1038/s41598-017-15613-0
[44] T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gérard, P. Senellart, and A. Auffèves, Phys. Rev. Lett. 114, 193601 (2015).
https://doi.org/10.1103/PhysRevLett.114.193601
[45] S. Wein, N. Lauk, R. Ghobadi, and C. Simon, Phys. Rev. B 97, 205418 (2018).
https://doi.org/10.1103/PhysRevB.97.205418
[46] L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, Science 326, 267 (2009).
https://doi.org/10.1126/science.1176496
[47] J. Wrachtrup, M. Steiner, P. R. Hemmer, P. Neumann, J. Beck, F. Rempp, F. Jelezko, and H. Fedder, Science 329, 542 (2010).
https://doi.org/10.1126/science.1189075
[48] K. Ohno, F. Joseph Heremans, L. C. Bassett, B. A. Myers, D. M. Toyli, A. C. Bleszynski Jayich, C. J. Palmstrøm, and D. D. Awschalom, Applied Physics Letters 101, 82413 (2012).
https://doi.org/10.1063/1.4748280
[49] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Science 356, 928 (2017).
https://doi.org/10.1126/science.aan0070
[50] B. Smeltzer, L. Childress, and A. Gali, New Journal of Physics 13, 25021 (2011).
https://doi.org/10.1088/1367-2630/13/2/025021
[51] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, Science 320, 1326 (2008).
https://doi.org/10.1126/science.1157233
[52] X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu, and J. Du, Nature Communications 6, 8748 (2015).
https://doi.org/10.1038/ncomms9748
[53] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, Science 330, 60 LP (2010).
https://doi.org/10.1126/science.1192739
[54] C. A. Ryan, J. S. Hodges, and D. G. Cory, Phys. Rev. Lett. 105, 200402 (2010).
https://doi.org/10.1103/PhysRevLett.105.200402
[55] B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Phys. Rev. B 83, 081201 (2011).
https://doi.org/10.1103/PhysRevB.83.081201
[56] P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, Phys. Rev. B 79, 041302 (2009).
https://doi.org/10.1103/PhysRevB.79.041302
[57] M. S. Blok, C. Bonato, M. L. Markham, D. J. Twitchen, V. V. Dobrovitski, and R. Hanson, Nature Physics 10, 189 (2014).
https://doi.org/10.1038/nphys2881
[58] B. J. Shields, Q. P. Unterreithmeier, N. P. de Leon, H. Park, and M. D. Lukin, Phys. Rev. Lett. 114, 136402 (2015).
https://link.aps.org/doi/10.1103/PhysRevLett.114.136402
[59] I. Meirzada, S. A. Wolf, A. Naiman, U. Levy, and N. Bar-Gill, Phys. Rev. B 100, 125436 (2019).
https://doi.org/10.1103/PhysRevB.100.125436
[60] P. Siyushev, M. Nesladek, E. Bourgeois, M. Gulka, J. Hruby, T. Yamamoto, M. Trupke, T. Teraji, J. Isoya, and F. Jelezko, Science 363, 728 (2019).
https://doi.org/10.1126/science.aav2789
[61] A. Dréau, P. Spinicelli, J. R. Maze, J.-F. Roch, and V. Jacques, Phys. Rev. Lett. 110, 060502 (2013).
https://doi.org/10.1103/PhysRevLett.110.060502
[62] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Review of Scientific Instruments 82, 71101 (2011).
https://doi.org/10.1063/1.3610677
[63] Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, Review of Scientific Instruments 83, 073105 (2012).
https://doi.org/10.1063/1.4732813
[64] S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, Applied Physics Letters 90, 164101 (2007).
https://doi.org/10.1063/1.2724816
[65] G.-Q. Liu, J. Xing, W.-L. Ma, P. Wang, C.-H. Li, H. C. Po, Y.-R. Zhang, H. Fan, R.-B. Liu, and X.-Y. Pan, Phys. Rev. Lett. 118, 150504 (2017).
https://link.aps.org/doi/10.1103/PhysRevLett.118.150504
[66] R. Santagati, A. A. Gentile, S. Knauer, S. Schmitt, S. Paesani, C. Granade, N. Wiebe, C. Osterkamp, L. P. McGuinness, J. Wang, M. G. Thompson, J. G. Rarity, F. Jelezko, and A. Laing, Phys. Rev. X 9, 021019 (2019).
https://doi.org/10.1103/PhysRevX.9.021019
[67] G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, Nature Physics 7, 789 (2011).
https://doi.org/10.1038/nphys2026
[68] N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, Phys. Rev. A 97, 062330 (2018).
https://link.aps.org/doi/10.1103/PhysRevA.97.062330
[69] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Phys. Rev. X 4, 041041 (2014).
https://link.aps.org/doi/10.1103/PhysRevX.4.041041
[70] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007).
https://doi.org/10.1103/PhysRevLett.98.060502
[71] Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, Opt. Express 20, 12350 (2012).
https://doi.org/10.1364/OE.20.012350
[72] M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, Phys. Rev. Lett. 119, 083601 (2017).
https://doi.org/10.1103/PhysRevLett.119.083601
[73] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, Nature Photonics 12, 297 (2018).
https://doi.org/10.1038/s41566-018-0132-5
[74] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
https://doi.org/10.1103/PhysRevLett.76.722
[75] J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, Nature 410, 1067 (2001).
https://doi.org/10.1038/35074041
[76] C. J. Hood, H. J. Kimble, and J. Ye, Phys. Rev. A 64, 033804 (2001).
https://doi.org/10.1103/PhysRevA.64.033804
[77] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, Nature 452, 72 (2008).
https://doi.org/10.1038/nature06715
[78] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. Harris, Nature Physics 6, 707 (2010).
https://doi.org/10.1038/nphys1707
[79] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).
https://doi.org/10.1103/RevModPhys.86.1391
[80] K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, Nature Physics 8, 168 (2012).
https://doi.org/10.1038/nphys2196
[81] N. H. Nickerson, Y. Li, and S. C. Benjamin, Nature Communications 4, 1 (2013).
https://doi.org/10.1038/ncomms2773
[82] K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, Phys. Rev. X 4, 031022 (2014).
https://doi.org/10.1103/PhysRevX.4.031022
[83] S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, Phys. Rev. X 5, 031009 (2015).
https://doi.org/10.1103/PhysRevX.5.031009
[84] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, Nature Nanotechnology 9, 171 (2014).
https://doi.org/10.1038/nnano.2014.2
[85] L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, Phys. Rev. Lett. 96, 070504 (2006).
https://doi.org/10.1103/PhysRevLett.96.070504
[86] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Phys. Rev. Lett. 112, 250501 (2014).
https://doi.org/10.1103/PhysRevLett.112.250501
[87] E. Brion, L. H. Pedersen, and K. Mølmer, Journal of Physics A: Mathematical and Theoretical 40, 1033 (2007).
https://doi.org/10.1088/1751-8113/40/5/011
[88] K. Zhang, F. Bariani, Y. Dong, W. Zhang, and P. Meystre, Phys. Rev. Lett 114, 113601 (2015).
https://doi.org/10.1103/PhysRevLett.114.113601
[89] A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. Andreani, and J.-P. Poizat, Phys. Rev. B 81, 245419 (2010).
https://doi.org/10.1103/PhysRevB.81.245419
Cited by
[1] Jia-Wei Ji, Faezeh Kimiaee Asadi, Khabat Heshami, and Christoph Simon, "Noncryogenic Quantum Repeaters with hot Hybrid Alkali-Noble Gases", Physical Review Applied 19 5, 054063 (2023).
[2] Daniel B. Higginbottom, Faezeh Kimiaee Asadi, Camille Chartrand, Jia-Wei Ji, Laurent Bergeron, Michael L.W. Thewalt, Christoph Simon, and Stephanie Simmons, "Memory and Transduction Prospects for Silicon T Center Devices", PRX Quantum 4 2, 020308 (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-27 22:56:52) and SAO/NASA ADS (last updated successfully 2023-09-27 22:56:53). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.