Optimizing quantum codes with an application to the loss channel with partial erasure information

Benjamin Desef and Martin B. Plenio

Institute for Theoretical Physics & IQST, University of Ulm

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum error correcting codes (QECCs) are the means of choice whenever quantum systems suffer errors, e.g., due to imperfect devices, environments, or faulty channels. By now, a plethora of families of codes is known, but there is no universal approach to finding new or optimal codes for a certain task and subject to specific experimental constraints. In particular, once found, a QECC is typically used in very diverse contexts, while its resilience against errors is captured in a single figure of merit, the distance of the code. This does not necessarily give rise to the most efficient protection possible given a certain known error or a particular application for which the code is employed.
In this paper, we investigate the loss channel, which plays a key role in quantum communication, and in particular in quantum key distribution over long distances. We develop a numerical set of tools that allows to optimize an encoding specifically for recovering lost particles both deterministically and probabilistically, where some knowledge about $what$ was lost is available, and demonstrate its capabilities. This allows us to arrive at new codes ideal for the distribution of entangled states in this particular setting, and also to investigate if encoding in qudits or allowing for non-deterministic correction proves advantageous compared to known QECCs. While we here focus on the case of losses, our methodology is applicable whenever the errors in a system can be characterized by a known linear map.

► BibTeX data

► References

[1] C. H. Bennett and G. Brassard, in International Conference on Computers, Systems & Signal Processing, Vol. 1, edited by K. Soundararajan (1984) pp. 175–179; C. H. Bennett and G. Brassard, Theoretical Computer Science 560, 7 (2014), reprint of 1984.
https:/​/​doi.org/​10.1016/​j.tcs.2014.05.025

[2] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).
https:/​/​doi.org/​10.1103/​PhysRevLett.85.441

[3] R. Renner, Security of Quantum Key Distribution, Ph.D. thesis, Swiss Federal Institute of Technology, Zürich (2005), arXiv:quant-ph/​0512258v2.
arXiv:quant-ph/0512258v2

[4] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, et al., Rev. Mod. Phys. 81, 1301 (2009).
https:/​/​doi.org/​10.1103/​RevModPhys.81.1301

[5] G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (John Wiley & Sons, 2010).
https:/​/​doi.org/​10.1002/​9780470918524

[6] M. Takeoka, S. Guha, and M. M. Wilde, Nature Communications 5, 5235 (2014).
https:/​/​doi.org/​10.1038/​ncomms6235

[7] S. Pirandola, R. Laurenza, C. Ottaviani, et al., Nature Communications 8, 15043 (2017).
https:/​/​doi.org/​10.1038/​ncomms15043

[8] H.-J. Briegel, W. Dür, J. I. Cirac, et al., Phys. Rev. Lett. 81, 5932 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.5932

[9] N. Sangouard, C. Simon, H. de Riedmatten, et al., Rev. Mod. Phys. 83, 33 (2011).
https:/​/​doi.org/​10.1103/​RevModPhys.83.33

[10] K. Azuma, K. Tamaki, and H.-K. Lo, Nature Communications 6, 6787 (2015).
https:/​/​doi.org/​10.1038/​ncomms7787

[11] K. Azuma, A. Mizutani, and H.-K. Lo, Nature Communications 7, 13523 (2016).
https:/​/​doi.org/​10.1038/​ncomms13523

[12] S. Pirandola, Communications Physics 2, 51 (2019).
https:/​/​doi.org/​10.1038/​s42005-019-0147-3

[13] M. Peev, C. Pacher, R. Alléaume, et al., New Journal of Physics 11, 075001 (2009).
https:/​/​doi.org/​10.1088/​1367-2630/​11/​7/​075001

[14] M. Sasaki, M. Fujiwara, H. Ishizuka, et al., Opt. Express 19, 10387 (2011).
https:/​/​doi.org/​10.1364/​OE.19.010387

[15] D. Stucki, M. Legré, F. Buntschu, et al., New Journal of Physics 13, 123001 (2011).
https:/​/​doi.org/​10.1088/​1367-2630/​13/​12/​123001

[16] H.-K. Lo, H. F. Chau, and M. Ardehali, Journal of Cryptology 18, 133 (2005).
https:/​/​doi.org/​10.1007/​s00145-004-0142-y

[17] B. Kraus, N. Gisin, and R. Renner, Phys. Rev. Lett. 95, 080501 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.080501

[18] R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A 72, 012332 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.72.012332

[19] G. Smith, J. M. Renes, and J. A. Smolin, Phys. Rev. Lett. 100, 170502 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.170502

[20] C. E. Bradley, J. Randall, M. H. Abobeih, et al., Phys. Rev. X 9, 031045 (2019).
https:/​/​doi.org/​10.1103/​PhysRevX.9.031045

[21] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.R2493

[22] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
https:/​/​doi.org/​10.1103/​PhysRevLett.77.793

[23] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.55.900

[24] D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology, Pasadena (1997), arXiv:quant-ph/​9705052v1.
arXiv:quant-ph/9705052v1

[25] S. Muralidharan, L. Li, J. Kim, et al., Scientific Reports 6, 20463 (2016).
https:/​/​doi.org/​10.1038/​srep20463

[26] M. Grassl, T. Beth, and T. Pellizzari, Phys. Rev. A 56, 33 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.56.33

[27] J. L. Park, Foundations of Physics 1, 23 (1970).
https:/​/​doi.org/​10.1007/​BF00708652

[28] W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).
https:/​/​doi.org/​10.1038/​299802a0

[29] D. Dieks, Physics Letters A 92, 271 (1982).
https:/​/​doi.org/​10.1016/​0375-9601(82)90084-6

[30] E. M. Rains, R. H. Hardin, P. W. Shor, et al., Phys. Rev. Lett. 79, 953 (1997).
https:/​/​doi.org/​10.1103/​PhysRevLett.79.953

[31] J. A. Smolin, G. Smith, and S. Wehner, Phys. Rev. Lett. 99, 130505 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.99.130505

[32] S. Yu, Q. Chen, C. H. Lai, et al., Phys. Rev. Lett. 101, 090501 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.090501

[33] T. C. Ralph, A. J. F. Hayes, and A. Gil-christ, Phys. Rev. Lett. 95, 100501 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.100501

[34] W. J. Munro, A. M. Stephens, S. J. Devitt, et al., Nature Photonics 6, 777 (2012).
https:/​/​doi.org/​10.1038/​nphoton.2012.243

[35] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell's theorem, in Bell's Theorem, Quantum Theorey and Conceptions of the Universe, Fundamental Theories of Physics, Vol. 37, edited by M. Kafatos (Springer Netherlands, 1989) pp. 69–72, arXiv:0712.0921 [quant-ph].
https:/​/​doi.org/​10.1007/​978-94-017-0849-4
arXiv:0712.0921

[36] D. Bouwmeester, J.-W. Pan, M. Daniell, et al., Phys. Rev. Lett. 82, 1345 (1999).
https:/​/​doi.org/​10.1103/​PhysRevLett.82.1345

[37] M. Varnava, D. E. Browne, and T. Rudolph, Phys. Rev. Lett. 97, 120501 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.97.120501

[38] M. Varnava, D. E. Browne, and T. Rudolph, New Journal of Physics 9, 203 (2007).
https:/​/​doi.org/​10.1088/​1367-2630/​9/​6/​203

[39] N. Nickerson and H. Bombín, arXiv:1810.09621 [quant-ph] (2018).
arXiv:1810.09621

[40] T. V. Kondra, C. Datta, and A. Streltsov, arXiv:2111.12646 [quant-ph] (2021).
arXiv:2111.12646

[41] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, Phys. Rev. Lett. 78, 3217 (1997a).
https:/​/​doi.org/​10.1103/​PhysRevLett.78.3217

[42] D. Niemietz, P. Farrera, S. Langenfeld, et al., Nature 591, 570 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03290-z

[43] E. Distante, S. Daiss, S. Langenfeld, et al., Phys. Rev. Lett. 126, 253603 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.253603

[44] F. Ewert and P. van Loock, Phys. Rev. Lett. 113, 140403 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.140403

[45] M. Brekenfeld, D. Niemietz, J. D. Christesen, et al., Nature Physics 16, 647 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0855-3

[46] M. K. Bhaskar, R. Riedinger, B. Machielse, et al., Nature 580, 60 (2020).
https:/​/​doi.org/​10.1038/​s41586-020-2103-5

[47] N. Kalb, A. Reiserer, S. Ritter, et al., Phys. Rev. Lett. 114, 220501 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.220501

[48] P. S. Michelberger, J. Nunn, T. F. M. Champion, et al., in 2014 Conference on Lasers and Electro-Optics (CLEO) – Laser Science to Photonic Applications (IEEE, 2014) pp. 1–2.
https:/​/​doi.org/​10.1364/​CLEO_QELS.2014.FTu2A.5

[49] S. Muralidharan, J. Kim, N. Lütkenhaus, et al., Phys. Rev. Lett. 112, 250501 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.112.250501

[50] S.-W. Lee, T. C. Ralph, and H. Jeong, Phys. Rev. A 100, 052303 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.100.052303

[51] D. Alsina and M. Razavi, Phys. Rev. A 103, 022402 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.022402

[52] C. Simon, H. de Riedmatten, M. Afzelius, et al., Phys. Rev. Lett. 98, 190503 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.190503

[53] S. E. Vinay and P. Kok, Phys. Rev. A 95, 052336 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.052336

[54] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Phys. Rev. X 4, 041041 (2014).
https:/​/​doi.org/​10.1103/​PhysRevX.4.041041

[55] O. A. Collins, S. D. Jenkins, A. Kuzmich, et al., Phys. Rev. Lett. 98, 060502 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.060502

[56] W. J. Munro, K. A. Harrison, A. M. Stephens, et al., Nature Photonics 4, 792 (2010).
https:/​/​doi.org/​10.1038/​nphoton.2010.213

[57] C. Li, N. Jiang, Y.-K. Wu, et al., Phys. Rev. Lett. 124, 240504 (2020), and references therein.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.240504

[58] F. Verstraete, J. Dehaene, and B. DeMoor, Phys. Rev. A 64, 010101 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.010101

[59] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, et al., Phys. Rev. A 54, 3824 (1996a).
https:/​/​doi.org/​10.1103/​PhysRevA.54.3824

[60] D. Deutsch, A. Ekert, R. Jozsa, et al., Phys. Rev. Lett. 77, 2818 (1996); D. Deutsch, A. Ekert, R. Jozsa, et al., Phys. Rev. Lett. 80, 2022 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.77.2818

[61] C. Macchiavello, Physics Letters A 246, 385 (1998).
https:/​/​doi.org/​10.1016/​S0375-9601(98)00550-7

[62] N. Metwally, Phys. Rev. A 66, 054302 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.66.054302

[63] X.-L. Feng, S.-Q. Gong, and Z.-Z. Xu, Physics Letters A 271, 44 (2000); M. Okrasa and Z. Walczak, Physics Letters A 372, 3136 (2008); X.-L. Feng, S.-Q. Gong, and Z.-Z. Xu, Physics Letters A 372, 3337 (2008).
https:/​/​doi.org/​10.1016/​S0375-9601(00)00350-9

[64] N. Metwally and A.-S. Obada, Physics Letters A 352, 45 (2006).
https:/​/​doi.org/​10.1016/​j.physleta.2005.11.040

[65] X. Feng, Y. Xu, and Z. Zhang, Chinese Optics Letters 10, 042701 (2012).
https:/​/​doi.org/​10.3788/​col201210.042701

[66] L. Zhou, W. Zhong, and Y.-B. Sheng, Opt. Express 28, 2291 (2020).
https:/​/​doi.org/​10.1364/​OE.383499

[67] X.-M. Hu, C.-X. Huang, Y.-B. Sheng, et al., Phys. Rev. Lett. 126, 010503 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.010503

[68] J. Dehaene, M. Van den Nest, B. De Moor, et al., Phys. Rev. A 67, 022310 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.67.022310

[69] H. Bombin and M. A. Martin-Delgado, Phys. Rev. A 72, 032313 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.72.032313

[70] E. Hostens, J. Dehaene, and B. De Moor, Phys. Rev. A 73, 062337 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.73.062337

[71] F. Rozpędek, T. Schiet, L. P. Thinh, et al., Phys. Rev. A 97, 062333 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.062333

[72] S. Krastanov, V. V. Albert, and L. Jiang, Quantum 3, 123 (2019).
https:/​/​doi.org/​10.22331/​q-2019-02-18-123

[73] S. Jansen, K. Goodenough, S. de Bone, et al., arXiv:2103.03669 [quant-ph] (2021).
arXiv:2103.03669

[74] M. Bergmann and O. Gühne, Journal of Physics A: Mathematical and Theoretical 46, 385304 (2013).
https:/​/​doi.org/​10.1088/​1751-8113/​46/​38/​385304

[75] Y. Ouyang, Phys. Rev. A 90, 062317 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.062317

[76] Y. Ouyang, Linear Algebra and its Applications 532, 43 (2017).
https:/​/​doi.org/​10.1016/​j.laa.2017.06.031

[77] E. M. Rains, IEEE Transactions on Information Theory 45, 2361 (1999).
https:/​/​doi.org/​10.1109/​18.796376

[78] J. Dattorro, Convex Optimization $\dagger$ Euclidean Distance Geometry ($\mathcal M\epsilon\beta oo$ Publishing USA, 2019).
https:/​/​ccrma.stanford.edu/​~dattorro/​0976401304.pdf

[79] M. Dedeoğlu, Y. K. Alp, and O. Arıkan, IEEE Transactions on Signal Processing 64, 2209 (2016).
https:/​/​doi.org/​10.1109/​TSP.2016.2515062

[80] J. A. Nelder and R. Mead, The Computer Journal 7, 308 (1965).
https:/​/​doi.org/​10.1093/​comjnl/​7.4.308

[81] D. J. Wales and J. P. K. Doye, The Journal of Physical Chemistry A 101, 5111 (1997).
https:/​/​doi.org/​10.1021/​jp970984n

[82] The SciPy community, scipy.optimize.basinhopping, https:/​/​docs.scipy.org/​doc/​scipy/​reference/​generated/​scipy.optimize.basinhopping.html (2020a), accessed: 2020-06-25.
https:/​/​docs.scipy.org/​doc/​scipy/​reference/​generated/​scipy.optimize.basinhopping.html

[83] The SciPy community, scipy.optimize.minimize, https:/​/​docs.scipy.org/​doc/​scipy/​reference/​generated/​scipy.optimize.minimize.html (2020b), accessed: 2020-10-15.
https:/​/​docs.scipy.org/​doc/​scipy/​reference/​generated/​scipy.optimize.minimize.html

[84] N. Hansen, Y. Akimoto, and P. Baudis, CMA-ES/​pycma on Github, 10.5281/​zenodo.2559634 (2019).
https:/​/​doi.org/​10.5281/​zenodo.2559634

[85] D. Kraft, A Software Package for Sequential Quadratic Programming, Forschungsbericht (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, 1998).

[86] C. G. Broyden, IMA Journal of Applied Mathematics 6, 76 (1970).
https:/​/​doi.org/​10.1093/​imamat/​6.1.76

[87] R. Fletcher, The Computer Journal 13, 317 (1970).
https:/​/​doi.org/​10.1093/​comjnl/​13.3.317

[88] D. Goldfarb, Math. Comp. 24, 23 (1970).
https:/​/​doi.org/​10.1090/​S0025-5718-1970-0258249-6

[89] D. F. Shanno, Math. Comp. 24, 647 (1970).
https:/​/​doi.org/​10.1090/​S0025-5718-1970-0274029-X

[90] J. Nocedal and S. J. Wright, Quasi-Newton methods, in Numerical Optimization (Springer, 2006) pp. 135–163.
https:/​/​doi.org/​10.1007/​978-0-387-40065-5_6

[91] MOSEK ApS, MOSEK Optimizer API for Python (2020).
https:/​/​docs.mosek.com/​9.2/​pythonapi/​

[92] B. O'Donoghue, E. Chu, N. Parikh, et al., Journal of Optimization Theory and Applications 169, 1042 (2016).
https:/​/​doi.org/​10.1007/​s10957-016-0892-3

[93] B. O'Donoghue, E. Chu, N. Parikh, et al., SCS: Splitting conic solver, version 2.1.2, https:/​/​github.com/​cvxgrp/​scs (2019).
https:/​/​github.com/​cvxgrp/​scs

[94] B. Desef and M. B. Plenio, Protecting quantum states against loss, https:/​/​github.com/​projekter/​ChannelLoss (2021).
https:/​/​github.com/​projekter/​ChannelLoss

[95] R. Laflamme, C. Miquel, J. P. Paz, et al., Phys. Rev. Lett. 77, 198 (1996).
https:/​/​doi.org/​10.1103/​PhysRevLett.77.198

[96] Y. Xu, X. Feng, and Z. Zhang, Chin. Opt. Lett. 10, 042701 (2012).
https:/​/​doi.org/​10.3788/​COL201210.042701

[97] C. H. Bennett, G. Brassard, S. Popescu, et al., Phys. Rev. Lett. 76, 722 (1996b); C. H. Bennett, G. Brassard, S. Popescu, et al., Phys. Rev. Lett. 78, 2031 (1997b).
https:/​/​doi.org/​10.1103/​PhysRevLett.76.722

[98] K. Fujii and K. Yamamoto, Phys. Rev. A 80, 042308 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.80.042308

[99] J. von Neumann, Mathematical Foundations of Quantum Mechanics, edited by N. A. Wheeler (Princeton University Press, 2018).
https:/​/​doi.org/​10.1515/​9781400889921

[100] MOSEK Aps, MOSEK Modeling Cookbook (2021).
https:/​/​docs.mosek.com/​MOSEKModelingCookbook-a4paper.pdf

[101] D. B. Hume, C. W. Chou, T. Rosenband, et al., Phys. Rev. A 80, 052302 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.80.052302

[102] S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, New Journal of Physics 15, 023039 (2013).
https:/​/​doi.org/​10.1088/​1367-2630/​15/​2/​023039

[103] J. K. Stockton, R. van Handel, and H. Mabuchi, Phys. Rev. A 70, 022106 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.70.022106

[104] Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, Phys. Rev. A 75, 012310 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.012310

[105] X.-Q. Shao, L. Chen, S. Zhang, et al., EPL (Europhysics Letters) 90, 50003 (2010).
https:/​/​doi.org/​10.1209/​0295-5075/​90/​50003

[106] X. Zou, K. Pahlke, and W. Mathis, Phys. Rev. A 68, 034306 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.68.034306

[107] R. Prevedel, G. Cronenberg, M. S. Tame, et al., Phys. Rev. Lett. 103, 020503 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.020503

[108] W. Wieczorek, R. Krischek, N. Kiesel, et al., Phys. Rev. Lett. 103, 020504 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.020504

[109] A. Bärtschi and S. Eidenbenz, in Fundamentals of Computation Theory, edited by L. A. Gąsieniec, J. Jansson, and C. Levcopoulos (Springer International Publishing, Cham, 2019) pp. 126–139.
https:/​/​doi.org/​10.1007/​978-3-030-25027-0_9

[110] T. Keating, C. H. Baldwin, Y.-Y. Jau, et al., Phys. Rev. Lett. 117, 213601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.213601

[111] F. Mu, Y. Gao, H. Yin, et al., Opt. Express 28, 39574 (2020).
https:/​/​doi.org/​10.1364/​OE.412914

[112] S. Kasture, Phys. Rev. A 97, 043862 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.043862

[113] Z. Li, Y.-G. Han, H.-F. Sun, et al., Phys. Rev. A 103, 022601 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.022601

[114] M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1 (2007).
https:/​/​doi.org/​10.26421/​QIC7.1-2-1

[115] L. Gyongyosi, S. Imre, and H. V. Nguyen, IEEE Communications Surveys Tutorials 20, 1149 (2018).
https:/​/​doi.org/​10.1109/​COMST.2017.2786748

[116] E. Hostens, J. Dehaene, and B. De Moor, Phys. Rev. A 71, 042315 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.042315

[117] S. S. Bullock and G. K. Brennen, Journal of Physics A: Mathematical and Theoretical 40, 3481 (2007).
https:/​/​doi.org/​10.1088/​1751-8113/​40/​13/​013

[118] V. Gheorghiu, Physics Letters A 378, 505 (2014).
https:/​/​doi.org/​10.1016/​j.physleta.2013.12.009

[119] L. Jiang, J. M. Taylor, N. Khaneja, et al., Proceedings of the National Academy of Sciences 104, 17291 (2007).
https:/​/​doi.org/​10.1073/​pnas.0703284104

[120] K. Goodenough, D. Elkouss, and S. Wehner, Phys. Rev. A 103, 032610 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.032610

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 18:01:34). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-28 18:01:35).