Gottesman-Kitaev-Preskill codes: A lattice perspective

Jonathan Conrad1,2, Jens Eisert1,2, and Francesco Arzani1

1Dahlem Center for Complex Quantum Systems, Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We examine general Gottesman-Kitaev-Preskill (GKP) codes for continuous-variable quantum error correction, including concatenated GKP codes, through the lens of lattice theory, in order to better understand the structure of this class of stabilizer codes. We derive formal bounds on code parameters, show how different decoding strategies are precisely related, propose new ways to obtain GKP codes by means of glued lattices and the tensor product of lattices and point to natural resource savings that have remained hidden in recent approaches. We present general results that we illustrate through examples taken from different classes of codes, including scaled self-dual GKP codes and the concatenated surface-GKP code.

Error correction is extremely important in quantum computers because quantum systems are very shy: as soon as someone observes them, they stop displaying their most peculiar features. If the state was supposed to encode some information to transmit or process, uncontrolled interactions of the system with its surroundings may result in logical errors. To overcome this, some form of error correction must be used: instead of being directly printed onto a quantum system, information is embedded into some larger space in such a way as to be screened from the typical interactions that occur with the environment. The embedding is called error correcting code. Bosonic codes embed finite systems (such as qubits) into infinite-dimensional ones. Here we are interested in so-called Gottesman-Kitaev-Preskill (GKP) codes, named after their inventors. They rely on discrete translation symmetries in the phase space of an ensemble of harmonic oscillators. Such symmetries are represented by lattices, which are mathematical objects studied in many branches of pure and applied mathematics and information science. This article elaborates on general methods to analyse and construct GKP codes grounded on results from lattice theory.

► BibTeX data

► References

[1] D. Gottesman, A. Kitaev, and J. Preskill. ``Encoding a qubit in an oscillator''. Phys. Rev. A 64, 012310 (2001).

[2] B. M. Terhal, J. Conrad, and C. Vuillot. ``Towards scalable bosonic quantum error correction''. Quantum Science and Technology 5, 043001 (2020).

[3] A. L. Grimsmo and S. Puri. ``Quantum error correction with the Gottesman-Kitaev-Preskill code''. PRX Quantum 2, 020101 (2021).

[4] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais, and et al. ``Blueprint for a scalable photonic fault-tolerant quantum computer''. Quantum 5, 392 (2021).

[5] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, and C. Sparrow. ``Fusion-based quantum computation'' (2021). arXiv:2101.09310.

[6] K. Noh, C. Chamberland, and F. G. S. L. Brandão. ``Low-overhead fault-tolerant quantum error correction with the surface-GKP code''. PRX Quantum 3, 010315 (2022).

[7] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home. ``Encoding a qubit in a trapped-ion mechanical oscillator''. Nature 566, 513–517 (2019).

[8] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, and et al. ``Quantum error correction of a qubit encoded in grid states of an oscillator''. Nature 584, 368–372 (2020).

[9] K. Fukui, A. Tomita, and A. Okamoto. ``Analog quantum error correction with encoding a qubit into an oscillator''. Phys. Rev. Lett. 119, 180507 (2017).

[10] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal. ``Quantum error correction with the toric Gottesman-Kitaev-Preskill code''. Phys. Rev. A 99, 032344 (2019).

[11] K. Noh and C. Chamberland. ``Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code''. Phys. Rev. A 101, 012316 (2020).

[12] L. Hänggli, M. Heinze, and R. König. ``Enhanced noise resilience of the surface–gottesman-kitaev-preskill code via designed bias''. Phys. Rev. A 102 (2020).

[13] J. W. Harrington. ``Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes''. PhD thesis. California Institute of Technology. (2004).

[14] J. Harrington and J. Preskill. ``Achievable rates for the Gaussian quantum channel''. Phys. Rev. A 64, 062301 (2001).

[15] L. Hänggli and R. König. ``Oscillator-to-oscillator codes do not have a threshold''. IEEE Transactions on Information Theory 68, 1068–1084 (2022).

[16] J. Conway and N. Sloane. ``Sphere packings, lattices and groups''. Volume 290. Springer, New York, NY (1988).

[17] P. Shor and R. Laflamme. ``Quantum analog of the macwilliams identities for classical coding theory''. Phys. Rev. Lett. 78, 1600–1602 (1997).

[18] E. M. Rains. ``Quantum weight enumerators''. IEEE Trans. Inf. Th. 44, 1388–1394 (1998).

[19] D. Micciancio. ``Cse 206a: Lattice algorithms and applications''. url: http:/​/​​classes/​wi10/​cse206a/​.

[20] D. E. Gottesman. ``Stabilizer codes and quantum error correction''. PhD thesis. California Institute of Technology. (1997).

[21] Arvind, B. Dutta, N. Mukunda, and R. Simon. ``The real symplectic groups in quantum mechanics and optics''. Pramana 45, 471–497 (1995).

[22] K. Duivenvoorden, B.M. Terhal, and D. Weigand. ``Single-mode displacement sensor''. Phys. Rev. A 95, 012305 (2017).

[23] K. Noh, S. M. Girvin, and L. Jiang. ``Encoding an oscillator into many oscillators''. Phys. Rev. Lett. 125, 080503 (2020).

[24] N. P. Breuckmann. ``Homological quantum codes beyond the toric code''. PhD thesis. RWTH Aachen University. (2017).

[25] S. B. Bravyi and A. Yu. Kitaev. ``Quantum codes on a lattice with boundary'' (1998). arXiv:quant-ph/​9811052.

[26] Y. Tomita and K. M. Svore. ``Low-distance surface codes under realistic quantum noise''. Phys. Rev. A 90 (2014).

[27] D. Micciancio and B. Warinschi. ``A linear space algorithm for computing the Hermite normal form''. In Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation. Page 231–236. ISSAC '01New York, NY, USA (2001). Association for Computing Machinery.

[28] D. Micciancio. ``Improving lattice based cryptosystems using the Hermite normal form''. In Lecture Notes in Computer Science. Pages 126–145. Springer Berlin Heidelberg (2001).

[29] C. Hermite. ``Sur l'introduction des variables continues dans la théorie des nombres.''. J. Reine Angew. Math 1851, 191–216 (1851).

[30] A. Lenstra, H. Lenstra, and L. Lovász. ``Factoring polynomials with rational coefficients''. Mathematische Annalen 261, 515–534 (1982).

[31] K. Chandrasekaran, V. Gandikota, and E. Grigorescu. ``Deciding orthogonality in Construction-A Lattices''. In P. Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Volume 45 of Leibniz International Proceedings in Informatics (LIPIcs), pages 151–162. Dagstuhl, Germany (2015). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[32] ``Lattice completion algorithm''. https:/​/​​frarzani/​GKP-lattice-reduction.

[33] A. Y. Kitaev. ``Fault-tolerant quantum computation by anyons''. Ann. Phys. 303, 2–30 (2003).

[34] K. Noh, V. V. Albert, and L. Jiang. ``Quantum capacity bounds of Gaussian thermal loss channels and achievable rates with Gottesman-Kitaev-Preskill codes''. IEEE Trans. Inf. Th. 65, 2563–2582 (2019).

[35] S. Glancy and E. Knill. ``Error analysis for encoding a qubit in an oscillator''. Phys. Rev. A 73 (2006).

[36] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K. Sabapathy. ``Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes''. Phys. Rev. A 101, 032315 (2020).

[37] J. Conrad. ``Twirling and Hamiltonian engineering via dynamical decoupling for Gottesman-Kitaev-Preskill quantum computing''. Phys. Rev. A 103 (2021).

[38] P. Sarnak and P. Buser. ``On the period matrix of a Riemann surface of large genus (with an Appendix by J. H. Conway and N. J. A. Sloane)''. Inventiones mathematicae 117, 27–56 (1994). url: http:/​/​​doc/​144207.

[39] S. L. Braunstein. ``Squeezing as an irreducible resource''. Phys. Rev. A 71, 055801 (2005).

[40] L. Babai. ``On lovász' lattice reduction and the nearest lattice point problem''. Combinatorica 6, 1–13 (1986).

[41] N. D. Elkies. ``Rational lattices and their theta functions''. url: http:/​/​​ elkies/​M272.19/​index.html.

[42] E. Knill, R. Laflamme, and L. Viola. ``Theory of quantum error correction for general noise''. Phys. Rev. Lett. 84, 2525–2528 (2000).

[43] Y. Tian, X. Zhu, and R. Sun. ``Modular form approach to solving lattice problems''. In T. V. Gopal, M Agrawal, A Li, and S. B. Cooper, editors, Theory and Applications of Models of Computation. Pages 401–421. Cham (2014). Springer International Publishing.

[44] S. Bravyi, M. Suchara, and A. Vargo. ``Efficient algorithms for maximum likelihood decoding in the surface code''. Phys. Rev. A 90 (2014).

[45] T. Gannon. ``Lattices and theta functions''. PhD thesis. McGill University (Canada). (1991). url:​concern/​theses/​rr171z009.

[46] J.-P. Tillich and G. Zemor. ``Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the block length''. IEEE Trans. Inf. Th. 60, 1193–1202 (2014).

[47] S. Bravyi and M. B. Hastings. ``Homological product codes''. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing. Page 273–282. STOC '14New York, NY, USA (2014). Association for Computing Machinery.

[48] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. ``Topological quantum memory''. J. Math. Phys. 43, 4452–4505 (2002).

[49] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T.C. Ralph, J.H. Shapiro, and S. Lloyd. ``Gaussian quantum information''. Rev. Mod. Phys. 84, 621–669 (2012).

[50] J. Eisert and M. B. Plenio. ``Introduction to the basics of entanglement theory in continuous-variable systems''. Int. J. Quant. Inf. 1, 479 (2003).

[51] W. Wirtinger. ``Untersuchungen über Thetafunctionen.''. B. G. Teubner. (1895).

[52] L. J. Mensen, B. Q. Baragiola, and N. C. Menicucci. ``Phase-space methods for representing, manipulating, and correcting Gottesman-Kitaev-Preskill qubits''. Phys. Rev. A 104, 022408 (2021).

[53] K. Duivenvoorden, B. M. Terhal, and D. Weigand. ``Single-mode displacement sensor''. Phys. Rev. A 95, 012305 (2017).

Cited by

[1] Ching-Yi Lai and Hao-Chung Cheng, "Learning Quantum Circuits of Some T Gates", IEEE Transactions on Information Theory 68 6, 3951 (2022).

[2] Frank Schmidt and Peter van Loock, "Quantum error correction with higher Gottesman-Kitaev-Preskill codes: Minimal measurements and linear optics", Physical Review A 105 4, 042427 (2022).

[3] Baptiste Royer, Shraddha Singh, and S.M. Girvin, "Encoding Qubits in Multimode Grid States", PRX Quantum 3 1, 010335 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2022-05-29 04:24:42). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-29 04:24:42).