Identification of quantum scars via phase-space localization measures

Saúl Pilatowsky-Cameo1,2, David Villaseñor1, Miguel A. Bastarrachea-Magnani3, Sergio Lerma-Hernández4, Lea F. Santos5, and Jorge G. Hirsch1

1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, C.P. 04510 CDMX, Mexico
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340 CDMX, Mexico
4Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, C.P. 91000 Xalapa, Veracruz, Mexico
5Department of Physics, Yeshiva University, New York, New York 10016, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


There is no unique way to quantify the degree of delocalization of quantum states in unbounded continuous spaces. In this work, we explore a recently introduced localization measure that quantifies the portion of the classical phase space occupied by a quantum state. The measure is based on the $\alpha$-moments of the Husimi function and is known as the Rényi occupation of order $\alpha$. With this quantity and random pure states, we find a general expression to identify states that are maximally delocalized in phase space. Using this expression and the Dicke model, which is an interacting spin-boson model with an unbounded four-dimensional phase space, we show that the Rényi occupations with $\alpha \gt 1$ are highly effective at revealing quantum scars. Furthermore, by analyzing the high moments ($\alpha \gt 1$) of the Husimi function, we are able to identify qualitatively and quantitatively the unstable periodic orbits that scar some of the eigenstates of the model.

► BibTeX data

► References

[1] Alexander Altland and Fritz Haake. Equilibration and macroscopic quantum fluctuations in the Dicke model. New J. Phys., 14 (7): 073011, 2012. 10.1088/​1367-2630/​14/​7/​073011.

[2] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109: 1492–1505, 1958. 10.1103/​PhysRev.109.1492.

[3] Y. Y. Atas and E. Bogomolny. Multifractality of eigenfunctions in spin chains. Phys. Rev. E, 86: 021104, 2012. 10.1103/​PhysRevE.86.021104.

[4] Y. Y. Atas and E. Bogomolny. Calculation of multi-fractal dimensions in spin chains. Phil. Trans. R. Soc. A, 372, 2014. 10.1098/​rsta.2012.0520.

[5] Markus P. Baden, Kyle J. Arnold, Arne L. Grimsmo, Scott Parkins, and Murray D. Barrett. Realization of the Dicke model using cavity-assisted Raman transitions. Phys. Rev. Lett., 113: 020408, 2014. 10.1103/​PhysRevLett.113.020408.

[6] L. Bakemeier, A. Alvermann, and H. Fehske. Dynamics of the Dicke model close to the classical limit. Phys. Rev. A, 88: 043835, 2013. 10.1103/​PhysRevA.88.043835.

[7] M. Baranger, K.T.R. Davies, and J.H. Mahoney. The calculation of periodic trajectories. Ann. of Phys., 186 (1): 95–110, 1988. 10.1016/​s0003-4916(88)80018-6.

[8] D. M. Basko, I. L. Aleiner, and B. L. Altshuler. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys., 321: 1126, 2006. 10.1016/​j.aop.2005.11.014.

[9] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Comparative quantum and semiclassical analysis of atom-field systems. I. Density of states and excited-state quantum phase transitions. Phys. Rev. A, 89: 032101, 2014a. 10.1103/​PhysRevA.89.032101.

[10] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity. Phys. Rev. A, 89: 032102, 2014b. 10.1103/​PhysRevA.89.032102.

[11] Miguel Angel Bastarrachea-Magnani, Baldemar López-del-Carpio, Sergio Lerma-Hernández, and Jorge G Hirsch. Chaos in the Dicke model: quantum and semiclassical analysis. Phys. Scripta, 90 (6): 068015, 2015. 10.1088/​0031-8949/​90/​6/​068015.

[12] B. Batistic, Č Lozej, and M. Robnik. The distribution of localization measures of chaotic eigenstates in the stadium billiard. Nonlinear Phenomena in Complex Systems, 23 (1): 17–32, 2020. ISSN 1561-4085. 10.33581/​1561-4085-2020-23-1-17-32.

[13] Benjamin Batistić and Marko Robnik. Semiempirical theory of level spacing distribution beyond the Berry–Robnik regime: modeling the localization and the tunneling effects. Jour. Phys. A, 43 (21): 215101, 2010. 10.1088/​1751-8113/​43/​21/​215101.

[14] Benjamin Batistić and Marko Robnik. Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates. J. Phys. A, 46 (31): 315102, 2013a. 10.1088/​1751-8113/​46/​31/​315102.

[15] Benjamin Batistić and Marko Robnik. Quantum localization of chaotic eigenstates and the level spacing distribution. Phys. Rev. E, 88: 052913, 2013b. 10.1103/​PhysRevE.88.052913.

[16] Benjamin Batistić, Črt Lozej, and Marko Robnik. Statistical properties of the localization measure of chaotic eigenstates and the spectral statistics in a mixed-type billiard. Phys. Rev. E, 100: 062208, 2019. 10.1103/​PhysRevE.100.062208.

[17] Michael Victor Berry. Quantum scars of classical closed orbits in phase space. Proc. of the R. Soc. of London. A., 423 (1864): 219–231, 1989. 10.1098/​rspa.1989.0052.

[18] R. Blümel and U. Smilansky. Localization of Floquet states in the rf excitation of Rydberg atoms. Phys. Rev. Lett., 58: 2531–2534, 1987. 10.1103/​PhysRevLett.58.2531.

[19] Fausto Borgonovi, Giulio Casati, and Baowen Li. Diffusion and localization in chaotic billiards. Phys. Rev. Lett., 77: 4744–4747, 1996. 10.1103/​PhysRevLett.77.4744.

[20] G. Casati, B.V. Chirikov, D. L. Shepelyansky, and I. Guarnesi. Relevance of classical chaos in quantum mechanics: The Hydrogen atom in a monochromatic field. Phys. Rep., 154: 77–123, 1987. 10.1016/​0370-1573(87)90009-3.

[21] G. Casati, B. V. Chirikov, I. Guarneri, and F. M. Izrailev. Band-random-matrix model for quantum localization in conservative systems. Phys. Rev. E, 48: R1613–R1616, 1993. 10.1103/​PhysRevE.48.R1613.

[22] Giulio Casati, B. V. Chirikov, and D. L. Shepelyansky. Quantum limitations for chaotic excitation of the Hydrogen atom in a monochromatic field. Phys. Rev. Lett., 53: 2525–2528, 1984. 10.1103/​PhysRevLett.53.2525.

[23] J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Classical chaos in atom-field systems. Phys. Rev. E, 94: 022209, 2016. 10.1103/​PhysRevE.94.022209.

[24] Jorge Chávez-Carlos, B. López-del-Carpio, Miguel A. Bastarrachea-Magnani, Pavel Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Quantum and classical Lyapunov exponents in atom-field interaction systems. Phys. Rev. Lett., 122: 024101, 2019. 10.1103/​PhysRevLett.122.024101.

[25] B.V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky. Dynamical stochasticity in classical and quantum mechanics. Sov. Scient. Rev. C, 2: 209–267, 1981. ISSN 0143-0416.

[26] J Cohn, A Safavi-Naini, R J Lewis-Swan, J G Bohnet, M Gärttner, K A Gilmore, J E Jordan, A M Rey, J J Bollinger, and J K Freericks. Bang-bang shortcut to adiabaticity in the Dicke model as realized in a penning trap experiment. New J. Phys., 20 (5): 055013, 2018. 10.1088/​1367-2630/​aac3fa.

[27] M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and M. C. Nemes. Particle-spin coupling in a chaotic system: Localization-delocalization in the Husimi distributions. EPL (Europhys. Lett.), 15 (2): 125, 1991. 10.1209/​0295-5075/​15/​2/​003.

[28] M.A.M. de Aguiar and C.P. Malta. Isochronous and period doubling bifurcations of periodic solutions of non-integrable Hamiltonian systems with reflexion symmetries. Physica D, 30 (3): 413–424, 1988. 10.1016/​0167-2789(88)90029-2.

[29] M.A.M de Aguiar, K Furuya, C.H Lewenkopf, and M.C Nemes. Chaos in a spin-boson system: Classical analysis. Ann. Phys., 216 (2): 291 – 312, 1992. ISSN 0003-4916. 10.1016/​0003-4916(92)90178-O.

[30] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93: 99, 1954. 10.1103/​PhysRev.93.99.

[31] J T Edwards and D J Thouless. Numerical studies of localization in disordered systems. J. Phys. C, 5 (8): 807–820, 1972. 10.1088/​0022-3719/​5/​8/​007.

[32] Clive Emary and Tobias Brandes. Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E, 67: 066203, 2003. 10.1103/​PhysRevE.67.066203.

[33] S. Fishman. Anderson localization and quantum chaos maps. Scholarpedia, 5 (8): 9816, 2010. 10.4249/​scholarpedia.9816. revision #186577.

[34] Shmuel Fishman, D. R. Grempel, and R. E. Prange. Chaos, quantum recurrences, and Anderson localization. Phys. Rev. Lett., 49: 509–512, 1982. 10.1103/​PhysRevLett.49.509.

[35] K Furuya, M.A.M de Aguiar, C.H Lewenkopf, and M.C Nemes. Husimi distributions of a spin-boson system and the signatures of its classical dynamics. Ann. of Phys., 216 (2): 313–322, 1992. 10.1016/​0003-4916(92)90179-p.

[36] Barry M. Garraway. The Dicke model in quantum optics: Dicke model revisited. Philos. Trans. Royal Soc. A, 369: 1137, 2011. 10.1098/​rsta.2010.0333.

[37] Sven Gnutzmann and Karol Zyczkowski. Rényi-Wehrl entropies as measures of localization in phase space. J. Phys. A, 34 (47): 10123–10139, 2001. 10.1088/​0305-4470/​34/​47/​317.

[38] M. C. Gutzwiller. Chaos in classical and quantum mechanics. Springer-Verlag, New York, 1990.

[39] Martin C. Gutzwiller. Periodic orbits and classical quantization conditions. J. Math. Phys., 12 (3): 343–358, 1971. 10.1063/​1.1665596.

[40] E. J. Heller. Wavepacket dynamics and quantum chaology. In M.-J. Giannoni, A. Voros, and J. Zinn Justin, editors, Les Houches Summer School 1991 on Chaos and Quantum Physics. Springer, 1991.

[41] Eric J. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits. Phys. Rev. Lett., 53: 1515–1518, 1984. 10.1103/​PhysRevLett.53.1515.

[42] Eric J. Heller. Quantum localization and the rate of exploration of phase space. Phys. Rev. A, 35: 1360–1370, 1987. 10.1103/​PhysRevA.35.1360.

[43] Klaus Hepp and Elliott H Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Ann. Phys. (N.Y.), 76 (2): 360 – 404, 1973a. ISSN 0003-4916. 10.1016/​0003-4916(73)90039-0.

[44] Klaus Hepp and Elliott H. Lieb. Equilibrium statistical mechanics of matter interacting with the quantized radiation field. Phys. Rev. A, 8: 2517–2525, 1973b. 10.1103/​PhysRevA.8.2517.

[45] Kôdi Husimi. Some Formal Properties of the Density Matrix. Proc. Phys.-Math. Soc. of Jap., 22 (4): 264–314, 1940. 10.11429/​ppmsj1919.22.4_264.

[46] F. M. Izrailev. Simple models of quantum chaos: Spectrum and eigenfunctions. Phys. Rep., 196: 299–392, 1990. 10.1016/​0370-1573(90)90067-C.

[47] Tuomas Jaako, Ze-Liang Xiang, Juan José Garcia-Ripoll, and Peter Rabl. Ultrastrong-coupling phenomena beyond the Dicke model. Phys. Rev. A, 94: 033850, 2016. 10.1103/​PhysRevA.94.033850.

[48] K R W Jones. Entropy of random quantum states. J. Phys. A, 23 (23): L1247–L1251, 1990. 10.1088/​0305-4470/​23/​23/​011.

[49] Shane P. Kelly, Eddy Timmermans, and S.-W. Tsai. Thermalization and its breakdown for a large nonlinear spin. Phys. Rev. A, 102: 052210, 2020. 10.1103/​PhysRevA.102.052210.

[50] Peter Kirton, Mor M. Roses, Jonathan Keeling, and Emanuele G. Dalla Torre. Introduction to the Dicke model: From equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol., 2 (1-2): 1800043, 2019. 10.1002/​qute.201800043.

[51] Michal Kloc, Pavel Stránský, and Pavel Cejnar. Quantum quench dynamics in Dicke superradiance models. Phys. Rev. A, 98: 013836, 2018. 10.1103/​PhysRevA.98.013836.

[52] H J Korsch, C Müller, and H Wiescher. On the zeros of the Husimi distribution. J. Phys. A, 30 (20): L677–L684, 1997. 10.1088/​0305-4470/​30/​20/​003.

[53] Marek Kuś, Jakub Zakrzewski, and Karol Życzkowski. Quantum scars on a sphere. Phys. Rev. A, 43: 4244–4248, 1991. 10.1103/​PhysRevA.43.4244.

[54] M Kuś, J Mostowski, and F Haake. Universality of eigenvector statistics of kicked tops of different symmetries. J. of Phys. A, 21 (22): L1073–L1077, 1988. 10.1088/​0305-4470/​21/​22/​006.

[55] Achilleas Lazarides, Arnab Das, and Roderich Moessner. Fate of many-body localization under periodic driving. Phys. Rev. Lett., 115: 030402, 2015. 10.1103/​PhysRevLett.115.030402.

[56] P. A. Lee and T. V. Ramakhrishnan. Disordered electronic systems. Rev. Mod. Phys., 57: 287, 1985. 10.1103/​RevModPhys.57.287.

[57] S. Lerma-Hernández, D. Villaseñor, M. A. Bastarrachea-Magnani, E. J. Torres-Herrera, L. F. Santos, and J. G. Hirsch. Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system. Phys. Rev. E, 100: 012218, 2019. 10.1103/​PhysRevE.100.012218.

[58] Sergio Lerma-Hernández, Jorge Chávez-Carlos, Miguel A. Bastarrachea-Magnani, Lea F. Santos, and Jorge G. Hirsch. Analytical description of the survival probability of coherent states in regular regimes. J. Phys. A, 51 (47): 475302, 2018. 10.1088/​1751-8121/​aae2c3.

[59] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M. Rey. Unifying , thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model. Nat. Comm., 10 (1): 1581, 2019. ISSN 2041-1723. 10.1038/​s41467-019-09436-y.

[60] Steven W. McDonald and Allan N. Kaufman. Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories. Phys. Rev. Lett., 42: 1189–1191, 1979. 10.1103/​PhysRevLett.42.1189.

[61] Steven William. McDonald. Wave dynamics of regular and chaotic rays. Thesis (Ph. D. in Physics)–University of California, Berkeley., 1983.

[62] Vadim Oganesyan and David A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 75: 155111, 2007. 10.1103/​PhysRevB.75.155111.

[63] Saúl Pilatowsky-Cameo, Jorge Chávez-Carlos, Miguel A. Bastarrachea-Magnani, Pavel Stránský, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Phys. Rev. E, 101: 010202(R), 2020. 10.1103/​PhysRevE.101.010202.

[64] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Quantum scarring in a spin-boson system: fundamental families of periodic orbits. New J. of Phys., 23 (3): 033045, 2021a. 10.1088/​1367-2630/​abd2e6.

[65] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, and Jorge G. Hirsch. Ubiquitous quantum scarring does not prevent ergodicity. Nat. Commun., 12 (1), 2021b. 10.1038/​s41467-021-21123-5.

[66] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, and Jorge G. Hirsch. Effective dimensions of infinite-dimensional Hilbert spaces: a phase-space approach. arXiv:2111.09891. URL https:/​/​​abs/​2111.09891.

[67] Max D. Porter, Aaron Barr, Ariel Barr, and L. E. Reichl. Chaos in the band structure of a soft Sinai lattice. Phys. Rev. E, 95: 052213, 2017. 10.1103/​PhysRevE.95.052213.

[68] Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pages 547–561. University of California Press, 1961.

[69] A. D. Ribeiro, M. A. M. de Aguiar, and A. F. R. de Toledo Piza. The semiclassical coherent state propagator for systems with spin. J. Phys. A, 39 (12): 3085, 2006. 10.1088/​0305-4470/​39/​12/​016.

[70] Marko Robnik. Recent Advances in Quantum Chaos of Generic Systems, pages 133–148. Springer US, 2020. ISBN 978-1-0716-0421-2. 10.1007/​978-1-0716-0421-2_730.

[71] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner, K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey, and J. J. Bollinger. Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition. Phys. Rev. Lett., 121: 040503, 2018. 10.1103/​PhysRevLett.121.040503.

[72] L. F. Santos, G. Rigolin, and C. O. Escobar. Entanglement versus chaos in disordered spin chains. Phys. Rev. A, 69: 042304, 2004. 10.1103/​PhysRevA.69.042304.

[73] N. S. Simonović. Calculations of periodic orbits: The monodromy method and application to regularized systems. Chaos, 9 (4): 854–864, 1999. 10.1063/​1.166457.

[74] L. J. Stanley, Ping V. Lin, J. Jaroszyński, and Dragana Popović. Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors. arXiv:2110.11473. URL https:/​/​​abs/​2110.11473.

[75] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nat. Phys., 14 (7): 745–749, 2018. ISSN 1745-2481. 10.1038/​s41567-018-0137-5.

[76] C. J. Turner, J.-Y. Desaules, K. Bull, and Z. Papić. Correspondence principle for many-body scars in ultracold rydberg atoms. Phys. Rev. X, 11: 021021, 2021. 10.1103/​PhysRevX.11.021021.

[77] D. Villaseñor, S. Pilatowsky-Cameo, M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Quantum localization measures in phase space. Phys. Rev. E, 103: 052214, 2021. 10.1103/​PhysRevE.103.052214.

[78] David Villaseñor, Saúl Pilatowsky-Cameo, Miguel A Bastarrachea-Magnani, Sergio Lerma, Lea F Santos, and Jorge G Hirsch. Quantum vs classical dynamics in a spin-boson system: manifestations of spectral correlations and scarring. New J. Phys., 22: 063036, 2020. 10.1088/​1367-2630/​ab8ef8.

[79] Qian Wang and Marko Robnik. Statistical properties of the localization measure of chaotic eigenstates in the Dicke model. Phys. Rev. E, 102: 032212, 2020. 10.1103/​PhysRevE.102.032212.

[80] Y. K. Wang and F. T. Hioe. Phase transition in the Dicke model of superradiance. Phys. Rev. A, 7: 831–836, 1973. 10.1103/​PhysRevA.7.831.

[81] Alfred Wehrl. General properties of entropy. Rev. Mod. Phys., 50: 221–260, 1978. 10.1103/​RevModPhys.50.221.

[82] Zhiqiang Zhang, Chern Hui Lee, Ravi Kumar, K. J. Arnold, Stuart J. Masson, A. L. Grimsmo, A. S. Parkins, and M. D. Barrett. Dicke-model simulation via cavity-assisted Raman transitions. Phys. Rev. A, 97: 043858, 2018. 10.1103/​PhysRevA.97.043858.

Cited by

[1] Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, and Jorge G. Hirsch, "Effective dimensions of infinite-dimensional Hilbert spaces: A phase-space approach", Physical Review E 105 6, 064209 (2022).

[2] Frank Schindler, Nicolas Regnault, and B. Andrei Bernevig, "Exact quantum scars in the chiral nonlinear Luttinger liquid", Physical Review B 105 3, 035146 (2022).

[3] Črt Lozej, Giulio Casati, and Tomaž Prosen, "Quantum chaos in triangular billiards", Physical Review Research 4 1, 013138 (2022).

[4] Črt Lozej, Dragan Lukman, and Marko Robnik, "Phenomenology of quantum eigenstates in mixed-type systems: lemon billiards with complex phase space structure", arXiv:2207.07197.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 23:50:16) and SAO/NASA ADS (last updated successfully 2022-10-04 23:50:17). The list may be incomplete as not all publishers provide suitable and complete citation data.