On entanglement assistance to a noiseless classical channel
1Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117 Hungary
2Rényi Institute, Budapest, Reáltanoda u. 13-15, 1053 Hungary
3Budapest University of Technology and Economics (BME), Department of Analysis, H-1111 Budapest Műegyetem rkp. 3–9 Hungary
4MTA-BME Lendület Quantum Information Theory Research Group
Published: | 2022-03-01, volume 6, page 662 |
Eprint: | arXiv:2103.08567v3 |
Doi: | https://doi.org/10.22331/q-2022-03-01-662 |
Citation: | Quantum 6, 662 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
For a classical channel, neither the Shannon ca-pa-city, nor the sum of conditional probabilities corresponding to the cases of successful transmission can be increased by the use of shared entanglement, or, more generally, a non-signaling resource. Yet, perhaps somewhat counterintuitively, entanglement assistance can help and actually elevate the chances of success even in a one-way communicational task that is to be completed by a single-shot use of a noiseless classical channel.
To quantify the help that a non-signaling resource provides to a noiseless classical channel, one might ask how many extra letters should be added to the alphabet of the channel in order to perform equally well $without$ the specified non-signaling resource. As was observed by Cubitt, Leung, Matthews, and Winter, there is no upper bound on the number of extra letters required for substituting the assistance of a general non-signaling resource to a noiseless one-bit classical channel. In contrast, here we prove that if this resource is a bipartite quantum system in a maximally entangled state, then an extra classical bit always suffices as a replacement.
You can find the authors’ online classes related to this publication here.
► BibTeX data
► References
[1] A. Acín, T. Durt, N. Gisin and J. I. Latorre: Quantum nonlocality in two three-level systems. Phys. Rev. A 65 (2002), 052325. https://doi.org/10.1103/physreva.65.052325.
https://doi.org/10.1103/physreva.65.052325
[2] C. H. Bennett, P. W. Shor, J. A. Smolin and A. V. Thapliyal: Entanglement-Assisted Classical Capacity of Noisy Quantum Channels Phys. Rev. Lett. 83, (1999) 3081. https://doi.org/10.1103/PhysRevLett.83.3081.
https://doi.org/10.1103/PhysRevLett.83.3081
[3] C. H. Bennett and S. J. Wiesner: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69 (1992), pg. 2881–2884. https://doi.org/10.1103/PhysRevLett.69.2881.
https://doi.org/10.1103/PhysRevLett.69.2881
[4] T. S. Cubitt, D. Leung, W. Matthews and A. Winter: Improving Zero-Error Classical Communication with Entanglement. Phys. Rev. Lett. 104 (2010), 230503. https://doi.org/10.1103/PhysRevLett.104.230503.
https://doi.org/10.1103/PhysRevLett.104.230503
[5] T. S. Cubitt, D. Leung, W. Matthews and A. Winter: Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations. IEEE Trans. Inf. Theory 57 (2011), pg. 5509–5523. https://doi.org/10.1109/TIT.2011.2159047.
https://doi.org/10.1109/TIT.2011.2159047
[6] M. Dall'Arno, S. Brandsen, A. Tosini, F. Buscemi and V. Vedral: No-hypersignaling principle. Phys. Rev. Lett. 119 (2017), 020401. https://doi.org/10.1103/PhysRevLett.119.020401.
https://doi.org/10.1103/PhysRevLett.119.020401
[7] P. E. Frenkel, Classical simulations of communication channels, arXiv: 2101.10985.
[8] P. E. Frenkel and M. Weiner: Classical information storage in an $n$-level quantum system. Commun. Math. Phys. 340 (2015), pg. 563–574. https://doi.org/10.1007/s00220-015-2463-0.
https://doi.org/10.1007/s00220-015-2463-0
[9] S. Hao, H. Shi, W. Li, Q. Zhuang and Z. Zhang: Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. Phys. Rev. Lett. 126, (2021) 250501. https://doi.org/10.1103/PhysRevLett.126.250501.
https://doi.org/10.1103/PhysRevLett.126.250501
[10] F. Leditzky, M. A. Alhejji, J. Levin and G. Smith: Playing games with multiple access channels. Nat. Commun. 11, (2020) 1497. https://doi.org/10.1038/s41467-020-15240-w.
https://doi.org/10.1038/s41467-020-15240-w
[11] L. Lovász and M. D. Plummer: Matching Theory. North-Holland, 1986.
[12] L. Mančinska and D. E. Roberson: Quantum homomorphisms. J. Comb. Theory Ser. B. 118 (2016), pg. 228–267. https://doi.org/10.4230/LIPIcs.TQC.2014.212.
https://doi.org/10.4230/LIPIcs.TQC.2014.212
[13] K. Matsumoto and G. Kimura: Information storing yields a point-asymmetry of state space in general probabilistic theories. arXiv:1802.01162.
arXiv:1802.01162
[14] M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter and M. Zukowski: Information causality as a physical principle. Nature 461 (2009), pg. 1101–1104. https://doi.org/10.1038/nature08400.
https://doi.org/10.1038/nature08400
[15] S. Popescu and D. Rohrlich: Quantum nonlocality as an axiom. Found. Phys. 24, pg. (1994) 379–385. https://doi.org/10.1007/BF02058098.
https://doi.org/10.1007/BF02058098
Cited by
[1] Michele Dall'Arno, "The signaling dimension of physical systems", Quantum Views 6, 66 (2022).
[2] Jef Pauwels, Stefano Pironio, Emmanuel Zambrini Cruzeiro, and Armin Tavakoli, "Adaptive Advantage in Entanglement-Assisted Communications", Physical Review Letters 129 12, 120504 (2022).
[3] Martin J. Renner, Armin Tavakoli, and Marco Túlio Quintino, "Classical Cost of Transmitting a Qubit", Physical Review Letters 130 12, 120801 (2023).
[4] Eric Chitambar, Ian George, Brian Doolittle, and Marius Junge, "The Communication Value of a Quantum Channel", IEEE Transactions on Information Theory 69 3, 1660 (2023).
[5] Jef Pauwels, Armin Tavakoli, Erik Woodhead, and Stefano Pironio, "Entanglement in prepare-and-measure scenarios: many questions, a few answers", New Journal of Physics 24 6, 063015 (2022).
[6] Armin Tavakoli, Jef Pauwels, Erik Woodhead, and Stefano Pironio, "Correlations in Entanglement-Assisted Prepare-and-Measure Scenarios", PRX Quantum 2 4, 040357 (2021).
[7] Vaisakh M, Ram krishna Patra, Mukta Janpandit, Samrat Sen, Manik Banik, and Anubhav Chaturvedi, "Mutually unbiased balanced functions and generalized random access codes", Physical Review A 104 1, 012420 (2021).
The above citations are from Crossref's cited-by service (last updated successfully 2023-05-29 21:30:02) and SAO/NASA ADS (last updated successfully 2023-05-29 21:30:03). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.