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Quantum error correcting codes (QECCs)
are the means of choice whenever quantum
systems suffer errors, e.g., due to imperfect de-
vices, environments, or faulty channels. By now,
a plethora of families of codes is known, but
there is no universal approach to finding new or
optimal codes for a certain task and subject to
specific experimental constraints. In particular,
once found, a QECC is typically used in very
diverse contexts, while its resilience against er-
rors is captured in a single figure of merit, the
distance of the code. This does not necessarily
give rise to the most efficient protection possi-
ble given a certain known error or a particular
application for which the code is employed.
In this paper, we investigate the loss chan-

nel, which plays a key role in quantum com-
munication, and in particular in quantum key
distribution over long distances. We develop a
numerical set of tools that allows to optimize an
encoding specifically for recovering lost parti-
cles both deterministically and probabilistically,
where some knowledge about what was lost is
available, and demonstrate its capabilities. This
allows us to arrive at new codes ideal for the
distribution of entangled states in this particu-
lar setting, and also to investigate if encoding in
qudits or allowing for non-deterministic correc-
tion proves advantageous compared to known
QECCs. While we here focus on the case of
losses, our methodology is applicable whenever
the errors in a system can be characterized by
a known linear map.

1 Introduction
Quantum key distribution (QKD) uses intrinsic prop-
erties of quantum mechanics to allow for infor-
mation-theoretically secure transmission of informa-
tion [1–3]. Necessarily, this requires to transmit quan-
tum systems—mostly, photons—between two parties
with a sufficiently low error rate [4]. Due to the
fragility of such systems, a major task in the devel-
opment of a QKD landscape is to reduce the effects
of natural, i.e., not eavesdropper-induced, errors.

Probably the main issue at the present time is to
deal with channel attenuation, which leads to a proba-

bilistic loss of particles [4, 5]. The exponential nature
of channel attenuation makes it practically impossible
to develop QKD systems over longer distances with
direct transmission [6, 7]. Two proposals exist to deal
with this issue: quantum repeaters [8–12] and trusted
nodes [13–15]. Only the former is able to provide sat-
isfactory security, as the repeater nodes do not have
to be trusted.

In section 2, we will describe the problem of chan-
nel attenuation more in detail, with a particular em-
phasis on QKD. We will explain why approaches to
and realizations of quantum repeaters currently found
in the literature may be valid working examples, but
do not address issues that are central to embedding
them seamlessly into the current telecom infrastruc-
ture. This will serve as a motivation in section 3 to
introduce a new methodology that has the potential
to showcase particular implementations that push the
bounds of realistic QKD systems toward their funda-
mental limits, while conversely, it can also reveal to
which extent the infrastructure must be adapted. We
will apply those methods to various configurations and
give results in section 4. In section 5, we will discuss
the implications of our results and issues that remain
to be addressed. We summarize our ideas in section 6
and provide an outlook on future potential applica-
tions.

2 Channel attenuation
2.1 Definition and parameter values
The secret key rate (per channel use) in QKD is based
mainly on two factors: the success probability of trans-
ferring the signal, ptrans, as well as the quality of the
arrived bits, measured in terms of the bit error rates
in the chosen basis. We employ a simple key rate anal-
ysis in the asymptotic framework [2, 16], based on the
bit error rates eX and eZ in the Pauli X and Z bases,
respectively, although with a more complicated anal-
ysis, improved bounds can be found [3, 17–19]. We
will also disregard any finite size or side channel ef-
fects. The efficient QKD protocol [16] asymptotically
removes the sifting prefactor and gives a secret key
rate of [

1− 2H(max{eX , eZ})
]
ptrans, (1)

where H is the binary entropy function.
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This shows that indeed attenuation—(heralded)
loss of signals—does not fundamentally limit trans-
mission, but it still does so effectively. The probability
ptrans of successful transmission through a channel of
length L with attenuation coefficient α is given by

ptrans = e−αL, (2)

which severely limits the achievable bit rate to drop at
least exponentially with distance, and therefore also
constrains the distance between repeater stations.

The ultimate goal of rolling out QKD systems
for private and commercial use is to embed them
most seamlessly in the existing telecom infrastructure.
While this will require significant investments into
new devices such as quantum repeaters and routers,
ideally, existing fiber networks should be able to pro-
vide the backbone of the QKD network. This is not
a hard requirement on the way to build a quantum
internet, but large-scale infrastructural projects will
have a significant impact both on how well the tech-
nology will be received in the general public as well
as on whether private telecommunication companies
will feel inclined to carry out said projects at all.

Hence, it is crucial to investigate QKD “at the limit,”
namely, letting both α and L be dictated by the
specifications of today’s telecommunication networks.
Common fibers in the 1550 nm telecom window have
an attenuation coefficient α = 0.2 dB

km = 0.046 1
km [4].

The inter-repeater distance L is given by the distance
between the repeater stations that amplify the clas-
sical signals, where unused slots of dark fibers may
be employed to plug in quantum repeaters. They are
located about 60 – 80 km apart [5].

Figure 1 illustrates the consequences of these values:
The transfer of a single photon between two adjacent
stations placed 80 km apart takes 0.4 ms, using the
speed of light in fiber, c = 2 · 105 km

s , and has a trans-
mission probability of 2.5 %. A scheme in which the
successful or failed transmission is signaled back and
only then triggers the next action will take 32 ms on
average—completely neglecting the time for any lo-
cal operations, further meta-communication, and the
practical difficulties that come with quantum memo-
ries.

In classical communication, these values do not re-
strict the actual bandwidth. The intensity of a classi-
cal signal is high enough that a reduction by98 % still
amounts to a successful transmission. Hence, there is
no need to signal back whether a transmission was ac-
tually successful; instead, the next photon packet can
be sent almost immediately after its predecessor. This
is why the distance between two classical communica-
tion parties only has an impact on latency, i.e., initial-
ization of the communication, but not on the rate of
information transfer.
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Figure 1: Transmission probability for fiber with attenuation
coefficient α = 0.2 dB

km

2.2 Error correction
The same thought carries over to the quantum regime:
if the successful transmission of a signal needs to be
signaled back to the previous station before it can
carry on with the next signal, the rate is severely
bound by the distance between those stations. Hence,
a truly scalable QKD system must be able to avoid
two-way communication between repeater stations un-
der all circumstances; or to make it non-blocking us-
ing an enormous number of quantummemories, which,
despite recent achievements [20], is a huge challenge.
Note this argument does not forbid the receiver from
sending some required information back to the sender
when the message arrives, as long as there is only
this one round of backwards communication affecting
only classical information. This means that the sender
must only store all the classical information until the
confirmation or failure signal from the receiver arrives.
Hence, the availability of large (compared to the quan-
tum case, quasi-infinite) classical memory allows us to
count this waiting time of the sender as an initial la-
tency with no impact on the rate: there is no need to
wait for the heralding signal from the receiver before
sending the next state. This is based on the assump-
tion that signals can be sent arbitrarily close to each
other, which is an idealization; but still, the possibil-
ity to adjust the waiting time between signals is now
a way to combat negative impacts of failed transmis-
sions on the rate, which is not possible if the successful
arrival has to be heralded between each station.

2.2.1 Traditional quantum error correcting codes

Whereas quantum repeaters of the first and second
generation rely on backwards communication, third-
generation repeaters employ quantum error correct-
ing codes (QECCs) [21–24] to circumvent attenuation
without the requirement of additional feedback com-
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munication [25]. An Jn, k, dK QECC is a 2k-dimen-
sional subspace of a 2n-dimensional Hilbert space; or,
it stores the content of k logical qubits into n phys-
ical qubits. It is able to correct against

⌊
d−1

2
⌋
arbi-

trary single-qubit errors, among which we can also
count deletions, i.e., losses whose position is unknown.
Erasures—losses with known position—can be cor-
rected for on up to d− 1 qubits [26]. Hence, the idea
behind employing an error correcting code against at-
tenuation effects is that it is sufficient to successfully
transfer a lower number of bits instead of the full num-
ber, n, while still completing the action successfully.

In this paper, we will not be concerned with errors
due to faulty components or dark counts—we will only
consider the errors introduced by channel attenuation.
Our main focus will be on a “reduced” erasure scenario:
While we will assume that lost qubits are known not to
have arrived, once all those arrived qubits are bundled
together, we will not exploit any further knowledge
of which particular combination of qubits the bundle
pertained to. We will explain and justify this model
more in detail in section 2.4. We assume that the loss
of every photon is independent from all the others,
and they all occur with the same probability.

Since QECCs are required to deterministically re-
store the full state, the no-cloning theorem [27–29]
limits them to tolerate only error rates below 50 %,
or, in our case, a QECC requires ptrans >

1
2 . Trans-

lated into distance, neighboring stations must not be
more than 15 km apart.

We note that while we used the Jn, k, dK nota-
tion commonly employed for stabilizer-based (addi-
tive) quantum codes, there have been a few reports
about better performance of some exemplary nonaddi-
tive codes [30–32]. However, apart from the fact that
so far, only very low code distances were reported,
they are still QECCs that are bound by the no-cloning
theorem.

2.2.2 Redundant parity encoding

An Jn, k, dK code is designed to be robust against er-
rors, i.e., to allow for the correction of arbitrary quan-
tum errors. For the particular issue of losses, other
codes have been developed [26]. In particular, for use
with quantum repeaters, a redundant parity encod-
ing [33, 34] has been proposed. The general idea is to
encode the state α |0〉+β |1〉 in two layers of encoding,
giving (unnormalized)

α
[
|0〉⊗m + |1〉⊗m

]⊗n + β
[
|0〉⊗m − |1〉⊗m

]⊗n. (3)

At the lower level, we have a block consisting of m
qubits prepared in a GHZ state [35, 36]; at the higher
level, there are n of those blocks. Now note that mea-
suring an arbitrary qubit in the computational basis
effectively disentangles its whole embedding m-qubit
block from all the other blocks. Therefore, provided at
least one photon from each block survives, all blocks

can be disentangled from each other by measuring one
photon from each but one block in the computational
basis. From the block that was left unchanged, we re-
quire to have access to all its m qubits. It is now in
the (unnormalized) state

α
[
|0〉⊗m + |1〉⊗m

]
± β

[
|0〉⊗m − |1〉⊗m

]
, (4)

where the sign depends on the sum of all previous
measurements and can therefore be corrected. We end
up with the logical state of the qubit, which may be
decoded or processed further.

For some values of m and n this actually describes
a QECC—for instance, the Shor code [21] is given by
m = n = 3—while for others, it does not, the most
simple example being n = 1, m = 2.

Unfortunately, the previous analysis in [34] has ne-
glected that the two requirements are competitive (see
appendix C for details): large m and small n are re-
quired to have a successful disentangling operation,
while large n and small m are needed to then success-
fully restore the initial state from the disentangled
one. The total success probability is given by

p
(
≥1 physical qubits

in each block

)
− p
(

1 to (m−1) physical qubits
in each block︸ ︷︷ ︸

= never a complete block
among the left set

)
, (5)

which, defining p̄trans := 1− ptrans, is(
1− p̄mtrans

)n − (1− p̄mtrans − pmtrans
)n. (6)

We numerically scanned (m,n) ∈ [1, 1000]2∩Z2 and
found that redundant quantum parity codes can only
deliver higher transmission probabilities than direct
transmission for ptrans ≥ 54 %.

2.2.3 Cluster states

The use of cluster states was suggested to tolerate high
error rates [37, 38]. However, as these were mostly
based on QECCs, the limit of 50 % failure also applies
here.

Recently, it has been pointed out that there are
cluster states for which no foliation to a traditional
stabilizer code exists [39]. The existence of a cluster
state with a 55 % erasure threshold was reported and
it was pointed out that there is no fundamental limit.
Although we do not use cluster state methods in this
paper, our approach later will be motivated by this
fact.

2.3 Beyond traditional error correction
The previous approaches share two common traits:
within their scope of applicability, they correct deter-
ministically; and they are based on qubits.

Addressing the former, we note that the secret key
rate in eq. (1) scales linearly with a probabilistic factor
and has an entropic dependency on a quality factor.
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QECCs are deterministic codes: their probabilistic el-
ement is purely based on the question—which is typi-
cally considered external to the code—of whether few
enough errors happened, and in this case they are al-
ways able to deliver perfect quality. If too many errors
occur, the code-specific behavior is usually uncharac-
terized. We will ask the question of how much loss can
be tolerated in a state if we allow the correction oper-
ation to only probabilistically succeed. Here, by “suc-
cess” we do not require a perfect recovery, as eq. (1)
has a non-zero rate even if the states are slightly erro-
neous. Instead, we will investigate how to achieve an
optimal combination of success probability and recov-
ery quality with regard to the secret key rate. This
is justified by the fact that we may signal back the
success of the total operation to the sender without
negatively impacting the rate. We note that a very re-
cent study of probabilistic transformations from the
point of view of resource theories also investigates the
potential benefits of nondeterministic operations [40].

More out of tradition and its close relationship with
classical error correction, QECCs are defined in terms
of qubits. In [34], it was noted that a photon has mul-
tiple degrees of freedom that can be exploited for the
encoding. While using more degrees of freedom per
photon implies that the photons that arrive will be
able to carry more information, at the same time, the
photons that do not arrive will also lose more informa-
tion. For this reason, it is not immediately obvious if
and in what manner going to higher dimensions will
prove beneficial. We will investigate this possibility
in section 3.7 by moving from qubits to qudits; and
indeed, for some configurations, we can report a sig-
nificant improvement in the transmitted fidelity.

2.4 The “reduced” erasure model
We previously introduced the “reduced” erasure
model, which is the subject of study in this paper.
It arises from the conventional, “full” erasure by drop-
ping the information about which particular loss con-
figuration occurred, while still removing all lost slots
from the input to the correction circuit. We will illus-
trate this with an example.

Imagine that we send three photons 1, 2, and 3;
the full erasure information now consists in knowing
which one of{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

arrived. In principle, the receiver may implement eight
(or seven, disregarding the case of complete failure)
different maps corresponding to all the different con-
figurations. We will mostly only study the case with a
given number of received photons (e.g., corresponding
to the most likely event; but see section 3.8), but even
if the receiver knows that, say, two photons arrived,
it can still lead to three different maps. The process
becomes simpler, both experimentally and for our nu-
merical study, if the receiver only has to implement

a single correction map that takes two input states:
this corresponds to the “reduced” erasure information.
Still, the receiver must route the two successful ar-
rivals into the proper input slots for the map, but
after this photonic switch, only one circuit needs to
be run.

While the theoretical model of quantum erasures is
a very common one [24, 26, 41], recent experimental
progress actually makes it feasible for the use in quan-
tum communication. For example, non-destructive
photon detectors [42, 43] can be used to directly ob-
tain all the erasure information; in principle, boosted
teleportation schemes [44] should provide means to
detect photons nondestructively with arbitrarily high
success probabilities using linear optics and resource
state generators alone. Alternatively, the necessary
data may be obtained by storing the arriving pho-
tons in quantum memories in a heralding way [45–48],
which may have benefits if the quantum information
is to be manipulated in this form anyway.

We note that in all these situations, a suitable pro-
tocol will use classical communication and synchro-
nized clocks to first establish what the receiver should
expect. Then, the erasure information is obtained by
comparing the output of the aforementioned detectors
or heralding signals with the expectations. Since this
actually reveals the full erasure information, we also
see potential for extending our method to cover this
case. However, since this will render the symmetry re-
duction in section 3.3 impossible, additional insight
is required in order to scale the full erasure case to
larger systems. We plan to address this in a forthcom-
ing publication.

3 Optimizing transmission
The TGW [6] and the PLOB [7] bounds require us to
use quantum repeaters for a scalable QKD network.
However, current research is dominated either by re-
peater distances of 1 – 2 km [49–51], which are far be-
yond what the current infrastructure has to offer, or
they require inter-repeater two-way communication
over long distances together with a large number of
quantum memories [52–54].

The most effective way to securely transmit infor-
mation would be to find an optimal QKD protocol
(preparation, transfer, and key processing) for a given
repeater sequence. In a highly connected quantum net-
work, then the best possible sequence is selected as the
chosen pathway. This approach is highly impractical,
and we discard it in favor of a “plug-and-play” solution
that—while not necessarily being globally optimal—
does not require a different protocol whenever the
routing between the parties differs: We are interested
only in finding the optimal protocol that allows to es-
tablish a Bell state |Φ+〉 ∝ |00〉 + |11〉 between two
adjacent neighbors. This segment is then suitable for
use in any specific communication chain and thus pro-
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vides a lower bound on what is achievable, while still
being much more easy to implement than a global
protocol.
Outline—In the following subsections, we will de-

velop our method to numerically find such optimal
protocols. In section 3.1, we will first establish the
context in which our approach will fit. The most
general formulation applicable to the “reduced” era-
sure scenario, previously introduced in sections 2.2.1
and 2.4, will be given in section 3.2. Subsequently, in
section 3.3, we analyze the setting in more detail: We
will exploit a permutation symmetry in order to re-
duce the effective dimensionality of our systems and
will end up with a scaling that is linear in the number
of sent and received particles.

While this greatly simplifies the optimization task,
it is still a nonconvex problem. We will discuss two
approaches that are suitable to solve this problem:
nested optimization with convex subproblems (sec-
tion 3.4) and a method that is called convex itera-
tion (section 3.5). In section 3.6, we bring those ap-
proaches together: we describe advantages and disad-
vantages and detail an optimization pipeline that uses
both methods, and which we found to give satisfying
results with acceptable resource consumption.

We will then discuss some choices that we made
in our model and how to generalize them, from the
assumption of sending qubits (section 3.7), the fixed
value r of arriving particles (section 3.8), to our de-
cision to only consider the “reduced” erasure setting
instead of the full erasure knowledge (section 3.9).

A brief discussion in section 3.10 of how the re-
sulting numerical data—which will typically lead to
extremely complicated states and maps—may be sim-
plified concludes the discussion of our methods.

3.1 Multiplexing and entanglement distillation
A direct transmission success probability of 2.5 % is
too low to allow for successful large-scale QKD. How-
ever, it is not too low for multiplexing techniques to
provide substantial advantage.

Multiplexing was already suggested multiple times
in the literature [55, 56] and to some extent also
demonstrated experimentally [57]. Although it is
mostly found for all-photonic implementations [10],
this is no necessity. The basic idea is simple: If we
require the successful transmission of one photon, but
we send s copies instead, the probability that the
transmission failed—which now only means that no
photon arrived—is given by 1−p̄strans. By tuning s, the
success probability can be brought arbitrarily close
to 1 at the expense of sending more and more copies.
In particular, using the transmission probability for
80 km, we already need to multiplex with 28 photons
in order to have at least 50 % success probability.

The difference to the codes presented before is that
now each photon is independent of all others—but, as

a consequence, the associated half of each copy has
to be stored in its individual quantum memory. Ad-
ditionally, the successful arrival of a copy has to be
signaled back so that then, entanglement swapping
can be performed on the correct pair. Since this is
in strong conflict with the previously stated goal to
avoid backwards communication between repeaters at
all costs, we instead want to perform multiplexing
with s qubits while the sender only stores a single
qubit, which need not be processed further based on
some outcome at the receiver’s site1.

Put into the larger context, every repeater (and the
sender) creates an (s+1)-qubit state ρ, stores a single
qubit and sends the remaining s qubits to its neighbor-
ing node. This node, due to losses, will receive r ≤ s of
them (typically, s � 1 while r ∼ 1) and execute a
local postprocessing map E to convert them to a sin-
gle qubit that, together with the stored one at the
previous site, has the highest possible overlap with
a pure Bell state. These steps are visualized in fig. 2.
Finally, the repeater performs entanglement swapping
with its stored single qubit and the one resulting from
the postprocessing. Every operation has to produce
states with sufficiently high fidelity and success proba-
bility (but, contrary to QECCs, not unit probability),
so that errors are kept small and success needs not
be signaled back to the previous station. Since the
receiver is still allowed to signal back the successful
arrival to the sender, even probabilities considerably
different from one are permissible, at the expense of
more classical memory.

Phrased in this way, the repeaters have to carry out
an entanglement distillation procedure. When we later
discuss the possibility of sending higher-dimensional
states, it will become clear that even the case r = 1—
which has local filtering operations [58] as the optimal
procedure for the case of qubits—should not a priori
be dismissed.

There exist numerous entanglement distillation pro-
tocols, e.g., [59–67], approaches to a theory of entan-
glement distillation [68–70]; and upper bounds [71] as
well as numerical tools to incorporate experimental
constraints [72, 73] have been reported recently. How-
ever, finding the optimal protocol with respect to both
the prepared state and the distillation map, but now
with a given channel model and certain protocol re-
strictions (success probability, available erasure infor-
mation, . . . ) is an unsolved task; and indeed, for the
particular issue we face here, it is not advantageous
to use known protocols. They assume an input state
which is mostly unknown, apart from a single parame-
ter such as the fidelity or some entanglement measure.

1In fact, a single unitary operation conditioned on a measure-
ment outcome at the receiver’s site is still permissible—since this
correction can be accounted for only at the very end, as is the
case for a chain of multiple entanglement swappings. However,
we find that allowing for such an operation does not appear to
lead to any improvement.
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Figure 2: Visualization of the setting. After preparation at Alice’s site, s qubits are sent though the channel, but only r arrive.
All possible configurations, corresponding to the loss maps {Mi}i, are independent and equally likely. A local distillation map E
then aims at producing a high-quality Bell pair between Alice and Bob with probability pdist; this map does not know which
particles were lost. We visualize the important initial and final correlations by wavy lines, but suppress them at the intermediate
stages. While we name the individual parties “Alice” and “Bob,” they may also be repeaters.

Here, we are free to prepare an arbitrary state at the
sender’s site; and given the particular case of chan-
nel loss, we then also know precisely which state the
receiver will get. We will compare our results with
known distillation protocols in section 4.3.

3.2 Optimizing the “reduced” erasure setting
We will formulate our problem in a way that cap-
tures most of what is possible in the “reduced” erasure
setting previously described; but we will also explore
some possible extensions later on.

Let {Mi}i be a set of completely positive (CP) and
trace preserving maps, where each Mi corresponds to
a different combination of losing s− r out of s subsys-
tems; mathematically, they are given by the partial
trace maps on the lost subsystems. Let pdist ∈ (0, 1]
be an external parameter that denotes the desired dis-
tillation success probability, and let |Φ+〉 ∝ |00〉+ |11〉
be a Bell state. Finally, let C(E) denote the Choi state
of the CP trace-nonincreasing distillation map E. The
task is then to solve

max
E,ρ

Fmin

subject to

Fmin ≤
1

pdist
〈Φ+|(1A ⊗ E) ◦Mi[ρ]|Φ+〉 ∀i

pdist = tr
(
(1A ⊗ E) ◦Mi[ρ]

)
∀i

ρ � 0, tr ρ = 1
C(E) � 0, trB ◦E � 1R.

(7)

Here, 1S is the identity map acting on a system S,
◦ denotes composition, and the partial order with re-
spect to the positive semidefinite cone is indicated by
� and �. We will traditionally label the two parties
Alice and Bob, although in most cases, they will be
repeater nodes. Following this convention, the state ρ
is defined on the systems A and S; each Mi maps S
to R2; and finally, the map E turns R into B.

Program 7 is a generalized bilinear and semidefinite
program—which can also be written as an indefinite
quadratically constrained and semidefinite program—
obtaining a global solution is NP-hard.

Note that program 7 is different from the standard
formulation of entanglement distillation, in that it al-
lows one party to perform global operations before
sending the state, which is encoded in the state prepa-
ration procedure. Traditional distillation protocols in-
stead assume that the two parties are given parts of
a rather arbitrary state and have to make the best
out of it; however, if the distribution state is actually
under control, not exploiting this power relinquishes
a potential advantage.

In the following subsections, we will detail how to
reduce the dimensionality of program 7 and show how
to approach the problem numerically in an efficient
way. We then proceed to give details on the actual
implementation and results.

2In fact, depending on which combination of subsystems
arrived, we get different Ri; but in the “reduced” erasure scenario
described in sections 2.2.1 and 2.4, we identify all those different
Ri with each other.
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Alternatives. We note that while the formulation
of program 7 is natural and the favorable reduction
in dimensionality appears to be a direct consequence,
it is not the only natural formulation. We might de-
mand not the minimum, but the average fidelity to be
maximized. Instead of fixing each individual success
probability, we might choose to fix only the overall
success probability. While these changes to the prob-
lem formulation are certainly well-justified, they do
not enable a reduction in dimensionality, so that we
will not consider them. Finally, we also did not allow
for the conditional execution of a single unitary Al-
ice’s site, depending on a measurement outcome at
Bob’s, as we did not find any improvement using this
freedom.

3.3 Reducing dimensionality
Even if program 7 were convex, note that ρ ∈ B(C2s+1)
and C(E) ∈ B(C2r+1), which means that the program
size scales exponentially in the number of sent or re-
ceived particles. Solving the problem for more than a
handful of photons would be impossible.

However, note that we optimize the minimum of the
fidelity over all possible losses, and every loss channel
has to give rise to the same probability. Consequently,
the optimal ρ and C(E) will be graded in terms of
the worst loss configuration. We can thus make the
following ansatz :

ρ =
1∑

a1,a2=0

s∑
i,j=0

ρa1,a2(i, j) |a1D
s
i 〉〈a2D

s
j | , (8)

where

|Ds
i 〉 := 1√(

s
i

) ∑
x1,...,xs∈{0,1}∑

k
xk=i

|x1, . . . , xs〉 (9)

is a Dicke state [74]—i.e., we assume that the coeffi-
cients in the 2s+1× 2s+1 matrix ρ only depend on the
stored qubit at Alice and the number of set bits that
arrive at Bob, but not on their particular order. The
structure is now similar to a permutation invariant
quantum code [75, 76], without imposing the Knill-
Laflamme conditions [23]. In this way, we exploit that
favoring one particular loss configuration at the ex-
pense of another will actually reduce the final (min-
imum) fidelity—so the best way to start is to make
them all equal. While this reasoning is intuitive and
also supported by numerical studies for small s and r,
a formal proof of optimality faces various problems;
e.g., even if all reduced states are equal, they do not
necessarily imply an original Dicke state; and there is
no direct relation between the fidelities arising from
an arbitrary state and its closest symmetrized version.

The Dicke states are all orthonormal; we can thus
reduce our attention to the 2(s+ 1)× 2(s+ 1)-dimen-
sional subspace that hosts our matrix ρ.

In order to be able to work with these much smaller
states, we must consider the action of any partial trace
of s−r qubits, excluding the one stored at Alice’s site,
on the full state. It is given by (in appendix A, we
explicitly derive a more general version)

trloss ρ =
1∑

a1,a2=0

r∑
k,`=0

s−r∑
i=0

(
s− r
i

)√ (
r
k

)(
r
`

)(
s
k+i
)(

s
`+i
) ·

ρa1,a2(k + i, `+ i) |a1D
r
k〉〈a2D

r
` | . (10)

This structure already shows that the exact same
symmetry argument will be valid for the Choi state
C(E) of the distillation map, which will take the form

C(E) =
1∑

b1,b2=0

r∑
i,j=0

cb1,b2(i, j) |b1Dr
i 〉〈b2Dr

j | . (11)

We define the tensor

Dk,`;k′,`′ := δk′−k,`′−`

(
s− r
k′ − k

)√ (
r
k

)(
r
`

)(
s
k′

)(
s
`′

) (12)

and find

E
[
trloss ρ

]
=

1∑
a1,a2=0

1∑
b1,b2=0

|a1b1〉〈a2b2| ·

r∑
k,`=0

s∑
k′,`′=0

cb1,b2(k, `)Dk,`;k′,`′ρa1,a2(k′, `′). (13)

The symmetry considerations have allowed us to
reduce the number of (non-slack) degrees of freedom
in the optimization from 22(s+1)+22(r+1) to 4(s+1)2+
4(r+1)2. An immediate side-effect is that we no longer
have to consider

(
s
r

)
constraints on both fidelity and

probability arising from all possible loss channels, as
they automatically all give rise to the same final state.

The problem now reads

max
E,ρ

1
pdist

〈Φ+|E
[
trloss ρ]|Φ+〉

subject to

pdist = tr ◦E
[
trloss ρ

]
ρ � 0

tr ρ = 1
C(E) � 0

trB ◦E � 1R.

(14)

The program itself does not explicitly introduce
complex numbers; but of course, ρ and C(E) are her-
mitian, not necessarily real. Based on the fact that
at least for every stabilizer code, there is an equiva-
lent real-valued version [77] and preliminary numeri-
cal studies with small parameters s and r that always
lead to real-values solutions, we will assume that both
ρ and E are real-valued, reducing the number of de-
grees of freedom to (s+ 1)(2s+ 3) + (r + 1)(2r + 3).
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While dropping this requirement may open up possi-
bilities for improvement on the results presented here,
it considerably helps to keep the numerics tractable.
Almost all numerical solvers work with real inputs
only; hence hermitian matrices must be represented in
a double-sized real matrix with block-symmetry con-
straints. Convex solvers typically require a time that
is at least cubic in the size of the semidefinite matrices
involved, which is a huge drawback; and for noncon-
vex solvers, the more variables are involved, the less
confidence can be obtained about global optimality
when some termination criteria are met.

3.4 Reformulation: convex subproblems
We investigated various approaches to obtain good
solutions for program 14. Obviously, program 14 turns
into a convex problem once either E or ρ are fixed.
This leads to two possible reformulations:

1. given E, find ρ:

max
ρ

1
pdist

〈Φ+|E
[
trloss ρ]|Φ+〉

subject to

pdist = tr ◦E
[
trloss ρ

]
ρ � 0

tr ρ = 1

(15a)

2. given ρ, find E:

max
E

1
pdist

〈Φ+|E
[
trloss ρ]|Φ+〉

subject to

pdist = tr ◦E
[
trloss ρ

]
C(E) � 0

trB ◦E � 1R

(15b)

Both reformulations can be solved in total by non-
convex, and in general local, optimization methods
that, in each iteration, in turn call a convex solver for
the convex subproblem. Note that for the nonconvex
program 15b, we can make use of another insight: for
sure, the best initial state will be pure; mixed states
can be interpreted as a loss of information of which
pure state was prepared, which can never increase the
final fidelity. This argument does not hold for C(E),
which in fact will turn out to be mixed at the op-
timum as soon as r > 2—the optimal measurement
is not projective. Hence, while we have to optimize
over about (r + 1)(2r + 3) nonconvex degrees of free-
dom in program 15a, we only need to consider about
2(s+1) nonconvex degrees of freedom in program 15b.
Of course, this is counteracted by the expected orders
of magnitude r ∼ 1, s� 1 of the parameters. Still, all
nonconvex optimization algorithms we tried turned
out to cope tremendously better with a state vector
than with a general matrix optimization.

3.5 Reformulation: convex iteration
The nonconvexity in program 7 stems from the fact
that E

[
trloss ρ

]
contains products of ρ and E. Note

x = yz ⇐ rk

a x y
x b z
y z 1

 = 1, (16)

i.e., we can rewrite any product as a rank-one con-
straint, which is still non-convex.

Relaxing the rank-one by a positive semidefinite
constraint removes any correlation between x and yz:
for all x, y, z, there exist a, b such that the matrix is
positive semidefinite. Therefore, the optimum of the
relaxed problem will have nothing to do with the orig-
inal problem.

However, note that a feasibility problem that is,
apart from rank(-one) constraints, convex, can be re-
cast in the form of a sequence of convex problems
which are non-increasing in the sum of all but the
largest singular value [78, 79]. This sequence will, in
general, not converge to zero, but we will later de-
scribe heuristics that allow to steer out of local rank
minima.

We will briefly outline the general procedure, closely
following [78, chapter 4.5]. First, program 7 has to be
cast into a feasibility problem, which we found to be
superior to its alternative, multi-objective optimiza-
tion. Therefore, instead of maximizing the output fi-
delity, we fix a certain value for the fidelity and use
the feasibility problem to check whether this is valid.
The line F ∈ [0, 1] can then be scanned to re-obtain
the maximization. Here, a binary search is not neces-
sarily the most efficient way. In fact, a linear search
can greatly outperform the binary search, as the con-
vex iteration will profit from a good initial vector
from the last round. Proceeding in small steps of, say,
∆F = 0.01 will allow to quickly progress for a large
range of fidelities with less than five iterations per
check, whereas large steps could easily take hundreds
of iterations. On top of this, detection of infeasibility
is not a definite conclusion: the iteration might just
be stuck in a local minimum.

Now, our problem is to

find
E,ρ
{Gi}i

subject to

F = 1
pdist

∑
i

FiG1,2
i

pdist =
∑
i

PiG1,2
i

ρ � 0, tr ρ = 1
C(E) � 0, trB ◦E � 1R

rkGi = rk

 G1,1
i G1,2

i C(E)c(i)
G1,2
i G2,2

i ρr(i)
C(E)c(i) ρr(i) 1

 = 1 ∀i.

=: � (17)
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Here, we construct 3×3-matrices Gi for every product
of a C(E) with a ρ entry that appears as a term in
the fidelity or probability. The vectors F and P con-
tain the corresponding coefficients, and the functions
c and r map the index i to the index in the matrices
C(E) and ρ, respectively.

A step in the convex iteration is made up of the
semidefinite program



min
E,ρ,{Gi}i

∑
i

〈Gi,Wi〉

subject to
�, see program 17
Gi � 0 ∀i.

(18)

Here, 〈A,B〉 := tr(A>B) is the Hilbert-Schmidt scalar
product. Initially, we choose Wi filled with 1 in every
entry (but other choices, such as the identity, are also
possible3). Having found the optimal {Gi}i for pro-
gram 18, we decompose Gi = Ui diag(λ1

i , λ
2
i , λ

3
i )U>i ,

where the columns of Ui are made up of the eigen-
vectors of Gi, and 0 ≤ λ1

i ≤ λ2
i ≤ λ3

i are the corre-
sponding eigenvalues. We obtain the direction vector
for the next iteration by Wi 7→ U?i U

?>
i , where U?i has

the last column dropped (i.e., the one corresponding

to the largest eigenvalue). In this way, the quantifier of
rank violation,

∑
i

∑2
j=1 λ

j
i , will never increase from

iteration to iteration [78]. However, it might not con-
verge to zero.

If the iteration stalls, i.e., the quantifier of rank vi-
olation does not decrease notably, we empirically find
that the following perturbation allows to steer out of
the local minimum; it slightly differs from the one
proposed in [78]. Let ri ∈ [0, 0.01]2 be a random vec-
tor and u3

i the eigenvector of Ui corresponding to the
largest eigenvalue λ3

i . Then, the next Wi is given by
Wi = U?

(
riu

3>
i + U?>

)
. Note that the range of the

random values is carefully chosen: larger ranges will
completely deteriorate the iteration without any hope
of recovery, while smaller ranges will not produce the
desired liberation from the current valley.

Also note that while the iteration was formulated in
primal form, the corresponding dual form is actually
more economic.

Program 17 is not the most efficient formulation
of the problem in terms of rank constraints. Given
that these constraints are nonconvex, we want to keep
their number as small as possible. Observe that both
C(E) and ρ are symmetric matrices, i.e., cb1,b2(k, `) =
cb2,b1(`, k) and likewise for ρ. To incorporate this sym-
metry, we will extend D and, writing output indices
before input indices, define

DA1,B1,A2,B2;b1,k;b2,`;a1,k′;a2,`′ := δA1,a1δB1,b1δA2,a2δB2,b2Dk,`;k′,`′ (19)

in terms of the four-index D-tensor introduced in eq. (12).
We now have

〈A1B1|E
[
trloss ρ

]
|A2B2〉 =

1∑
a1,a2=0

1∑
b1,b2=0

r∑
k,`=0

s∑
k′,`′=0

cb1,b2(k, `)DA1,B1,A2,B2;b1,k;b2,`;a1,k′;a2,`′ρa1,a2(k′, `′).

(20)

Due to the symmetry of C(E) and ρ, we can replace, leaving E
[
trloss ρ

]
invariant,

DA1,B1,A2,B2;b1,k;b2,`;a1,k′;a2,`′ 7→
1
4

(
DA1,B1,A2,B2;b1,k;b2,`;a1,k′;a2,`′ +DA1,B1,A2,B2;b1,k;b2,`;a2,`′;a1,k′

+DA1,B1,A2,B2;b2,`;b1,k;a1,k′;a2,`′ +DA1,B1,A2,B2;b2,`;b1,k;a2,`′;a1,k′

)
. (21)

Next, we can drop all entries from D that refer to,
say, strict lower triangles of the input and output
matrices, and adjust the remaining terms appropri-
ately. For example, we drop all entries from D where
(a1, k

′) ≡ a1(2s+ 1) + k′ > a2(2s+ 1) + `′ ≡ (a2, `
′),

and multiply by 2 those with (a1, k
′) < (a2, `

′). We
then end up with a rank-three tensor that maps the
vectorized upper triangles of C(E) and ρ to the vec-
torized upper triangle of E

[
trloss ρ

]
. In fact, we can

further reduce this by, in the output index, already
summing over the elements required for the trace or

3We found that the identity will converge faster; however, it
is also more likely to end up with a non-fixable stall than when
starting with the matrix of 1-entries.

overlap, respectively. The dimensions of the tensor are
now 2, (r+1)(2r+3), and (s+1)(2s+3). We perform
singular value decompositions of the two matrices in
the second and third indices; it turns out that it is
possible to find joint left- and right-singular bases to
both of them. We get

trE
[
trloss ρ

]
=
∑
i

dtr
i 〈c|dci 〉 〈d

ρ
i |ρ〉 (22a)

〈Φ+|E
[
trloss ρ

]
|Φ+〉 =

∑
i

dΦ
i 〈c|dci 〉 〈d

ρ
i |ρ〉 (22b)

All (r + 1)(2r + 3) singular values dΦ
i for the overlap

are non-zero; for the trace, we find (r + 1)(r + 2)/2
nonzero elements dtr

i .
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In this way, we only need to calculate the product of
(r + 1)(2r + 3) overlaps, which therefore also defines
the number of rank constraints. In particular, it is
independent of s.

Finally, note that we can reduce the number of it-
eration variables further. For this, we remark that

yz = (y + z)2 − (y − z)2

4 ; (23)

so any multiplicative constraint can instead be rewrit-
ten by two quadratic and some linear constraints. The
quadratic constraints are of course also non-convex;
but the hypograph t ≥ x2 is a convex set. We there-
fore write

〈c|dci 〉 〈d
ρ
i |ρ〉 =

(
〈c|dci 〉+ 〈dρi |ρ〉

)2 − (〈c|dci 〉 − 〈dρi |ρ〉)2
4

≥
(
〈c|dci 〉+ 〈dρi |ρ〉

)2 − ti
4 , (24)

where

ti ≥
(
〈c|dci 〉 − 〈d

ρ
i |ρ〉

)2, (25)

While this is of no use for the trace, where we need
an exact equality—as the overlap with the Bell state
is only a valid indicator for the fidelity if the trace
is fixed—it is helpful for the overlap. Since we want
to maximize the fidelity, we can alternatively use this
lower bound for all singular values dΦ

i where dtr
i = 0;

and this requires only 2 × 2 rank matrices, reducing
the number of iteration variables from six to three per
matrix.

3.6 Practical optimization
All reformulations have their individual advantages
and disadvantages. Finding a suitable initial point for
the nonconvex optimization is problematic, though it
is of considerable help to express both ρ and C(E) in
their singular bases found in eq. (22). In order to re-
duce the likeliness of getting stuck in a local optimum,
we would need to combine a local nonconvex optimiza-
tion (such as Nelder-Mead [80]) with global methods
(such as basin-hopping [81, 82]), which has dramatic
impacts on the solving time of the nonconvex prob-
lems. The convex iteration, in turn, allows to quickly
approach relatively good values, but in order to cross
some “fidelity barriers,” hundreds or thousands of it-
erations are necessary until an appropriate random
perturbation vector is found that allows to steer out
of the local rank basin—even for relatively small sys-
tem sizes.

Here, we propose a combined approach: We first
perform convex iteration until no significant rank im-
provements were possible for at least 50 iterations. For
large values of s, we then use the output Choi state as
an initial point for the nonconvex program 15a, which
does not work as well as program 15b, but allows to

steer into the right direction. To get a high-quality so-
lution, we finally always employ program 15b, starting
with the dominant eigenvector of ρ that resulted from
the previous optimization.

To improve reliability, the optimization proceeds in-
dependently on all probability sample points; after it
has finished for probability pdist, the output state will
be used as initial point for program 15b with the neigh-
boring probabilities pdist±∆pdist. If this improves the
previously-found solution by a certain threshold, we
use the new result for the next probability in the same
direction, until improvement is no longer achieved.

As nonlinear optimization algorithm, we investi-
gated all suitable methods implemented in the SciPy
optimization library [83], and also CMA [84]. For pro-
gram 15a, only constrained methods (restricting all
variables to [−1, 1]) were able to provide any useful re-
sult at all; and SLSQP [85] proved to be the superior
one both in terms of speed and quality of the results
by far. The most reliable algorithm for program 15b
turned out to be BFGS [86–90]. To perform the con-
vex optimizations, we employ the MOSEK Optimiza-
tion Suite 9.2.29 [91]. We strongly recommend using
an interior-point solver for the convex iterations, as
we experienced that iterations took longer and longer
with a first-order solver—in our case, SCS [92, 93]—
while naturally being much less accurate.

All our implementations are available in a GitHub
repository [94]. While the individual classes start-
ing with Optimizer correspond to the algorithms de-
scribed in all parts of section 3 and can be used purely
as an API, we provide two command line applications
that may be used to generate all the numerical data
backing our figs. 4 and 5. We give a visual depiction
of this optimization pipeline fig. 3.

3.7 Moving to qudits
In section 2.3, we already mentioned the possibility to
exploit more photonic degrees of freedom by transmit-
ting higher-dimensional systems. The consequences
are not immediately obvious: While now the arrival
of a single photon can in principle transmit more in-
formation, also the loss of a single photon will lead
to losing more information. Let F2(s, r, p) denote the
fidelities obtained for qubits; then, assuming that a
photon allows to implement m ∈ N qubits, the mini-
mum achievable fidelity F2m(s, r, p) is

F2m(s, r, p) ≥ max
{
F2(s, r, p), F2(ms,mr, p)

}
, (26)

while the arrival probability is independent of m.
Since this lower bound is obtained by either ignoring
the new degrees of freedom or by considering them
all independently, F2m might actually be larger if we
exploit the fact that the degrees of freedom pertain-
ing to a single photon are always guaranteed to arrive
together.

The formalism introduced before only needs to be
adapted slightly in order to be able to deal with qu-
dits. Closely following section 3.3, the dimensionality
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python Main.py <d> <s> <r>
optional argument default
• –outermap (apply program 15a?) unset
• –erasure (use ideas from section 3.9, not described in this figure) unset
• –pmin=<value> (minimum probability to scan) 0.01

• –pmax=<value> (maximum probability to scan) 1.00

• –workers=<value> (number of threads) machine-dependent
for p ∈ {pmin, pmin + 0.01, . . . , pmax}:

OptimizerDickeConvexIteration.py

• check: F ∈ {0.50, 0.51, . . . , 1} possible?
• at most 50 iterations per F

• algorithm: section 3.5
convex solver: MOSEK

• output: bestState[p], bestMap[p]

if outermap:

OptimizerDickeOuterMap.py

• input: bestMap[p]
• algorithm: section 3.4 and program 15a

outer solver: SciPy SLSQP; convex solver: MOSEK
• output: bestState[p], bestMap[p], bestF[p]

stateOptimize(p, bestState[p])
queue stateOptimize(p - 0.01, bestState[p])
queue stateOptimize(p + 0.01, bestState[p])

stateOptimize(p, bestState)
if p /∈ [pmin, pmax]:

return
OptimizerDickeOuterState.py

• input: bestState[p]
• algorithm: section 3.4 and program 15b

outer solver: SciPy BFGS; convex solver: MOSEK
• output: newBestState, newBestMap, newF

if newF > bestF[p]:
bestState[p] := newBestState
bestMap[p] := newBestMap
bestF[p] := newF
queue stateOptimize(p-0.01, newBestState)
queue stateOptimize(p+0.01, newBestState)

Figure 3: Algorithmic description of the optimization pipeline implemented in our GitHub repository [94]. This depicts the main
optimization program described in section 3.6, and based on the algorithms discussed in sections 3.4 and 3.5; additionally, the
parameter d allows to control the dimension of the sent systems, as described in section 3.7. We also implemented a second
optimization program MainAllR.py, which takes into account multiple values of r (see section 3.8); consult the command line
help for its arguments. Note that both the main program with the erasure switch activated and the optimization over all
values of r do not scale very well and should therefore only be considered for the case of qubits and small values of s and r.

reduction is now based on the ansatz

ρ =
1∑

a1,a2=0

∑
i,j∈[s]d

ρa1,a2(i, j) |a1D
s
i 〉〈a2D

s
j | , (27)

where

[s]d :=
{
i ∈ Nd0 :

d−1∑
m=0

im = s

}
(28)

and
|Ds

i 〉 := 1√(
s
i

) ∑
x1,...,xs∈{0,...,d−1}
|{j:xj=m}|=im ∀m

|x1, . . . , xs〉 (29)

is the Dicke qudit state for s = |i| particles in which the level m occurs im times (m ∈ {0, . . . , d− 1}). Here, we
used the multinomial coefficient,

(
s

i

)
≡
(

s

i0, . . . , id−1

)
:=


s!

i0! · · · id−1!
if

d−1∑
m=0

im = s

∧ i � 0
0 else,

(30)

where i � 0 is a component-wise inequality.
In appendix A, we derive the action of the partial trace of s− r qubits (any apart from the first one) on the

full state eq. (27). It is given by

trloss ρ =
∑

k,`∈[r]d

∑
i∈[s−r]d

1∑
a1,a2=0

(
s− r
i

)√ (
r
k

)(
r
`

)(
s

k+i

)(
s

`+i

)ρa1,a2(k + i, ` + i) |a1D
r
k〉〈a2D

r
` | . (31)
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With the help of the tensor

Dk,`;k′,`′ := δk′−k,`′−`

(
s− r
k′ − k

)√ (
r
k

)(
r
`

)(
s
k′

)(
s
`′

) , (32)

we can now also express E—here, C(E)—in terms of Dicke states with coefficients cb1,b2(k, `) and finally find

E
[
trloss ρ

]
=

1∑
a1,a2=0

1∑
b1,b2=0

|a1b1〉〈a2b2|
∑

k,`∈[r]d

∑
k′,`′∈[s]d

cb1,b2(k, `)Dk,`;k′,`′ρa1,a2(k′, `′). (33)

While also here, the dimensionality reduction was
able to greatly reduce the number of degrees of free-
dom, the situation is much more problematic than
before. Since∣∣∣[s]d∣∣∣ =

(
s+ d− 1
d− 1

)
' sd−1

(d− 1)! (34)

for large s, the complexity is now at least quadratic in
s and becomes intractable extremely quickly. There-
fore, we can only optimize low numbers of s, r, and d
with the hope of finding optimal solutions.

3.8 Using more sophisticated processing
All previous schemes assumed that the number of re-
ceived variables is some constant r. However, due to
the probabilistic nature of the transmission, the whole
range r ∈ {0, . . . , s} is in principle a valid choice4. We
might therefore decide to generalize our optimization
problem to

max
E1,...,Es,ρ

1
ptot
〈Φ+|ρf |Φ+〉

subject to
tr ρf = ptot

ρ � 0
tr ρ = 1

C(Ej) � 0 ∀j
trB ◦Ej � 1R ∀j

ρf =
s∑
j=1

(
s

j

)
pjtransp̄

s−j
transEj

[
trkeep j ρ

]
.

(35)

Here, we replaced the probability of successful dis-
tillation pdist by the total success probability ptot that
also incorporates the channel transmission.

While we wrote “for all j” in program 35, for all
practical purposes, we can fix a certain relative proba-
bility threshold; for arrival configurations with a lower
probability than this threshold, we can disregard the
additional maps.

4Dark counts may in principle even allow for r > s, which
we will not consider here. Note that every quantum signal may
be accompanied by a classical heralding signal that allows to
greatly diminish the effect of dark counts.

This approach is only moderately more time- and
resource consuming when using program 15b, but pro-
grams 15a and 18 will suffer greatly under the in-
crease of variables. On top of this comes the difficulty
in experimentally implementing this scheme, where,
depending on the number of arrived photons, a dif-
ferent map has to be applied. Finally, the procedure
now explicitly contains the transmission probability—
and since in real life, distances between repeater sta-
tions will vary, this may in fact imply different optimal
maps and states depending on which repeater is the
next in the chain. For these reasons, we will mostly
refrain from using program 35. When we briefly re-
port some results from this optimization, we use the
output states of the convex optimization routine for
r = 2 and feed them as inputs to program 35, using an
outer nonconvex optimization over the initial state.

3.9 Exploiting full erasure knowledge
Our ansatz crucially relied on the fact that we con-
sidered a “reduced” erasure scenario, i.e., we did not
assume the information of which particular photon
combination arrived to be available. This was reflected
in the fact that in program 7, the distillation map E
did not depend on the slot configuration index i. We
may choose to insert such a dependency, introducing a
whole family of distillation maps Ei instead (or, com-
bined with program 35, even a two-parameter fam-
ily Ej,i). In order to exploit this new information, the
use of Dicke states now becomes prohibitive: due to
their full symmetry with respect to a permutation of
particles, we cannot improve our results in the set-
ting of reduced dimensionality. Solving this problem
for large values of s and r is not viable, but we are
able to explore the landscape for small values mainly
through program 15b.

3.10 Processing the result data
The initial states ρ arising from the numerical opti-
mizations will necessarily be pure. However, these ρ =
|ψ〉〈ψ| still appear like arbitrarily complicated states.
Note that the same final fidelity can be achieved if
an arbitrary single-qubit rotation with angle α is car-
ried out on the qubit stored at the sender’s site and
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s identical (transversal) single-qubit rotations with an
angle β (or their higher-dimensional counterparts) are
performed on the sent qubits. By minimizing the num-
ber of nonzero components in |ψ〉 and the Choi state,
this freedom in α and β allows the complicated numer-
ical output to still correspond to relatively tractable
states. After applying this cardinality reduction to the
full data, we re-perform the optimization, removing
the close-to-zero components from the beginning. This
will speed up the optimization and lead to better re-
sults; however, in eq. (22), the singular bases will no
longer coincide for trace and overlap, so that we use
the nested optimization approach.

We note that the most promising way for improving
both resource consumption and quality of the simula-
tions would be to identify the relevant non-zero coef-
ficients beforehand.

4 Results
4.1 Qubit scenario
We applied the optimization algorithms described in
the previous sections to 1 ≤ r ≤ 10. Figure 4 shows
the fidelities for various parameters s, r, and pdist
that can be achieved by explicit protocols using qubit
transmission. The probabilities were sampled in 1 %-
steps in the interval [0.01, 1].

The number of variables is small enough for these
simulations that we can gain confidence in the actual
optimality of the numerical lower bounds. The case
pdist = 1 that is usually considered for QECC is now
only the extreme point of lowest distillation fidelity;
by lowering the distillation success probability, we get
access to higher fidelities. As pdist goes to zero, we may
pass one or multiple points at which the fidelity curve
is nonsmooth—the optimal initial state then takes a
qualitatively different form that would have been sub-
optimal before.

From [26], we know that there is a deterministic
quantum erasure correcting code that is able to fully
recover from a single erasure for s = 4, r = 3 (actually,
this code falls into the same “reduced” class as we are
studying), and that s < 4 does not allow for this. Our
numerical data indeed confirms this.

Note that for s = 5, r = 3, the best possible deter-
ministic recovery gives a fidelity of 80 %. Knowing that
the perfect five qubit code [95] has distance 3, it is ac-
tually possible to perfectly correct for two erasures de-
terministically; this gives an example of how we could
improve if we assumed access to the full knowledge
of which particular erasure occurred. While our nu-
merical scheme hinted at in section 3.9 is indeed able
to provide such a code that gives a fidelity of 99.87 %,
this already stretches the capabilities of the algorithm;
for s = 6, r = 3, there are so many variables that this
advanced scheme delivers worse results than the re-
duced one.

Using the technique described in section 3.10, in
some cases—mainly for pdist = 1—we are able to de-
rive analytical forms for the optimal states and maps
based on the numerical data. We detail those results
in appendix B.

4.2 Qudit scenario
When looking at the results for higher-dimensional
carriers such as qutrits, we cannot claim the same
level of confidence in the optimality of the results be-
cause of the much higher number of degrees of free-
dom. Nevertheless, we compare some of the results in
fig. 5.

We observe a very diverse behavior. Sometimes,
moving to higher-dimensional systems can pay off: Let
us fix s, then there is a minimal r′ ≤ s that still al-
lows to distill perfect pairs with unit probability for
qubits (in the worst case, r′ = s). The (s, r′− 1) com-
bination will then typically profit greatly from mov-
ing to higher-dimensional information carriers. Often,
an advantage is visible only for distillation probabil-
ities smaller than 1, but some combinations such as
s = 4, r = 2 do not seem to have any potential for
improvement (which has nothing to do with the 50 %
loss mark—we find improvements for codes with less
than, exactly, and more than 50 % loss). If qutrits are
able to increase the fidelity, then ququarts can some-
times do even better; but sometimes, there is nothing
to be gained. The question whether these issues per-
tain to the insufficient numerical means or whether we
actually hit a barrier that cannot be overcome even
by moving to still higher-dimensional carriers remains
open.

Note that the full knowledge of which particular
erasure happened, as mentioned in section 3.9, could
in principle be encoded in some way in higher-dimen-
sional states. The new basis states might be used to
flag the different components occurring in the Dicke
state, which—depending on how well these flags can
still be identified after the loss—could then be used
to implement the different distillation maps Ei as a
single quantum map. However, this is not what hap-
pens in the cases reported here: It would require the
preparation to be made in the full basis, not the Dicke
basis, i.e., there is no way to use the enlarged dimen-
sion in order to flag the different configurations in our
scheme.

4.3 Comparison to known entanglement distil-
lation schemes
Our procedure allows us to simultaneously obtain op-
timal states and maps in order to circumvent channel
attenuation. It is interesting to see how our results
compare to known entanglement distillation schemes.
Since these schemes typically favor a different ap-
proach, namely starting from a completely unknown
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Figure 4: Lower bounds on the maximally achievable fidelities for a pure loss channel with s input qubits (given by the color
coding) and r output qubits, for various distillation success probabilities pdist. Samples are taken at every integer percent value,
but marks were omitted for clarity. Every plot starts with s = r + 1; if this line is not visible, it is obstructed by the F = 1 line
of a higher s-value.
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Figure 5: Comparison between lower bounds on the fidelities for qubit channels (solid lines, as in fig. 4), qutrit channels (dashed
lines), ququart channels (dashed–dotted lines), and ququint channels (dotted lines). Various combinations of s and r are
color-coded. We only show a channel of higher dimensionality in those cases in which we have been able to find an improved
lower bound numerically. Increasing the tested dimension may tighten the bound further.

state, the most fair way of conducting such a com-
parison is to take a known entanglement distillation
protocol from the literature and apply program 15a on
it—i.e., we allow to make the most out of this proto-
col by choosing the optimal input state. We go a step
further than what we did with our own schemes and
allow arbitrary—in particular, also complex-valued—
initial states for the known protocols. This can now
easily be done, as the optimizations are semidefinite
programs.

Still, it has to be taken into account that the proto-
cols we are referring to actually are recurrence proto-
cols, so they are meant to be applied multiple times in
a row—typically with dramatic consequences for the
success probability and state consumption. While by
a sequential subselection instead of a parallel one or
incorporating further feedback [96], their input state
consumption may be greatly reduced, this is impossi-
ble without backwards communication or even multi-
ple rounds of two-way communication. Here, we only
take into account a single application of the distilla-
tion procedure.

4.3.1 BBPSSW/DEJMPS

The first known entanglement distillation protocol
was the one by Bennett et al. [97], known as BBPSSW
after its authors. It is the predecessor of the Quantum
Privacy Amplification protocol DEJMPS, by Deutsch
et al. [60, 61]; however, if the distillation operation is
applied only once, both are equivalent. We depict the
procedure in circuit form in fig. 6a; for a description of
the protocol, see the figure caption. Figure 6b shows
how we adapt the protocol to our scenario for compar-
ison. We compare the optimal fidelities in fig. 6c with
our own schemes and can indeed observe quite signifi-
cant improvements. Note that the DEJMPS protocol

was found to be the optimal two-particle distillation
protocol if the shared states are Bell-diagonal (as is a
common assumption in entanglement distillation) and
of rank at most three [71], or if the possible distilla-
tion operations consist of local permutations of the
Bell basis [68].

4.3.2 CNot double selection

As an example of an entanglement distillation proto-
col among three particles, we choose the double selec-
tion circuit in [98], which is depicted in fig. 7a. Since
the postselection now is on coincidences of two pairs
of measurements, it is no longer possible to prepare
an initial state in such a way that a successful out-
come is always obtained, but instead pdist ≤ 2

3 . As is
evidenced in fig. 7c, also the double selection circuit is
by far inferior to our results; in fact, we are even able
to numerically arrive at a code that deterministically
protects against the loss.

4.3.3 Further schemes

We did similar comparisons with the CCNot distil-
lation scheme [64] (r = 3), the exemplary scheme for
r = 4 by Dehaene et al. [68], as well as the triple se-
lection scheme (r = 4) given in [72]. Since all of those
procedures are based on coincidence measurements of
r − 1 particles, the maximum success probability has
an upper bound that decreases with r. The fidelity
achievable by our codes naturally was always an up-
per bound to those schemes; and unless they are able
to deliver unit fidelity results, there actually is a large
gap.
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(a) Original entanglement distillation procedure [97] (where we
dropped the final twirling, as it is irrelevant in our case). Both
Alice and Bob share two entangled states (indicated by the wavy
line), which, through a local twirling, they cast into Werner
form (for DEJMPS, this step is replaced single-qubit unitaries).
They apply local CNot operations, measure the target qubits
and postselect on coincidence.
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(b) Adapted entanglement distillation scheme used for compar-
ison. Since we optimize over the initial state, we can drop all
initial single-qubit operations; they are automatically accounted
for by the optimization. The channel then suffers loss (with
equal probability for all possible loss configurations) and we ap-
ply the remaining distillation operations. The final postselection
is now on one of the two possible outcomes, as we can imagine
the measurement at Alice’s site, together with her distillation
procedure, to already have taken place in the preparation step.
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(c) Fidelities achievable through channel loss for various values
of s when optimized over the initial state. The solid line refers
to the adapted BBPSSW scheme; the dashed line corresponds
to our data as in fig. 4.

Figure 6: BBPSSW/DEJMPS distillation scheme.
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(b) Adapted entanglement distillation scheme used for compar-
ison.
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(c) Fidelities achievable through channel loss for various values
of s when optimized over the initial state. The solid line refers
to the adapted CNot double selection scheme; the dashed line
corresponds to our data as in fig. 4.

Figure 7: CNot double selection distillation scheme.
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Figure 8: Lower bounds on the maximally achievable fidelities for a pure loss channel. ptot represents the product of the
transmission with the distillation success probability. The transmission probabilities are based on eq. (2) and the typical
attenuation coefficient α = 0.2 dB

km , for various distances L (left) and total success probabilities (right), as indicated by the
line labels. The data was obtained by taking the best possible distillation protocol according to program 14 for a certain
probability (floored to integer percent values) out of all simulations. The lines are cut off at the left at the point at which direct
transmission without any multiplexing (giving F = 1) would outperform all encodings that we studied. The lines are cut off at
the right due to the fact that we only scanned a finite set of configurations, so that we did not consider every possible success
probability—though of course, every desired probability can be achieved.

5 Discussion

5.1 Taking attenuation into account
All results on entanglement distillation protocols—
except from program 35—cannot be immediately re-
lated to the task of counteracting channel losses. The
abscissa in fig. 4 refers to the success probability
of the distillation scheme alone. We still have to
take into consideration the probability of successfully
transmitting the required multiplexed state, Ptrans =∑s
i=r
(
s
i

)
pitransp̄

s−i
trans. In order to check this, we assem-

bled the numerical data from all simulations that we
carried out and replaced the success probability of dis-
tillation by the total success probability. We then took
the best fidelity possible for any given probability and
plotted this data in fig. 8.

We can indeed observe how our optimization
schemes are able to deliver entangled states in the
regimes at which direct transmission fails. The fidelity
of these states of course depends strongly on the de-
sired total success probability and is thus tunable.

We note that there is potential for improvement
by using program 35, i.e., employing different maps
depending on the different possible values of r. We
considered this program for a subset of the previous
configurations. Figure 9 shows that this can indeed
lead to a large payoff, in particular when high success
probabilities are desired: despite our pool of protocols
being much smaller, the fidelities obtained in this way
in some instances are almost as good as the previous
ones for 10 km less distance (almost 60 % higher suc-
cess probability).

5.2 Implications for conventional entanglement
distillation
We will use this section to slightly deviate from our
original goal to find suitable procedures that work in
a quantum repeater scenario and consider the task of
“pure” entanglement distillation instead. Recurrence
schemes have the advantage of working in the low-fi-
delity regime, but they have exponentially low yields
and require two-way communication. Therefore, usu-
ally, a recurrence distillation is carried out only until
the fidelity is high enough to allow the hashing proto-
col [59] to continue, which can asymptotically distill
perfect states using one-way communication only.

Though not designed with this particular purpose
in mind, our protocols are of course valid “pre-hash-
ing” schemes. To investigate this, we calculate the
von Neumann entropy S [99] of the final two-party
state ρf after a complete dephasing in the Bell basis.
After this single step of distillation, we can, using only
one-way communication, asymptotically distill perfect
Bell pairs with a rate 1− S [59]. In fact, for this par-
ticular use, it would have been a meaningful alterna-
tive not to maximize F , but instead minimize S in all
previous programs. However, while the entropy of a
state after a dephasing in a particular basis can be ac-
cessed in a convex program by means of the exponen-
tial cone [100], being concave, it cannot be minimized
efficiently. We therefore use our fidelity approach as
an approximation to the entropy optimization, where
we calculate the latter a posteriori.

There are two main ways in which we might con-
nect our results with a hashing protocol. The one-way
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Figure 9: Lower bounds on the maximally achievable fidelities
for a pure loss channel, using maps that depend on the number
of arrived states. The transmission probabilities are based on
eq. (2) and the typical attenuation coefficient α = 0.2 dB

km
for various distances L. The dashed lines are the same as in
fig. 8, where we only considered a fixed map; the solid lines
allow for different maps depending on the actual number of
received states. The data was obtained by taking the best
possible distillation protocol according to program 35 for a
certain probability (floored to integer percent values) out of
all simulations. The lines are cut off at the left at the point
at which direct transmission without any multiplexing (giving
F = 1) would outperform all encodings that we studied. The
lines are cut off at the right due to the fact that we only
scanned a finite set of configurations, so that we did not
consider every possible success probability—though of course,
every desired probability can be achieved. Note that there
were much fewer samples from which we took the optimum
for the solid lines compared to the dashed ones.

communication approach requires us to mix the final
state ρf with a maximally mixed state, with weights
corresponding to the total success and failure proba-
bility, respectively. While this procedure always gives
a state, the fidelities that can be achieved are natu-
rally rather modest; this is only viable for relatively
short distances and low-loss scenarios. Naturally, the
optimal distillation protocol will always be the deter-
ministic one, as the maximally mixed state that com-
pensates for the reduced success probability is worse
than the benefit that we can possibly obtain from an
increased fidelity. When we compare the entropy of
directly transmitted states with the entropy after the
best of our distillation schemes in fig. 10, we are still
able to find significant improvements. The distillation
can increase the critical distance with one-way com-
munication from 6 km to about 9 km. Compared to
QECCs, which can offer up to 15 km—and indeed,
the perfect J5, 1, 3K code [95] accomplishes this—this
seems to suggest far from optimal results. However,
in fig. 10, we depict the performance of the J5, 1, 3K
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Figure 10: Entropies S of the Bell-diagonalized normalized
final states ρ̂f after transmission through a pure loss channel.
The transmission probabilities are based on eq. (2) and the typ-
ical attenuation coefficient α = 0.2 dB

km , for various distances
L. More precisely, as we rely on one-way communication only,
we look at the von Neumann entropies of ptotρ̂f+(1−ptot)1/4.
The data was obtained by taking the best possible distillation
protocol according to program 14 out of all simulations at
each sample point (integer kilometers); the multiplexed curve
is therefore an upper bound. For selected points, we give
the combinations (d, s, r, pdist) that gave rise to the optimal
value. The largest sampled multiplexing value was s = 75. We
also compare this with the entropies obtained by using the
perfect J5, 1, 3K code [95], where we take optimal correction
maps that can either depend on the full information of which
particular configuration arrived, or only take into account the
reduced information of how many qubits survived.

code5, and we also investigate how well this code can
perform if applied to our chosen setting, where we do
not fully exploit the information on which particular
loss configuration arrived. In the latter case, we clearly
observe how our codes surpass the QECC—despite
that fact that for our codes, we even fix r, while we
still allow r-dependent correction maps for the QECC.
We conjecture that indeed, the possibility to discrimi-
nate the basis states with the same number of set bits
is crucial to get the best possible performance.

For our codes, we observe that only a few combi-
nations (d, s, r, pdist) turn out to be optimal proto-
cols; with less than 50 % losses, these are particularly
promising qudit protocols; for high losses, we natu-
rally have r = 1. It is interesting to see that the
best protocol for a long time is with s = 48, before
it switches to s = 73, where s = 75 was the maxi-
mum simulated. Only looking at the fidelity—which
is monotonically decreasing with s—there is no par-

5To make the comparison most meaningful, we take the
logical states of the code to form the encoded state |0〉 ⊗ |0〉L +
|1〉⊗|1〉L. For every loss configuration—which is much more than
what we allow for in our codes—we optimize to find the ideal
map that gives a unit-trace final state with maximal fidelity.
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ticular reason to single out these two combinations;
however, this is where the difference between fidelity
and entropy optimization shows. A multitude of dif-
ferent entropies can give the same fidelity; and due
to the randomness of our starting points in the op-
timizations, the s ∈ {48, 73} configurations turned
out to give the best entropy. This already shows the
limitations of applying our single-shot scenario in the
asymptotic regime; it is highly likely that the upper
bound in fig. 10 can in fact be lowered by more suit-
able optimization strategies or exploiting even higher-
dimensional carriers. Still, this scenario is not suitable
for surpassing the 15 km barrier; it aims at distilling
perfect states and relies on deterministic protocols, so
that it is bound by the no-cloning theorem.

The second way to combine our results with hash-
ing is to consider a distillation task that allows for
two-way communication. In this way, both the unsuc-
cessful transmission as well as an unsuccessful distil-
lation can be signaled back and therefore do not have
an impact on the state, at the expense of being more
resource-intensive. The interesting quantity in this re-
gard is the (inverse) yield: How many packets of s par-
ticles are required, on average, to obtain a single per-
fect Bell pair, when we choose our best distillation
protocol and feed its output into the hashing proto-
col? In fig. 11, we plot the inverse yields, both when
we count the application of our protocol as a single
send step and when we count it in terms of the num-
ber of sent particles s. We can observe that for short
distances, pdist = 1 is still optimal; but for longer dis-
tances, pdist = 1

2 in fact becomes the best protocol. In
all cases, the best protocols are the ones that already
give unit fidelity, i.e., those that completely avoid the
hashing protocol. Figure 11 shows that, when mea-
sured in terms of packets, we get a clear advantage in
the ptrans >

1
2 range, but direct transmission—where

we send Bell state halves—always has the advantage
in the high-loss regime.

We remark that in the two-way communication sce-
nario, it is meaningful to ask about multiple succes-
sive applications of our protocols. Without the possi-
bility to signal back, this would be no better—but po-
tentially worse—than one of our protocols with twice
the number of received particles, while feedback can
in principle allow to increase the yield. This comes at
the expense of delaying the distillation operation at
the sender’s site until the feedback has arrived.

5.3 Implications for quantum key distribution
Our procedure was motivated by the problem of quan-
tum key distribution, where the final secret key rate
is linearly dependent on ptrans, but can drop to zero
if other errors are too high. Note that here, we allow
for two-way communication, as long as it has to occur
only between the communication partners at the end
of the line and not between repeaters; hence, it only

adds an initial latency, but does not affect scalability.
For a repeaterless operation mode, we plot the se-

cret key rate, eq. (1), in fig. 12 and again see significant
rate improvements for short lengths (where the opti-
mal protocols are deterministic), while direct trans-
mission is at the advantage in the high-loss regime
(where the optimal protocols are probabilistic—using
program 35, they even give the same rates as the di-
rect transmission, but cannot surpass them).

We will now apply our protocol in the scenario it
was developed for, namely, for the use of a quantum re-
peater. We take the simplest case and assume that we
use a single quantum repeater. For all of our protocols,
we carry out the following procedure. Alice and the
first repeater individually prepare a copy of the multi-
qubit state as dictated by the protocol; the repeater
sends the appropriate parts to Bob, Alice sends them
to the repeater. Both the first repeater and Bob carry
out their distillation procedure as required by the pro-
tocol; the global state now is ρAR

f ⊗ρRB
f , where we de-

noted the systems in superscripts, and ρf is precisely
the best normalized approximation of |Φ+〉〈Φ+| that
the protocol was able to deliver. The repeater now
carries out an optimal entanglement swapping proto-
col for this particular state. This protocol is defined
by the following convex optimization problem (in fact,

(3, 3, 2, 1)
(3, 2, 1, 1

2 )

(2, 7, 5, 1)
(3, 3, 2, 1)
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Figure 11: Inverse yields for the distillation of perfect Bell pairs
across a loss channel of given length. The data was obtained
by taking the best possible distillation protocol according
to program 14 out of all simulations at each sample point
(integer kilometers); the multiplexed curve is therefore an
upper bound. For selected points, we give the combinations
(d, s, r, pdist) that gave rise to the optimal value. Direct trans-
mission corresponds to the inverse of the success probability
of transmission. The curve dist. per sent packet assumes that
each instance of our protocol counts as one channel use; the
curve dist. per sent photon counts every protocol use by its
number of sent photons s. Note that since this weighting
affects which protocol is optimal, both curves do in general
not give the same protocol for the same L (although they do
over a large range).
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Figure 12: Secret bit rates per sent packet after transmis-
sion through a pure loss channel, achievable via two-way
communication between the two stations. The transmission
probabilities are based on eq. (2) and the typical attenuation
coefficient α = 0.2 dB

km , for various distances L. The data
was obtained by taking the best possible distillation protocol
according to program 14 out of all simulations at each sample
point (integer kilometers); the multiplexed curve is therefore
a lower bound.

the objective is not convex, but is easily obtained from
two convex optimizations):

min
{Λk,ρk}4

k=1,eX ,eZ

{eX , eZ}

subject to
C(Λk) � 0 ∀k∑
k

Λk = 1

ρk = (1A ⊗ Λk ⊗ 1B)
[
ρAR

f ⊗ ρRB
f
]

eX = 〈+−|ρ1 + ρ2|+−〉+ 〈−+|ρ1 + ρ2|−+〉
+ 〈++|ρ3 + ρ4|++〉+ 〈−−|ρ3 + ρ4|−−〉

eZ = 〈01|ρ1 + ρ3|01〉+ 〈10|ρ1 + ρ3|10〉
+ 〈00|ρ2 + ρ4|00〉+ 〈11|ρ2 + ρ4|11〉 .

(36)

Here, the four possible instruments of the protocol
(in standard entanglement swapping, those would be
the projections onto the four Bell basis elements) are
given by the maps Λk, which in total are trace-preserv-
ing6. Their application leads to four (subnormalized)
possible outcomes ρk, defined at Alice’s and Bob’s site.
In standard entanglement swapping, we would now re-
quire local correction operations; this amounts to the
fact that the bit error rates in the two bases, eX and
eZ , are calculated based on anticorrelations for half of
the outcomes, but on correlations for the other half.

6In fact, instead of trace preservation, we can again ask for
probabilistic swapping maps. Computationally, the probability
must be fixed beforehand, so this requires a line scan. We
also investigated this case and found no improvements by a
nondeterministic swap.
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Figure 13: Secret bit rates per sent packet after transmission
through a pure loss channel, achievable via two-way commu-
nication between the two final stations, with one quantum
repeater at L/2. The transmission probabilities are based on
eq. (2) and the typical attenuation coefficient α = 0.2 dB

km , for
various distances L. The data was obtained by taking the best
possible distillation protocol according to program 14 out of all
simulations, combined with optimal entanglement swapping
at each sample point (integer kilometers); the multiplexed
curve is therefore a lower bound.

Running program 36 for all protocols, we obtain the
bit error rates with one repeater. We combine them
with the success probabilities to get the true asymp-
totic secret bit rates and then compare them with the
rates for direct transmission over the double length in
fig. 13.

While here, we still observe the same behavior that
as soon as the individual stations are more than 15 km
apart, direct transmission is advantageous, the re-
peater advantage clearly shows over the full length.
Interestingly, we find that the optimal protocol for
most of the relevant range is again the deterministic
d = 3, s = 3, r = 2, pdist = 1, which allows for
perfect distillation. Since in this case, traditional en-
tanglement swapping is optimal, the results can be
generalized in a straightforward way to an arbitrary
number of repeaters using this particular protocol.

5.4 Experimental remarks
Our scheme delivers numerically optimized states and
maps. While analytical optimality proofs are not
available, extensive numerical testing suggests that
these result are close to the optimum. We always as-
sumed that the channel itself is a pure loss channel
that exhibits no further errors and that both state
preparation and execution of the map are flawless.
Due to these simplifications, our results are theoret-
ical bounds. Real-life noise will put additional con-
straints on the actual performance; however, having
the bounds in mind allows to assess whether improve-
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ments in the quality of, say, state preparation are
worthwhile.

Both the preparation and the distillation map are
very well under control and we can expect that the
continuous development of quantum technology will
allow to approach the idealized states and maps to a
better and better degree. However, additional sources
of error in the channel (or necessary pre- and post-
channels such as frequency conversion) must be thor-
oughly investigated. While our simulation methods
are also able to incorporate further errors, we might
instead try to nest the loss-tolerant codes with other
well-established QECCs. It is not immediately obvi-
ous that this approach can work: If we first encode
our data with the loss-tolerant code and then each
physical qubit with a traditional code, due to high
losses, the traditional code will not even be able to
restore the inner code. Hence, we must first encode
our data with a traditional QECC and then with a
loss-tolerant code. Upon recovery, we must compen-
sate for losses; but is this still possible if other errors
deteriorated the state?

We finally remark that our codes rely heavily on the
use of Dicke states. In the last years, the preparation
of qubit Dicke states has received some attention and
by now, there are various theoretical proposals as well
as working implementations, e.g., in ions [101, 102],
atoms [103–105], quantum dots [106], photonic sys-
tems [107, 108], or as a quantum circuit [109]. Some
already address how to create arbitrary superpositions
of Dicke states [102, 110, 111]. Most, but not all [112]
are limited to relatively few qubits. Qudit Dicke states
are much less explored; we are aware only of one very
recent proposal that allows to efficiently verify qudit
Dicke states [113], which may also be a starting point
when it comes to implementing the maps.

6 Conclusion
The contributions in this paper are twofold.

First, we describe a general numerical methodology
that allows to optimize quantum problems in which
both a state as well as a map acting on a linearly
transformed version of this state are unknowns. These
methods are quite general in their applicability and
we expect them to be able to offer helpful insight into
a lot of problems that require simultaneous optimiza-
tion over states and maps. In fact, such problem for-
mulations are very common especially in the defini-
tion of resource theoretic measures such as entangle-
ment [114] or channel capacities [115]. While the limit
of infinite copies that is often required in these mea-
sures is of course out of reach of a numerical algorithm,
optimizing for the first couple of copies certainly help
in building an intuition; and if the measure features
some kind of additivity property, this allows to derive
bounds.

We then use our methodology to carry out a de-

tailed study on how a pure loss channel can be com-
pensated for by using new codes and procedures for
entanglement distillation. All codes are parametrized,
so that in an application, we can choose between
higher fidelities or higher total success probabilities.
While we indeed found that in some parameter ranges,
non-deterministic distillation procedures gave better
secret bit rates, this only occurred in the high-loss
regime in which direct transmission would deliver re-
sults of at least the same quality. This does not rule
out the possibility of increasing the rate by proba-
bilistic distillation, but the restricted set of state we
looked at might not be able to validate this.

While most of our studies were carried out on
qubits, we also investigated higher-dimensional car-
riers. For the particular case of pdist = 1, this corre-
sponds to qudit erasure correcting codes and can also
be extended to qudit quantum error correcting codes,
a subject with only few contributions so far [116–118].
For the case of the reduced erasure situation, we found
that sometimes, using higher-dimensional information
carriers instead of qubits can significantly boost the
fidelity, keeping the same distillation success probabil-
ity.

We showed that further advantage can be gained
if the receiver is able to choose the postprocessing
map dependent on the number of arrived states. Our
procedure was limited to the reduced erasure case, in
which we exploited the erasure information only by re-
moving failed slots from the input to the distillation
map, but not by choosing different maps for differ-
ent configurations. This approach facilitated a map-
ping to low-dimensional vector spaces, which allowed
us to carry out trustworthy simulations for a large
number of qubits. However, we also found that the
knowledge of the precise erasure configuration is actu-
ally able to significantly boost the distillation fidelity.
Hence, the results that are optimal in our scenario
can in fact be improved much further. While the full
Hilbert spaces are hardly tractable for larger number
of photons, it may be possible to use our results as
a starting point and single out various smaller-scaled
subproblems that arise from expanding the Dicke ba-
sis, which may then in fact render the full-dimensional
optimization feasible.

Our approach opens a new way to the task-driven
derivation of (probabilistic) error correcting or distil-
lation codes and is able to significantly enhance the
quality of signal transmission through lossy channels
even under the reduced erasure regime, which does not
exploit all available information. We expect that our
methodology can be applied to design other codes—
either of few qubits or exploiting symmetries—for ex-
ample to protect small registers for certain operations
in a quantum computer against noise and errors. The
advantage of the optimization procedure is that a bet-
ter characterization of the noise can directly mani-
fest in better protocols—provided effective states and
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maps can be devised from the intended ones linearly7.
We investigated entanglement generation as an el-

ementary building block of QKD. A set of proto-
cols for different parameters generated by numerical
studies as outlined in this paper can then be used
in other optimization algorithms that are concerned
with scaling up single-link connections to whole net-
works [119, 120].

We already pointed at direct possible sequels to
this work; in particular, trying to use the full informa-
tion available about the erasures should deliver much
more optimized schemes. A second step is to take into
account other typical sources of quantum errors in
channels, preparation and processing, and whether a
concatenation of loss-tolerant with standard QECCs
is able to provide sufficient protection. In this way,
we can find optimal realizations under realistic con-
straints, as opposed to the theoretical limits that we
considered in this paper.

Code and data availability
The full code to carry out the simulations is available
on GitHub [94]; see fig. 3 and the Readme of the repos-
itory for a brief overview. Numerical data is available
from the authors upon request.
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A State after partial tracing
In this appendix, we will determine the state of the system that arises from eq. (27) after tracing out r − s
subsystems at the receiver’s site. To begin with, the full state is given by

ρ =
1∑

a1,a2=0

∑
i,j∈[s]d

ρa1,a2(i, j) |a1D
s
i 〉〈a2D

s
j | , (27)

where [s]d is defined in eq. (28) and |Ds
i 〉 in eq. (29). The symmetry of the Dicke states makes it clear that it

does not matter which ones of the qudits are traced out; so let us without loss of generality assume that we
keep, at the receiver’s site, the first r qudits and trace out the remaining s− r qudits.

Let now i ∈ [s]d be fixed. To simplify the notation, we define

B(s, i) :=
{

(x1, . . . , xs) ∈ {0, . . . , d− 1}s :
∣∣{j : xj = m}

∣∣ = im ∀m ∈ {0, . . . , d− 1}
}

as the set over all d-ary strings of length s in which the digit m occurs im times. We can then write the definition
of the Dicke state as

|Ds
i 〉 = 1√(

s
i

) ∑
σ∈B(s,i)

| σ1︸ ︷︷ ︸
length r

σ2︸ ︷︷ ︸
length s−r

〉 ,

splitting the digit string σ into two parts.
We now consider how to properly split the sum in these two parts. We will use the vector k ∈ [r]d to describe

how often the individual digits occur in the first r digits, and k′ ∈ [s − r]d for the same in the rest. We have
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k + k′ = i. With this, we get∑
σ∈B(s,i)
τ∈B(s,j)

|σ〉〈τ | =
∑

k,`∈[r]d

∑
k′,`′∈[s−r]d

δk+k′,iδ`+`′,j

∑
σ1∈B(r,k)
τ1∈B(r,`)

∑
σ2∈B(s−r,k′)
τ2∈B(s−r,`′)

|σ1σ2〉〈τ1τ2| ,

where δ is Kronecker’s delta. The partial trace can now easily be written down:

tr2
∑

σ∈B(s,i)
τ∈B(s,j)

|σ〉〈τ | =
∑

k,`∈[r]d

∑
k′,`′∈[s−r]d

δk+k′,iδ`+`′,j

∑
σ1∈B(r,k)
τ1∈B(r,`)

|σ1〉〈τ1|
∑

σ2∈B(s−r,k′)
τ2∈B(s−r,`′)

〈σ2|τ2〉

︸ ︷︷ ︸
= (s−r

k′ )δk′,`′

,

where the multinomial coefficient was defined in eq. (30). We now insert the partial trace into ρ. Also note that
k′ ∈ [s− r]d is a redundant condition that is already enforced by the multinomial coefficient.

tr2 ρ =
1∑

a1,a2=0

∑
i,j∈[s]d

ρa1,a2(i, j)√(
s
i

)(
s
j

) ∑
k,`∈[r]d

∑
k′∈Zd

δk+k′,iδ`+k′,j

(
s− r
k′

) ∑
σ1∈B(r,k)
τ1∈B(r,`)

|a1σ1〉〈a2τ1|

=
1∑

a1,a2=0

∑
i,j∈[s]d

ρa1,a2(i, j)√(
s
i

)(
s
j

) ∑
k,`∈[r]d

∑
k′∈Zd

δk+k′,iδ`+k′,j

(
s− r
k′

)√(
r

k

)(
r

`

)
|a1D

r
k〉〈a2D

r
` |

Rearranging sums and removing δs gives

tr2 ρ =
1∑

a1,a2=0

∑
k,`∈[r]d

√(
r

k

)(
r

`

)
|a1D

r
k〉〈a2D

r
` |
∑

i,j∈[s]d

δ`+i−k,j
ρa1,a2(i, j)√(

s
i

)(
s
j

) (s− ri− k

)

=
1∑

a1,a2=0

∑
k,`∈[r]d

√(
r

k

)(
r

`

)
|a1D

r
k〉〈a2D

r
` |
∑
i∈[s]d

1[s]d(` + i− k)ρa1,a2(i, ` + i− k)√(
s
i

)(
s

`+i−k
) (

s− r
i− k

)

=
1∑

a1,a2=0

∑
k,`∈[r]d

√(
r

k

)(
r

`

)
|a1D

r
k〉〈a2D

r
` |

∑
i∈[s]d−k

1[s]d(` + i)ρa1,a2(i, i + `)√(
s
i

)(
s

i+`

) (
s− r
i

)
.

Here,

1M (x) :=
{

1 if x ∈M
0 else

is the indicator function. All reformulations are valid under the convention 0
0 = 0. Note that addends with

negative components in i are ruled out by the multinomial coefficient; and since k ∈ [r]d, subtracting k from a
vector in [s]d will give—apart from those with negative contributions—a vector in [s − r]d. In turn, ` + i will
then automatically be an element of [s]d, which finally gives

tr2 ρ =
1∑

a1,a2=0

∑
k,`∈[r]d

√(
r

k

)(
r

`

)
|a1D

r
k〉〈a2D

r
` |

∑
i∈[s−r]d

ρa1,a2(i + k, i + `)√(
s

i+k

)(
s

i+`

) (
s− r
i

)
. �

B Analytic forms for states and measurements
In this appendix, we will give some analytic forms that were derived from the numerical data of the optimal
states and measurements, as well as a few interesting purely numerical results. All results are only exemplary;
an immediate way to generate a variation is to flip the qubits at Alice’s or Bob’s site, or to replace all states
|Dx

y 〉 by |Dx
x−y〉.

Unless indicated differently, all results correspond to the case of unit probability, pdist = 1. In general, the
optimal states with lower success probability will continuously arise from them, but they will have many more
nonzero coefficients for which we cannot give an analytic form. As can be seen by the discontinuous slopes
in fig. 4, there are bifurcation points at which another structural branch of the state may happen to give the
optimal fidelity.

Finally, note that strictly speaking, unless F = 1, all results only give lower bounds for the maximization.
We will write P(|x〉) ≡ |x〉〈x|.
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B.1 Qubits
• If s ≥ 2r − 1 (high-loss regime), we have

C(E) = 2P
(
|0Dr

1〉+ |1Dr
0〉√

2

)
.

The sent state is

|ψ〉 =
√

r

r + s
|0Ds

1〉+
√

s

r + s
|1Ds

0〉

and the resulting fidelity is 1
2 + r

2s .

For p 6= 1, we find C(E) = 2P
(
|0Dr

1〉+α|1D
r
0〉−
√

1−α2|1Dr
2〉√

2

)
with a single free parameter α.

• For s− 1 = r > 2, we have

C(E) = 2P
(
|0Dr

2〉+ |1Dr
0〉√

2

)
+ 2P

(
|0Dr

1〉+ |1Dr
r〉√

2

)
.

The sent state is

|ψ〉 = |0D
s
2〉√
2

+

√
r − 1

2(r + 1) |1D
s
0〉+ 1√

r + 1
|1Ds

s〉

and the resulting fidelity is 1.

• For s− 2 = r > 4, we have

C(E) = 2P
(
|0Dr

1〉+ |1Dr
r−1〉√

2

)
+ 2P

(
|0Dr

2〉√
2

+ y |1Dr
0〉+ x |1Dr

r〉
)

+ 2P
(
x |0Dr

0〉 − y |0Dr
r〉+

|1Dr
r−2〉√
2

)
,

where x =
√

1
r(r−1) and y =

√
1
2 − x2. The sent state is

|ψ〉 = 1
2

√
1 + 2

r

[
|0Ds

2〉+ |1Ds
s−2〉

]
+ 1

2

√
1− 2

r

[
− |0Ds

s〉+ |1Ds
0〉
]
.

and the resulting fidelity is 1 (note 1 + 2
r = s

r ).

• For r = 3, s = 5, we have

C(E) = 2P
(
|0Dr

1〉+ |1Dr
3〉√

2

)
+ 2P

(
|0Dr

0〉+ |1Dr
2〉√

2

)
.

The sent state is

|ψ〉 = 1
2 |0D

s
1〉+

√
7
30 |0D

s
2〉+ 1√

6
|1Ds

3〉+
√

7
20 |1D

s
4〉 .

The fidelity is 4
5 .

• For r = 5, s = 8, we have

C(E) = 2P
(
|0Dr

1〉+ |1Dr
4〉√

2

)
+ 2P

(
|0Dr

2〉√
2

+ 3 |1Dr
0〉+ |1Dr

5〉
2
√

5

)
+ 2P

(
|0Dr

0〉 − 3 |0Dr
5〉

2
√

5
+ |1D

r
3〉√
2

)
.

The sent state is

|ψ〉 =
√

7
15 |0D

s
2〉 −

1√
30
|0Ds

7〉+ 2√
15
|1Ds

0〉+
√

7
30 |1D

s
5〉 .

The fidelity is 27
32 .
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• For r = 7, s = 10, we have

C(E) = 2P
(
a |0Dr

0〉 −
√

1
2 − a

2 |0Dr
4〉+ b |1Dr

2〉+
√

1
2 − b

2 |1Dr
6〉
)

+ 2P
(√

1
2 − b

2 |0Dr
1〉 − b |0Dr

5〉+
√

1
2 − a

2 |1Dr
3〉+ a |1Dr

7〉
)

+ 2P
(√

1
2 − b

2 |0Dr
2〉 − b |0Dr

6〉+ a |1Dr
4〉+

√
1
2 − a

2 |1Dr
0〉
)

+ 2P
(
−a |0Dr

3〉+
√

1
2 − a

2 |0Dr
7〉+

√
1
2 − b

2 |1Dr
5〉+ b |1Dr

1〉
)
.

The sent state is

|ψ〉 = x√
2
[
|0Ds

2〉+ |1Ds
8〉
]

+ y√
2
[
− |0Ds

6〉+ |1Ds
4〉
]

+
√

1− x2 − y2

2
[
|0Ds

10〉+ |1Ds
0〉
]
.

The fidelity is 0.97422, a ≈ 0.305, b ≈ 0.282, x ≈ 0.691, y ≈ 0.561.

• For r = 4, s = 6, we find an interesting behavior. The optimal fidelity is no longer achievable by a symmetric
state, in the sense that if |ψ〉 = |0〉 |φ0〉+ |1〉 |φ1〉, we find slight deviations from ‖|φ0〉‖ = ‖|φ1〉‖ = 1√

2 .

We have

C(E) = 2P
(
a |0Dr

1〉+
√

1− a2 |0Dr
4〉 − b |1Dr

0〉+
√

1− b2 |1Dr
3〉√

2

)
+ vP

(√
1− b2 |0Dr

0〉+ b |0Dr
3〉+

√
v − 1 |1Dr

2〉√
v

)
+ (3− v)P

(√
2− v |0Dr

2〉+
√

1− a2 |1Dr
1〉 − a |1Dr

4〉√
3− v

)
,

where v ≈ 2, a ≈ 1 and b ≈ 1√
2 .

The sent state is
|ψ〉 = m |0Ds

1〉+ n |0Ds
4〉+ o |1Ds

0〉+ p |1Ds
3〉+ q |1Ds

6〉 ,
where the prefactors must be determined numerically.

B.2 Qudits
• For d = 3, s = 3, r = 2, we now find unit fidelity (instead of 83.3 %). We have

C(E) = 2P
( |0D2

0,0,2〉 − |1D2
1,1,0〉√

2

)
+ 2P

( |0D2
0,2,0〉 − |1D2

1,0,1〉√
2

)
+ 2P

( |0D2
2,0,0〉 − |1D2

0,1,1〉√
2

)
.

The sent state is

|ψ〉 =
|0D3

0,0,3〉+ |0D3
0,3,0〉+ |0D3

3,0,0〉√
6

−
|1D3

1,1,1〉√
2

.

• For d = 3, s = 5, r = 3, we now find F = 89.1769 % (instead of 80 %). We have

C(E) = 2P
( |0D3

1,0,2〉 − |1D3
0,1,2〉√

2

)
+ 2P

( |0D3
1,2,0〉 − |1D3

0,2,1〉√
2

)
+ 2P

( |0D3
3,0,0〉 − |1D3

1,1,1〉√
2

)
+ 2P

( |0D3
0,0,3〉 − |0D3

0,3,0〉+ |1D3
2,0,1〉+ |1D3

2,1,0〉
2

)
+ 2P

( |0D3
0,0,3〉+ |0D3

0,3,0〉 − |1D3
2,0,1〉+ |1D3

2,1,0〉
2

)
.

The sent state is

|ψ〉 = α
[
|0D5

1,0,4〉 − |0D5
1,4,0〉

]
− β |0D5

5,0,0〉+ γ
[
− |1D5

0,1,4〉+ |1D5
0,4,1〉

]
+ δ |1D5

3,1,1〉 ,

where α ≈ 0.43, β ≈ 0.42, γ ≈ 0.22, δ ≈ 0.60. In fact, we can give analytical expressions in terms of the
roots of cubic polynomials. Here, Rn

(
P (x)

)
represents the nth real root (in ascending order, one-indexed)

of the polynomial P (x). The fidelity is 1
20
[
9 +R3(x3− 8x2− 23x+ 138)

]
, α2 = R3(1 471 632x3− 479 136x2 +

39 917x−324), β2 = R1(91 977x3−85 560x2+25 025x−2250), γ2 = R1(490 544x3−159 712x2+15 543x−432),
δ2 = R3(30 659x3 − 23 529x2 + 5400x− 324).
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C Previous analysis of redundant parity encoding
In section 2.2.2, we explained the redundant parity encoding and gave the probability of a successful correction
(or, in the language of our protocols, distillation),

pdist =
(
1− p̄mtrans

)n − (1− p̄mtrans − pmtrans
)n, (6)

where p̄trans := 1− ptrans. We noted that the previous analysis in [34] was overly optimistic, which we now want
to detail. Note that pdist is called Pf and ptrans is called P in [34]; we will use our notation also when we quote.

In [34], the authors describe “the probability of no photon arriving in the m photon logical qubit is pdist =
p̄mtrans” as well as “with n logical qubits, the probability we do not receive at least one logical qubit without error
is pdist = (1− pmtrans)n”. Their supplemental material suggests that they first determine m by requiring a certain
error rate pdist < (1 − ptrans)m, where pdist and ptrans are given. After this, they consider the requirement of
receiving at least one logical qubit intact and correspondingly adjust n so that pdist < (1−pmtrans)n also matches
the requirement; here, pdist, ptrans, and also m are given.

We will illustrate this by reconstructing the first entry, ptrans = 0.82, m = 4, n = 12, of their Table 1.
First, they want to put the probability that no physical qubit arrives from a logical qubit below the threshold
pdist < 0.001: (1− ptrans)m < 0.001. This gives m ≥ 4.02832, which they roughly translate to m = 4. Then, they
want to ensure that the probability not to receive at least one logical qubit completely is below the threshold:
(1− pmtrans)n < 0.001, which then, using m = 4, gives n ≥ 11.4804, i.e., n = 12. However, this completely ignores
that now with twelve logical qubits, the probability to have at least one physical qubit from each logical qubit
is actually far lower: when determining m, the calculation was based on the assumption of having only a single
logical qubit.

If we use their values of m, n and ptrans to correctly calculate the success probability with our eq. (6), we
end up at pdist = 0.986761—i.e., the failure probability is more than a percent, not less than a thousandth. In
fig. 14, we use our eq. (6) to check when the requirement pdist ≤ 0.001 first holds for the first couple values of n.

0 10 20 30 40 50 60 70 80 90 100
1

35

40

45

50

55

60

n

m
in

im
al
m

su
ch

th
at
p

di
st
<

0.
00

1

m ≥ 1
m ≥ 2

Figure 14: Minimal values of m (size of a block) and n (number of blocks) required in a redundant parity encoding such that
pdist < 0.001, with ptrans = 0.82. For n ≥ 35, we can already satisfy the condition without any inner encoding at all (m = 1);
if we disregard this possibility, the discontinuity vanishes in the plotted region.
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