Identification of quantum scars via phase-space localization measures
1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, C.P. 04510 CDMX, Mexico
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340 CDMX, Mexico
4Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, C.P. 91000 Xalapa, Veracruz, Mexico
5Department of Physics, Yeshiva University, New York, New York 10016, USA
Published: | 2022-02-08, volume 6, page 644 |
Eprint: | arXiv:2107.06894v2 |
Doi: | https://doi.org/10.22331/q-2022-02-08-644 |
Citation: | Quantum 6, 644 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
There is no unique way to quantify the degree of delocalization of quantum states in unbounded continuous spaces. In this work, we explore a recently introduced localization measure that quantifies the portion of the classical phase space occupied by a quantum state. The measure is based on the $\alpha$-moments of the Husimi function and is known as the Rényi occupation of order $\alpha$. With this quantity and random pure states, we find a general expression to identify states that are maximally delocalized in phase space. Using this expression and the Dicke model, which is an interacting spin-boson model with an unbounded four-dimensional phase space, we show that the Rényi occupations with $\alpha \gt 1$ are highly effective at revealing quantum scars. Furthermore, by analyzing the high moments ($\alpha \gt 1$) of the Husimi function, we are able to identify qualitatively and quantitatively the unstable periodic orbits that scar some of the eigenstates of the model.

► BibTeX data
► References
[1] Alexander Altland and Fritz Haake. Equilibration and macroscopic quantum fluctuations in the Dicke model. New J. Phys., 14 (7): 073011, 2012. 10.1088/1367-2630/14/7/073011.
https://doi.org/10.1088/1367-2630/14/7/073011
[2] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109: 1492–1505, 1958. 10.1103/PhysRev.109.1492.
https://doi.org/10.1103/PhysRev.109.1492
[3] Y. Y. Atas and E. Bogomolny. Multifractality of eigenfunctions in spin chains. Phys. Rev. E, 86: 021104, 2012. 10.1103/PhysRevE.86.021104.
https://doi.org/10.1103/PhysRevE.86.021104
[4] Y. Y. Atas and E. Bogomolny. Calculation of multi-fractal dimensions in spin chains. Phil. Trans. R. Soc. A, 372, 2014. 10.1098/rsta.2012.0520.
https://doi.org/10.1098/rsta.2012.0520
[5] Markus P. Baden, Kyle J. Arnold, Arne L. Grimsmo, Scott Parkins, and Murray D. Barrett. Realization of the Dicke model using cavity-assisted Raman transitions. Phys. Rev. Lett., 113: 020408, 2014. 10.1103/PhysRevLett.113.020408.
https://doi.org/10.1103/PhysRevLett.113.020408
[6] L. Bakemeier, A. Alvermann, and H. Fehske. Dynamics of the Dicke model close to the classical limit. Phys. Rev. A, 88: 043835, 2013. 10.1103/PhysRevA.88.043835.
https://doi.org/10.1103/PhysRevA.88.043835
[7] M. Baranger, K.T.R. Davies, and J.H. Mahoney. The calculation of periodic trajectories. Ann. of Phys., 186 (1): 95–110, 1988. 10.1016/s0003-4916(88)80018-6.
https://doi.org/10.1016/s0003-4916(88)80018-6
[8] D. M. Basko, I. L. Aleiner, and B. L. Altshuler. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys., 321: 1126, 2006. 10.1016/j.aop.2005.11.014.
https://doi.org/10.1016/j.aop.2005.11.014
[9] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Comparative quantum and semiclassical analysis of atom-field systems. I. Density of states and excited-state quantum phase transitions. Phys. Rev. A, 89: 032101, 2014a. 10.1103/PhysRevA.89.032101.
https://doi.org/10.1103/PhysRevA.89.032101
[10] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity. Phys. Rev. A, 89: 032102, 2014b. 10.1103/PhysRevA.89.032102.
https://doi.org/10.1103/PhysRevA.89.032102
[11] Miguel Angel Bastarrachea-Magnani, Baldemar López-del-Carpio, Sergio Lerma-Hernández, and Jorge G Hirsch. Chaos in the Dicke model: quantum and semiclassical analysis. Phys. Scripta, 90 (6): 068015, 2015. 10.1088/0031-8949/90/6/068015.
https://doi.org/10.1088/0031-8949/90/6/068015
[12] B. Batistic, Č Lozej, and M. Robnik. The distribution of localization measures of chaotic eigenstates in the stadium billiard. Nonlinear Phenomena in Complex Systems, 23 (1): 17–32, 2020. ISSN 1561-4085. 10.33581/1561-4085-2020-23-1-17-32.
https://doi.org/10.33581/1561-4085-2020-23-1-17-32
[13] Benjamin Batistić and Marko Robnik. Semiempirical theory of level spacing distribution beyond the Berry–Robnik regime: modeling the localization and the tunneling effects. Jour. Phys. A, 43 (21): 215101, 2010. 10.1088/1751-8113/43/21/215101.
https://doi.org/10.1088/1751-8113/43/21/215101
[14] Benjamin Batistić and Marko Robnik. Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates. J. Phys. A, 46 (31): 315102, 2013a. 10.1088/1751-8113/46/31/315102.
https://doi.org/10.1088/1751-8113/46/31/315102
[15] Benjamin Batistić and Marko Robnik. Quantum localization of chaotic eigenstates and the level spacing distribution. Phys. Rev. E, 88: 052913, 2013b. 10.1103/PhysRevE.88.052913.
https://doi.org/10.1103/PhysRevE.88.052913
[16] Benjamin Batistić, Črt Lozej, and Marko Robnik. Statistical properties of the localization measure of chaotic eigenstates and the spectral statistics in a mixed-type billiard. Phys. Rev. E, 100: 062208, 2019. 10.1103/PhysRevE.100.062208.
https://doi.org/10.1103/PhysRevE.100.062208
[17] Michael Victor Berry. Quantum scars of classical closed orbits in phase space. Proc. of the R. Soc. of London. A., 423 (1864): 219–231, 1989. 10.1098/rspa.1989.0052.
https://doi.org/10.1098/rspa.1989.0052
[18] R. Blümel and U. Smilansky. Localization of Floquet states in the rf excitation of Rydberg atoms. Phys. Rev. Lett., 58: 2531–2534, 1987. 10.1103/PhysRevLett.58.2531.
https://doi.org/10.1103/PhysRevLett.58.2531
[19] Fausto Borgonovi, Giulio Casati, and Baowen Li. Diffusion and localization in chaotic billiards. Phys. Rev. Lett., 77: 4744–4747, 1996. 10.1103/PhysRevLett.77.4744.
https://doi.org/10.1103/PhysRevLett.77.4744
[20] G. Casati, B.V. Chirikov, D. L. Shepelyansky, and I. Guarnesi. Relevance of classical chaos in quantum mechanics: The Hydrogen atom in a monochromatic field. Phys. Rep., 154: 77–123, 1987. 10.1016/0370-1573(87)90009-3.
https://doi.org/10.1016/0370-1573(87)90009-3
[21] G. Casati, B. V. Chirikov, I. Guarneri, and F. M. Izrailev. Band-random-matrix model for quantum localization in conservative systems. Phys. Rev. E, 48: R1613–R1616, 1993. 10.1103/PhysRevE.48.R1613.
https://doi.org/10.1103/PhysRevE.48.R1613
[22] Giulio Casati, B. V. Chirikov, and D. L. Shepelyansky. Quantum limitations for chaotic excitation of the Hydrogen atom in a monochromatic field. Phys. Rev. Lett., 53: 2525–2528, 1984. 10.1103/PhysRevLett.53.2525.
https://doi.org/10.1103/PhysRevLett.53.2525
[23] J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Classical chaos in atom-field systems. Phys. Rev. E, 94: 022209, 2016. 10.1103/PhysRevE.94.022209.
https://doi.org/10.1103/PhysRevE.94.022209
[24] Jorge Chávez-Carlos, B. López-del-Carpio, Miguel A. Bastarrachea-Magnani, Pavel Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Quantum and classical Lyapunov exponents in atom-field interaction systems. Phys. Rev. Lett., 122: 024101, 2019. 10.1103/PhysRevLett.122.024101.
https://doi.org/10.1103/PhysRevLett.122.024101
[25] B.V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky. Dynamical stochasticity in classical and quantum mechanics. Sov. Scient. Rev. C, 2: 209–267, 1981. ISSN 0143-0416.
[26] J Cohn, A Safavi-Naini, R J Lewis-Swan, J G Bohnet, M Gärttner, K A Gilmore, J E Jordan, A M Rey, J J Bollinger, and J K Freericks. Bang-bang shortcut to adiabaticity in the Dicke model as realized in a penning trap experiment. New J. Phys., 20 (5): 055013, 2018. 10.1088/1367-2630/aac3fa.
https://doi.org/10.1088/1367-2630/aac3fa
[27] M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and M. C. Nemes. Particle-spin coupling in a chaotic system: Localization-delocalization in the Husimi distributions. EPL (Europhys. Lett.), 15 (2): 125, 1991. 10.1209/0295-5075/15/2/003.
https://doi.org/10.1209/0295-5075/15/2/003
[28] M.A.M. de Aguiar and C.P. Malta. Isochronous and period doubling bifurcations of periodic solutions of non-integrable Hamiltonian systems with reflexion symmetries. Physica D, 30 (3): 413–424, 1988. 10.1016/0167-2789(88)90029-2.
https://doi.org/10.1016/0167-2789(88)90029-2
[29] M.A.M de Aguiar, K Furuya, C.H Lewenkopf, and M.C Nemes. Chaos in a spin-boson system: Classical analysis. Ann. Phys., 216 (2): 291 – 312, 1992. ISSN 0003-4916. 10.1016/0003-4916(92)90178-O.
https://doi.org/10.1016/0003-4916(92)90178-O
[30] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93: 99, 1954. 10.1103/PhysRev.93.99.
https://doi.org/10.1103/PhysRev.93.99
[31] J T Edwards and D J Thouless. Numerical studies of localization in disordered systems. J. Phys. C, 5 (8): 807–820, 1972. 10.1088/0022-3719/5/8/007.
https://doi.org/10.1088/0022-3719/5/8/007
[32] Clive Emary and Tobias Brandes. Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E, 67: 066203, 2003. 10.1103/PhysRevE.67.066203.
https://doi.org/10.1103/PhysRevE.67.066203
[33] S. Fishman. Anderson localization and quantum chaos maps. Scholarpedia, 5 (8): 9816, 2010. 10.4249/scholarpedia.9816. revision #186577.
https://doi.org/10.4249/scholarpedia.9816
[34] Shmuel Fishman, D. R. Grempel, and R. E. Prange. Chaos, quantum recurrences, and Anderson localization. Phys. Rev. Lett., 49: 509–512, 1982. 10.1103/PhysRevLett.49.509.
https://doi.org/10.1103/PhysRevLett.49.509
[35] K Furuya, M.A.M de Aguiar, C.H Lewenkopf, and M.C Nemes. Husimi distributions of a spin-boson system and the signatures of its classical dynamics. Ann. of Phys., 216 (2): 313–322, 1992. 10.1016/0003-4916(92)90179-p.
https://doi.org/10.1016/0003-4916(92)90179-p
[36] Barry M. Garraway. The Dicke model in quantum optics: Dicke model revisited. Philos. Trans. Royal Soc. A, 369: 1137, 2011. 10.1098/rsta.2010.0333.
https://doi.org/10.1098/rsta.2010.0333
[37] Sven Gnutzmann and Karol Zyczkowski. Rényi-Wehrl entropies as measures of localization in phase space. J. Phys. A, 34 (47): 10123–10139, 2001. 10.1088/0305-4470/34/47/317.
https://doi.org/10.1088/0305-4470/34/47/317
[38] M. C. Gutzwiller. Chaos in classical and quantum mechanics. Springer-Verlag, New York, 1990.
[39] Martin C. Gutzwiller. Periodic orbits and classical quantization conditions. J. Math. Phys., 12 (3): 343–358, 1971. 10.1063/1.1665596.
https://doi.org/10.1063/1.1665596
[40] E. J. Heller. Wavepacket dynamics and quantum chaology. In M.-J. Giannoni, A. Voros, and J. Zinn Justin, editors, Les Houches Summer School 1991 on Chaos and Quantum Physics. Springer, 1991.
[41] Eric J. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits. Phys. Rev. Lett., 53: 1515–1518, 1984. 10.1103/PhysRevLett.53.1515.
https://doi.org/10.1103/PhysRevLett.53.1515
[42] Eric J. Heller. Quantum localization and the rate of exploration of phase space. Phys. Rev. A, 35: 1360–1370, 1987. 10.1103/PhysRevA.35.1360.
https://doi.org/10.1103/PhysRevA.35.1360
[43] Klaus Hepp and Elliott H Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Ann. Phys. (N.Y.), 76 (2): 360 – 404, 1973a. ISSN 0003-4916. 10.1016/0003-4916(73)90039-0.
https://doi.org/10.1016/0003-4916(73)90039-0
[44] Klaus Hepp and Elliott H. Lieb. Equilibrium statistical mechanics of matter interacting with the quantized radiation field. Phys. Rev. A, 8: 2517–2525, 1973b. 10.1103/PhysRevA.8.2517.
https://doi.org/10.1103/PhysRevA.8.2517
[45] Kôdi Husimi. Some Formal Properties of the Density Matrix. Proc. Phys.-Math. Soc. of Jap., 22 (4): 264–314, 1940. 10.11429/ppmsj1919.22.4_264.
https://doi.org/10.11429/ppmsj1919.22.4_264
[46] F. M. Izrailev. Simple models of quantum chaos: Spectrum and eigenfunctions. Phys. Rep., 196: 299–392, 1990. 10.1016/0370-1573(90)90067-C.
https://doi.org/10.1016/0370-1573(90)90067-C
[47] Tuomas Jaako, Ze-Liang Xiang, Juan José Garcia-Ripoll, and Peter Rabl. Ultrastrong-coupling phenomena beyond the Dicke model. Phys. Rev. A, 94: 033850, 2016. 10.1103/PhysRevA.94.033850.
https://doi.org/10.1103/PhysRevA.94.033850
[48] K R W Jones. Entropy of random quantum states. J. Phys. A, 23 (23): L1247–L1251, 1990. 10.1088/0305-4470/23/23/011.
https://doi.org/10.1088/0305-4470/23/23/011
[49] Shane P. Kelly, Eddy Timmermans, and S.-W. Tsai. Thermalization and its breakdown for a large nonlinear spin. Phys. Rev. A, 102: 052210, 2020. 10.1103/PhysRevA.102.052210.
https://doi.org/10.1103/PhysRevA.102.052210
[50] Peter Kirton, Mor M. Roses, Jonathan Keeling, and Emanuele G. Dalla Torre. Introduction to the Dicke model: From equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol., 2 (1-2): 1800043, 2019. 10.1002/qute.201800043.
https://doi.org/10.1002/qute.201800043
[51] Michal Kloc, Pavel Stránský, and Pavel Cejnar. Quantum quench dynamics in Dicke superradiance models. Phys. Rev. A, 98: 013836, 2018. 10.1103/PhysRevA.98.013836.
https://doi.org/10.1103/PhysRevA.98.013836
[52] H J Korsch, C Müller, and H Wiescher. On the zeros of the Husimi distribution. J. Phys. A, 30 (20): L677–L684, 1997. 10.1088/0305-4470/30/20/003.
https://doi.org/10.1088/0305-4470/30/20/003
[53] Marek Kuś, Jakub Zakrzewski, and Karol Życzkowski. Quantum scars on a sphere. Phys. Rev. A, 43: 4244–4248, 1991. 10.1103/PhysRevA.43.4244.
https://doi.org/10.1103/PhysRevA.43.4244
[54] M Kuś, J Mostowski, and F Haake. Universality of eigenvector statistics of kicked tops of different symmetries. J. of Phys. A, 21 (22): L1073–L1077, 1988. 10.1088/0305-4470/21/22/006.
https://doi.org/10.1088/0305-4470/21/22/006
[55] Achilleas Lazarides, Arnab Das, and Roderich Moessner. Fate of many-body localization under periodic driving. Phys. Rev. Lett., 115: 030402, 2015. 10.1103/PhysRevLett.115.030402.
https://doi.org/10.1103/PhysRevLett.115.030402
[56] P. A. Lee and T. V. Ramakhrishnan. Disordered electronic systems. Rev. Mod. Phys., 57: 287, 1985. 10.1103/RevModPhys.57.287.
https://doi.org/10.1103/RevModPhys.57.287
[57] S. Lerma-Hernández, D. Villaseñor, M. A. Bastarrachea-Magnani, E. J. Torres-Herrera, L. F. Santos, and J. G. Hirsch. Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system. Phys. Rev. E, 100: 012218, 2019. 10.1103/PhysRevE.100.012218.
https://doi.org/10.1103/PhysRevE.100.012218
[58] Sergio Lerma-Hernández, Jorge Chávez-Carlos, Miguel A. Bastarrachea-Magnani, Lea F. Santos, and Jorge G. Hirsch. Analytical description of the survival probability of coherent states in regular regimes. J. Phys. A, 51 (47): 475302, 2018. 10.1088/1751-8121/aae2c3.
https://doi.org/10.1088/1751-8121/aae2c3
[59] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M. Rey. Unifying , thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model. Nat. Comm., 10 (1): 1581, 2019. ISSN 2041-1723. 10.1038/s41467-019-09436-y.
https://doi.org/10.1038/s41467-019-09436-y
[60] Steven W. McDonald and Allan N. Kaufman. Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories. Phys. Rev. Lett., 42: 1189–1191, 1979. 10.1103/PhysRevLett.42.1189.
https://doi.org/10.1103/PhysRevLett.42.1189
[61] Steven William. McDonald. Wave dynamics of regular and chaotic rays. Thesis (Ph. D. in Physics)–University of California, Berkeley., 1983.
[62] Vadim Oganesyan and David A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 75: 155111, 2007. 10.1103/PhysRevB.75.155111.
https://doi.org/10.1103/PhysRevB.75.155111
[63] Saúl Pilatowsky-Cameo, Jorge Chávez-Carlos, Miguel A. Bastarrachea-Magnani, Pavel Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Phys. Rev. E, 101: 010202(R), 2020. 10.1103/PhysRevE.101.010202.
https://doi.org/10.1103/PhysRevE.101.010202
[64] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Quantum scarring in a spin-boson system: fundamental families of periodic orbits. New J. of Phys., 23 (3): 033045, 2021a. 10.1088/1367-2630/abd2e6.
https://doi.org/10.1088/1367-2630/abd2e6
[65] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Ubiquitous quantum scarring does not prevent ergodicity. Nat. Commun., 12 (1), 2021b. 10.1038/s41467-021-21123-5.
https://doi.org/10.1038/s41467-021-21123-5
[66] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, and Jorge G. Hirsch. Effective dimensions of infinite-dimensional Hilbert spaces: a phase-space approach. arXiv:2111.09891. URL https://arxiv.org/abs/2111.09891.
arXiv:2111.09891
[67] Max D. Porter, Aaron Barr, Ariel Barr, and L. E. Reichl. Chaos in the band structure of a soft Sinai lattice. Phys. Rev. E, 95: 052213, 2017. 10.1103/PhysRevE.95.052213.
https://doi.org/10.1103/PhysRevE.95.052213
[68] Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pages 547–561. University of California Press, 1961.
[69] A. D. Ribeiro, M. A. M. de Aguiar, and A. F. R. de Toledo Piza. The semiclassical coherent state propagator for systems with spin. J. Phys. A, 39 (12): 3085, 2006. 10.1088/0305-4470/39/12/016.
https://doi.org/10.1088/0305-4470/39/12/016
[70] Marko Robnik. Recent Advances in Quantum Chaos of Generic Systems, pages 133–148. Springer US, 2020. ISBN 978-1-0716-0421-2. 10.1007/978-1-0716-0421-2_730.
https://doi.org/10.1007/978-1-0716-0421-2_730
[71] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner, K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey, and J. J. Bollinger. Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition. Phys. Rev. Lett., 121: 040503, 2018. 10.1103/PhysRevLett.121.040503.
https://doi.org/10.1103/PhysRevLett.121.040503
[72] L. F. Santos, G. Rigolin, and C. O. Escobar. Entanglement versus chaos in disordered spin chains. Phys. Rev. A, 69: 042304, 2004. 10.1103/PhysRevA.69.042304.
https://doi.org/10.1103/PhysRevA.69.042304
[73] N. S. Simonović. Calculations of periodic orbits: The monodromy method and application to regularized systems. Chaos, 9 (4): 854–864, 1999. 10.1063/1.166457.
https://doi.org/10.1063/1.166457
[74] L. J. Stanley, Ping V. Lin, J. Jaroszyński, and Dragana Popović. Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors. arXiv:2110.11473. URL https://arxiv.org/abs/2110.11473.
arXiv:2110.11473
[75] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nat. Phys., 14 (7): 745–749, 2018. ISSN 1745-2481. 10.1038/s41567-018-0137-5.
https://doi.org/10.1038/s41567-018-0137-5
[76] C. J. Turner, J.-Y. Desaules, K. Bull, and Z. Papić. Correspondence principle for many-body scars in ultracold rydberg atoms. Phys. Rev. X, 11: 021021, 2021. 10.1103/PhysRevX.11.021021.
https://doi.org/10.1103/PhysRevX.11.021021
[77] D. Villaseñor, S. Pilatowsky-Cameo, M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Quantum localization measures in phase space. Phys. Rev. E, 103: 052214, 2021. 10.1103/PhysRevE.103.052214.
https://doi.org/10.1103/PhysRevE.103.052214
[78] David Villaseñor, Saúl Pilatowsky-Cameo, Miguel A Bastarrachea-Magnani, Sergio Lerma, Lea F Santos, and Jorge G Hirsch. Quantum vs classical dynamics in a spin-boson system: manifestations of spectral correlations and scarring. New J. Phys., 22: 063036, 2020. 10.1088/1367-2630/ab8ef8.
https://doi.org/10.1088/1367-2630/ab8ef8
[79] Qian Wang and Marko Robnik. Statistical properties of the localization measure of chaotic eigenstates in the Dicke model. Phys. Rev. E, 102: 032212, 2020. 10.1103/PhysRevE.102.032212.
https://doi.org/10.1103/PhysRevE.102.032212
[80] Y. K. Wang and F. T. Hioe. Phase transition in the Dicke model of superradiance. Phys. Rev. A, 7: 831–836, 1973. 10.1103/PhysRevA.7.831.
https://doi.org/10.1103/PhysRevA.7.831
[81] Alfred Wehrl. General properties of entropy. Rev. Mod. Phys., 50: 221–260, 1978. 10.1103/RevModPhys.50.221.
https://doi.org/10.1103/RevModPhys.50.221
[82] Zhiqiang Zhang, Chern Hui Lee, Ravi Kumar, K. J. Arnold, Stuart J. Masson, A. L. Grimsmo, A. S. Parkins, and M. D. Barrett. Dicke-model simulation via cavity-assisted Raman transitions. Phys. Rev. A, 97: 043858, 2018. 10.1103/PhysRevA.97.043858.
https://doi.org/10.1103/PhysRevA.97.043858
Cited by
[1] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, and Jorge G. Hirsch, "Effective dimensions of infinite-dimensional Hilbert spaces: A phase-space approach", Physical Review E 105 6, 064209 (2022).
[2] David Villaseñor, Saúl Pilatowsky-Cameo, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch, "Chaos and Thermalization in the Spin-Boson Dicke Model", Entropy 25 1, 8 (2022).
[3] David A. Zarate-Herrada, Lea F. Santos, and E. Jonathan Torres-Herrera, "Generalized Survival Probability", Entropy 25 2, 205 (2023).
[4] Chen-Di Han, Cheng-Zhen Wang, and Ying-Cheng Lai, "Meta-Machine-Learning-Based Quantum Scar Detector", Physical Review Applied 19 6, 064042 (2023).
[5] Qian Wang and Marko Robnik, "Statistics of phase space localization measures and quantum chaos in the kicked top model", Physical Review E 107 5, 054213 (2023).
[6] Črt Lozej, Dragan Lukman, and Marko Robnik, "Phenomenology of quantum eigenstates in mixed-type systems: Lemon billiards with complex phase space structure", Physical Review E 106 5, 054203 (2022).
[7] Frank Schindler, Nicolas Regnault, and B. Andrei Bernevig, "Exact quantum scars in the chiral nonlinear Luttinger liquid", Physical Review B 105 3, 035146 (2022).
[8] Črt Lozej, Giulio Casati, and Tomaž Prosen, "Quantum chaos in triangular billiards", Physical Review Research 4 1, 013138 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-27 21:42:08) and SAO/NASA ADS (last updated successfully 2023-09-27 21:42:09). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.