A-unital Operations and Quantum Conditional Entropy

Mahathi Vempati1,2, Saumya Shah3, Nirman Ganguly4, and Indranil Chakrabarty1,5

1Centre for Quantum Science and Technology, International Institute of Information Technology-Hyderabad, Gachibowli, Telangana-500032, India.
2Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology-Hyderabad, Gachibowli, Telangana-500032, India.
3Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
4Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana-500078, India.
5Center for Security, Theory and Algorithmic Research, International Institute of Information Technology-Hyderabad, Gachibowli, Telangana-500032, India.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Negative quantum conditional entropy states are key ingredients for information theoretic tasks such as superdense coding, state merging and one-way entanglement distillation. In this work, we ask: how does one detect if a channel is useful in preparing negative conditional entropy states? We answer this question by introducing the class of A-unital channels, which we show are the largest class of conditional entropy non-decreasing channels. We also prove that A-unital channels are precisely the completely free operations for the class of states with non-negative conditional entropy. Furthermore, we study the relationship between A-unital channels and other classes of channels pertinent to the resource theory of entanglement. We then prove similar results for ACVENN: a previously defined, relevant class of states and also relate the maximum and minimum conditional entropy of a state with its von Neumann entropy.
The definition of A-unital channels naturally lends itself to a procedure for determining membership of channels in this class. Thus, our work is valuable for the detection of resourceful channels in the context of conditional entropy.

Some quantum states, when shared between distant parties, can enable the communication of more than n bits of information by transferring only n qubits between the parties. This process is known as superdense coding, and the quantum states that can be used for the process are called 'negative conditional entropy states'. In this work, we answer the question: what quantum operations can be used to prepare negative conditional entropy states?

► BibTeX data

► References

[1] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81: 865–942, Jun 2009. 10.1103/​RevModPhys.81.865. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.81.865.
https:/​/​doi.org/​10.1103/​RevModPhys.81.865

[2] Eric Chitambar and Gilad Gour. Quantum resource theories. Rev. Mod. Phys., 91: 025001, Apr 2019. 10.1103/​RevModPhys.91.025001. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.91.025001.
https:/​/​doi.org/​10.1103/​RevModPhys.91.025001

[3] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter. Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics, 328 (1): 303–326, March 2014. 10.1007/​s00220-014-1953-9. URL https:/​/​doi.org/​10.1007/​s00220-014-1953-9.
https:/​/​doi.org/​10.1007/​s00220-014-1953-9

[4] J. I. Cirac, W. Dür, B. Kraus, and M. Lewenstein. Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett., 86: 544–547, Jan 2001. 10.1103/​PhysRevLett.86.544. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.86.544.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.544

[5] V. Vedral and M. B. Plenio. Entanglement measures and purification procedures. Phys. Rev. A, 57: 1619–1633, Mar 1998. 10.1103/​PhysRevA.57.1619. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.57.1619.
https:/​/​doi.org/​10.1103/​PhysRevA.57.1619

[6] Michael Horodecki, Peter W. Shor, and Mary Beth Ruskai. Entanglement breaking channels. Reviews in Mathematical Physics, 15 (06): 629–641, August 2003. 10.1142/​s0129055x03001709. URL https:/​/​doi.org/​10.1142/​s0129055x03001709.
https:/​/​doi.org/​10.1142/​s0129055x03001709

[7] C. Macchiavello and M. Rossi. Quantum channel detection. Phys. Rev. A, 88: 042335, Oct 2013. 10.1103/​PhysRevA.88.042335. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.88.042335.
https:/​/​doi.org/​10.1103/​PhysRevA.88.042335

[8] Colin Do-Yan Lee and John Watrous. Detecting mixed-unitary quantum channels is NP-hard. Quantum, 4: 253, April 2020. 10.22331/​q-2020-04-16-253. URL https:/​/​doi.org/​10.22331/​q-2020-04-16-253.
https:/​/​doi.org/​10.22331/​q-2020-04-16-253

[9] Ashley Montanaro and Ronald de Wolf. A survey of quantum property testing. Theory of Computing, 1 (1): 1–81, 2016. 10.4086/​toc.gs.2016.007. URL https:/​/​doi.org/​10.4086/​toc.gs.2016.007.
https:/​/​doi.org/​10.4086/​toc.gs.2016.007

[10] N. Milazzo, D. Braun, and O. Giraud. Truncated moment sequences and a solution to the channel separability problem. Phys. Rev. A, 102: 052406, Nov 2020. 10.1103/​PhysRevA.102.052406. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.102.052406.
https:/​/​doi.org/​10.1103/​PhysRevA.102.052406

[11] Sevag Gharibian. Strong np-hardness of the quantum separability problem. Quantum Info. Comput., 10 (3): 343–360, March 2010. ISSN 1533-7146. 10.26421/​QIC10.3-4-11.
https:/​/​doi.org/​10.26421/​QIC10.3-4-11

[12] N. J. Cerf and C. Adami. Negative entropy and information in quantum mechanics. Phys. Rev. Lett., 79: 5194–5197, Dec 1997. 10.1103/​PhysRevLett.79.5194. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.79.5194.
https:/​/​doi.org/​10.1103/​PhysRevLett.79.5194

[13] Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2016. 10.1017/​9781316809976. URL https:/​/​doi.org/​10.1017/​9781316809976.
https:/​/​doi.org/​10.1017/​9781316809976

[14] Harold Ollivier and Wojciech H. Zurek. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 88: 017901, Dec 2001. 10.1103/​PhysRevLett.88.017901. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.88.017901.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.017901

[15] L Henderson and V Vedral. Classical, quantum and total correlations. Journal of Physics A: Mathematical and General, 34 (35): 6899–6905, Aug 2001. 10.1088/​0305-4470/​34/​35/​315. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​0305-4470/​34/​35/​315

[16] Chandrashekar Radhakrishnan, Mathieu Laurière, and Tim Byrnes. Multipartite generalization of quantum discord. Phys. Rev. Lett., 124: 110401, Mar 2020. 10.1103/​PhysRevLett.124.110401. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.124.110401.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110401

[17] Michał Horodecki, Jonathan Oppenheim, and Andreas Winter. Partial quantum information. Nature, 436 (7051): 673–676, August 2005. 10.1038/​nature03909. URL https:/​/​doi.org/​10.1038/​nature03909.
https:/​/​doi.org/​10.1038/​nature03909

[18] Michał Horodecki, Jonathan Oppenheim, and Andreas Winter. Quantum state merging and negative information. Communications in Mathematical Physics, 269 (1): 107–136, October 2006. 10.1007/​s00220-006-0118-x. URL https:/​/​doi.org/​10.1007/​s00220-006-0118-x.
https:/​/​doi.org/​10.1007/​s00220-006-0118-x

[19] Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett., 69: 2881–2884, Nov 1992. 10.1103/​PhysRevLett.69.2881. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.69.2881.
https:/​/​doi.org/​10.1103/​PhysRevLett.69.2881

[20] D. Bruß, G. M. D'Ariano, M. Lewenstein, C. Macchiavello, A. Sen(De), and U. Sen. Distributed quantum dense coding. Phys. Rev. Lett., 93: 210501, Nov 2004. 10.1103/​PhysRevLett.93.210501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.93.210501.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.210501

[21] R. Prabhu, Arun Kumar Pati, Aditi Sen(De), and Ujjwal Sen. Exclusion principle for quantum dense coding. Phys. Rev. A, 87: 052319, May 2013. 10.1103/​PhysRevA.87.052319. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.87.052319.
https:/​/​doi.org/​10.1103/​PhysRevA.87.052319

[22] Igor Devetak and Andreas Winter. Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461 (2053): 207–235, January 2005. 10.1098/​rspa.2004.1372. URL https:/​/​doi.org/​10.1098/​rspa.2004.1372.
https:/​/​doi.org/​10.1098/​rspa.2004.1372

[23] Dong Yang, Karol Horodecki, and Andreas Winter. Distributed private randomness distillation. Phys. Rev. Lett., 123: 170501, Oct 2019. 10.1103/​PhysRevLett.123.170501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.123.170501.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.170501

[24] Mario Berta, Matthias Christandl, Roger Colbeck, Joseph M. Renes, and Renato Renner. The uncertainty principle in the presence of quantum memory. Nature Physics, 6 (9): 659–662, July 2010. 10.1038/​nphys1734. URL https:/​/​doi.org/​10.1038/​nphys1734.
https:/​/​doi.org/​10.1038/​nphys1734

[25] Mahathi Vempati, Nirman Ganguly, Indranil Chakrabarty, and Arun K. Pati. Witnessing negative conditional entropy. Phys. Rev. A, 104: 012417, Jul 2021. 10.1103/​PhysRevA.104.012417. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.104.012417.
https:/​/​doi.org/​10.1103/​PhysRevA.104.012417

[26] Nicolai Friis, Sridhar Bulusu, and Reinhold A Bertlmann. Geometry of two-qubit states with negative conditional entropy. Journal of Physics A: Mathematical and Theoretical, 50 (12): 125301, feb 2017. 10.1088/​1751-8121/​aa5dfd. URL https:/​/​doi.org/​10.1088/​1751-8121/​aa5dfd.
https:/​/​doi.org/​10.1088/​1751-8121/​aa5dfd

[27] Subhasree Patro, Indranil Chakrabarty, and Nirman Ganguly. Non-negativity of conditional von neumann entropy and global unitary operations. Phys. Rev. A, 96: 062102, Dec 2017. 10.1103/​PhysRevA.96.062102. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.96.062102.
https:/​/​doi.org/​10.1103/​PhysRevA.96.062102

[28] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2009. 10.1017/​cbo9780511976667. URL https:/​/​doi.org/​10.1017/​cbo9780511976667.
https:/​/​doi.org/​10.1017/​cbo9780511976667

[29] Marek Kuśand Karol Życzkowski. Geometry of entangled states. Phys. Rev. A, 63: 032307, Feb 2001. 10.1103/​PhysRevA.63.032307. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.63.032307.
https:/​/​doi.org/​10.1103/​PhysRevA.63.032307

[30] Saronath Halder, Shiladitya Mal, and Aditi Sen(De). Characterizing the boundary of the set of absolutely separable states and their generation via noisy environments. Phys. Rev. A, 103: 052431, May 2021. 10.1103/​PhysRevA.103.052431. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.103.052431.
https:/​/​doi.org/​10.1103/​PhysRevA.103.052431

[31] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70: 1895–1899, Mar 1993. 10.1103/​PhysRevLett.70.1895. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.70.1895.
https:/​/​doi.org/​10.1103/​PhysRevLett.70.1895

[32] Christian B. Mendl and Michael M. Wolf. Unital quantum channels – convex structure and revivals of birkhoff's theorem. Communications in Mathematical Physics, 289 (3): 1057–1086, May 2009. 10.1007/​s00220-009-0824-2. URL https:/​/​doi.org/​10.1007/​s00220-009-0824-2.
https:/​/​doi.org/​10.1007/​s00220-009-0824-2

[33] E. M. Rains. Bound on distillable entanglement. Phys. Rev. A, 60: 179–184, Jul 1999. 10.1103/​PhysRevA.60.179. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.60.179.
https:/​/​doi.org/​10.1103/​PhysRevA.60.179

[34] E.M. Rains. A semidefinite program for distillable entanglement. IEEE Transactions on Information Theory, 47 (7): 2921–2933, 2001. 10.1109/​18.959270.
https:/​/​doi.org/​10.1109/​18.959270

[35] Bartosz Regula, Kun Fang, Xin Wang, and Mile Gu. One-shot entanglement distillation beyond local operations and classical communication. New Journal of Physics, 21 (10): 103017, October 2019. 10.1088/​1367-2630/​ab4732. URL https:/​/​doi.org/​10.1088/​1367-2630/​ab4732.
https:/​/​doi.org/​10.1088/​1367-2630/​ab4732

[36] Min Jiang, Shunlong Luo, and Shuangshuang Fu. Channel-state duality. Phys. Rev. A, 87: 022310, Feb 2013. 10.1103/​PhysRevA.87.022310. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.87.022310.
https:/​/​doi.org/​10.1103/​PhysRevA.87.022310

[37] Michael A. Nielsen. An introduction to majorization and its applications to quantum mechanics. 2002. URL https:/​/​michaelnielsen.org/​blog/​talks/​2002/​maj/​book.ps.
https:/​/​michaelnielsen.org/​blog/​talks/​2002/​maj/​book.ps

[38] Yuan Li and Paul Busch. Von neumann entropy and majorization. Journal of Mathematical Analysis and Applications, 408 (1): 384–393, December 2013. 10.1016/​j.jmaa.2013.06.019. URL https:/​/​doi.org/​10.1016/​j.jmaa.2013.06.019.
https:/​/​doi.org/​10.1016/​j.jmaa.2013.06.019

[39] Sarah Brandsen, Isabelle J Geng, Mark M Wilde, and Gilad Gour. Quantum conditional entropy from information-theoretic principles. arXiv preprint arXiv:2110.15330, 2021. URL https:/​/​arxiv.org/​abs/​2110.15330.
arXiv:2110.15330

Cited by

[1] Tapaswini Patro, Kaushiki Mukherjee, Mohd Asad Siddiqui, Indranil Chakrabarty, and Nirman Ganguly, "Absolute fully entangled fraction from spectrum", The European Physical Journal D 76 7, 127 (2022).

[2] Sarah Brandsen, Isabelle J. Geng, Mark M. Wilde, and Gilad Gour, "Quantum conditional entropy from information-theoretic principles", arXiv:2110.15330.

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 06:18:48) and SAO/NASA ADS (last updated successfully 2022-10-04 06:18:49). The list may be incomplete as not all publishers provide suitable and complete citation data.