Noise-resistant Landau-Zener sweeps from geometrical curves

Fei Zhuang1, Junkai Zeng1,2, Sophia E. Economou1, and Edwin Barnes1

1Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
2Shenzhen Institute of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Landau-Zener physics is often exploited to generate quantum logic gates and to perform state initialization and readout. The quality of these operations can be degraded by noise fluctuations in the energy gap at the avoided crossing. We leverage a recently discovered correspondence between qubit evolution and space curves in three dimensions to design noise-robust Landau-Zener sweeps through an avoided crossing. In the case where the avoided crossing is purely noise-induced, we prove that operations based on monotonic sweeps cannot be robust to noise. Hence, we design families of phase gates based on non-monotonic drives that are error-robust up to second order. In the general case where there is an avoided crossing even in the absence of noise, we present a general technique for designing robust driving protocols that takes advantage of a relationship between the Landau-Zener problem and space curves of constant torsion.

The Landau-Zener problem is one of the oldest and most famous examples of quantum dynamics. When a system is swept through an avoided crossing in the energy spectrum, it can end up in many different possible states depending on the size of the energy gap and the sweeping rate. In the context of quantum information processing, this physics is often exploited to implement quantum logic gates and to perform state initialization and readout. Noise fluctuations in the energy gap can degrade the quality of these operations.

We show that noise errors can be mitigated by carefully modulating the sweeping rate. We leverage a recently discovered connection between qubit evolution and space curves in three dimensions to find sweeping rate profiles that dynamically suppress errors. We present a general procedure for finding such profiles by first constructing closed curves that satisfy certain constraints.

► BibTeX data

► References

[1] L. D. Landau. Phys. Z. Sowjetunion, 2: 46, 1932.

[2] E. C. G. Stueckelberg. Helv. Phys. Acta, 5: 369, 1932.

[3] Clarence Zener. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 137 (833): 696–702, 1932.

[4] Ettore Majorana. Atomi orientati in campo magnetico variabile. Il Nuovo Cimento (1924-1942), 9 (2): 43–50, 1932. https:/​/​​10.1007/​BF02960953.

[5] Guozhu Sun, Xueda Wen, Yiwen Wang, Shanhua Cong, Jian Chen, Lin Kang, Weiwei Xu, Yang Yu, Siyuan Han, and Peiheng Wu. Population inversion induced by Landau–Zener transition in a strongly driven rf superconducting quantum interference device. Applied Physics Letters, 94 (10): 102502, 2009. https:/​/​​10.1063/​1.3093823.

[6] JR Petta, H Lu, and AC Gossard. A coherent beam splitter for electronic spin states. Science, 327 (5966): 669–672, 2010. https:/​/​​10.1126/​science.1183628.

[7] L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 460 (7252): 240–244, 2009. https:/​/​​10.1038/​nature08121.

[8] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 467 (7315): 574–578, 2010. https:/​/​​10.1038/​nature09416.

[9] Guozhu Sun, Xueda Wen, Bo Mao, Jian Chen, Yang Yu, Peiheng Wu, and Siyuan Han. Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system. Nature Communications, 1 (1): 51, 2010. https:/​/​​10.1038/​ncomms1050.

[10] Matteo Mariantoni, H. Wang, T. Yamamoto, M. Neeley, Radoslaw C. Bialczak, Y. Chen, M. Lenander, Erik Lucero, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Implementing the quantum von Neumann architecture with superconducting circuits. Science, 334 (6052): 61–65, 2011. ISSN 0036-8075. https:/​/​​10.1126/​science.1208517.

[11] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482 (7385): 382–385, 2012. https:/​/​​10.1038/​nature10786.

[12] Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao, Guang-Can Guo, Hong-Wen Jiang, and Guo-Ping Guo. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference. Nature Communications, 4 (1): 1401, 2013. https:/​/​​10.1038/​ncomms2412.

[13] Stefan Thiele, Franck Balestro, Rafik Ballou, Svetlana Klyatskaya, Mario Ruben, and Wolfgang Wernsdorfer. Electrically driven nuclear spin resonance in single-molecule magnets. Science, 344 (6188): 1135–1138, 2014. https:/​/​​10.1126/​science.1249802.

[14] John M Martinis and Michael R Geller. Fast adiabatic qubit gates using only $\sigma$ z control. Physical Review A, 90 (2): 022307, 2014. https:/​/​​10.1103/​PhysRevA.90.022307.

[15] Zhi Wang, Wen-Chao Huang, Qi-Feng Liang, and Xiao Hu. Landau-Zener-Stückelberg interferometry for Majorana qubit. Scientific reports, 8 (1): 7920, 2018. https:/​/​​10.1038/​s41598-018-26324-5.

[16] MA Rol, F Battistel, FK Malinowski, CC Bultink, BM Tarasinski, R Vollmer, N Haider, N Muthusubramanian, A Bruno, BM Terhal, et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Physical Review Letters, 123 (12): 120502, 2019. https:/​/​​10.1103/​PhysRevLett.123.120502.

[17] Sergey N Shevchenko, Sahel Ashhab, and Franco Nori. Landau–Zener–Stückelberg interferometry. Physics Reports, 492 (1): 1–30, 2010. https:/​/​​10.1016/​j.physrep.2010.03.002.

[18] AV Shytov, DA Ivanov, and MV FeigelMan. Landau-Zener interferometry for qubits. The European Physical Journal B-Condensed Matter and Complex Systems, 36 (2): 263–269, 2003. https:/​/​​10.1140/​epjb/​e2003-00343-8.

[19] Yang Ji, Yunchul Chung, D Sprinzak, M Heiblum, D Mahalu, and Hadas Shtrikman. An electronic Mach–Zehnder interferometer. Nature, 422 (6930): 415–418, 2003. https:/​/​​10.1038/​nature01503.

[20] Mika Sillanpää, Teijo Lehtinen, Antti Paila, Yuriy Makhlin, and Pertti Hakonen. Continuous-time monitoring of Landau-Zener interference in a Cooper-pair box. Physical Review Letters, 96 (18): 187002, 2006. https:/​/​​10.1103/​PhysRevLett.96.187002.

[21] William D Oliver, Yang Yu, Janice C Lee, Karl K Berggren, Leonid S Levitov, and Terry P Orlando. Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science, 310 (5754): 1653–1657, 2005. https:/​/​​10.1126/​science.1119678.

[22] E Dupont-Ferrier, B Roche, B Voisin, X Jehl, R Wacquez, M Vinet, M Sanquer, and S De Franceschi. Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry. Physical Review Letters, 110 (13): 136802, 2013. https:/​/​​10.1103/​PhysRevLett.110.136802.

[23] P Nalbach, J Knörzer, and S Ludwig. Nonequilibrium Landau-Zener-Stueckelberg spectroscopy in a double quantum dot. Physical Review B, 87 (16): 165425, 2013. https:/​/​​10.1103/​PhysRevB.87.165425.

[24] Pu Huang, Jingwei Zhou, Fang Fang, Xi Kong, Xiangkun Xu, Chenyong Ju, and Jiangfeng Du. Landau-Zener-Stückelberg interferometry of a single electronic spin in a noisy environment. Physical Review X, 1 (1): 011003, 2011. https:/​/​​10.1103/​PhysRevX.1.011003.

[25] Lorenza Viola and Seth Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 58: 2733–2744, Oct 1998. https:/​/​​10.1103/​PhysRevA.58.2733.

[26] Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical decoupling of open quantum systems. Physical Review Letters, 82 (12): 2417, 1999a. https:/​/​​10.1103/​PhysRevLett.82.2417.

[27] Lorenza Viola, Seth Lloyd, and Emanuel Knill. Universal control of decoupled quantum systems. Physical Review Letters, 83 (23): 4888, 1999b. https:/​/​​10.1103/​PhysRevLett.83.4888.

[28] Lorenza Viola and Emanuel Knill. Robust dynamical decoupling of quantum systems with bounded controls. Physical Review Letters, 90 (3): 037901, 2003. https:/​/​​10.1103/​PhysRevLett.90.037901.

[29] Kenneth R. Brown, Aram W. Harrow, and Isaac L. Chuang. Arbitrarily accurate composite pulse sequences. Phys. Rev. A, 70: 052318, Nov 2004. https:/​/​​10.1103/​PhysRevA.70.052318.

[30] Kaveh Khodjasteh and DA Lidar. Fault-tolerant quantum dynamical decoupling. Physical Review Letters, 95 (18): 180501, 2005. https:/​/​​10.1103/​PhysRevLett.95.180501.

[31] Götz S Uhrig. Keeping a quantum bit alive by optimized $\pi$-pulse sequences. Physical Review Letters, 98 (10): 100504, 2007. https:/​/​​10.1103/​PhysRevLett.98.100504.

[32] Hermann Uys, Michael J. Biercuk, and John J. Bollinger. Optimized noise filtration through dynamical decoupling. Phys. Rev. Lett., 103: 040501, Jul 2009. https:/​/​​10.1103/​PhysRevLett.103.040501.

[33] Jacob R West, Daniel A Lidar, Bryan H Fong, and Mark F Gyure. High fidelity quantum gates via dynamical decoupling. Physical Review Letters, 105 (23): 230503, 2010. https:/​/​​10.1103/​PhysRevLett.105.230503.

[34] M J Biercuk, A C Doherty, and H Uys. Dynamical decoupling sequence construction as a filter-design problem. Journal of Physics B: Atomic, Molecular and Optical Physics, 44 (15): 154002, jul 2011. https:/​/​​10.1088/​0953-4075/​44/​15/​154002.

[35] Xin Wang, Lev S. Bishop, J. P. Kestner, Edwin Barnes, Kai Sun, and S. Das Sarma. Composite pulses for robust universal control of singlet–triplet qubits. Nature Communications, 3 (1): 997, 2012. https:/​/​​10.1038/​ncomms2003.

[36] Kaveh Khodjasteh, Jarrah Sastrawan, David Hayes, Todd J Green, Michael J Biercuk, and Lorenza Viola. Designing a practical high-fidelity long-time quantum memory. Nature Communications, 4 (1): 2045, 2013. https:/​/​​10.1038/​ncomms3045.

[37] F. A. Calderon-Vargas and J. P. Kestner. Dynamically correcting a $\mathrm{CNOT}$ gate for any systematic logical error. Phys. Rev. Lett., 118: 150502, Apr 2017. https:/​/​​10.1103/​PhysRevLett.118.150502.

[38] C Hicke, LF Santos, and MI Dykman. Fault-tolerant Landau-Zener quantum gates. Physical Review A, 73 (1): 012342, 2006. https:/​/​​10.1103/​PhysRevA.73.012342.

[39] Mark G Bason, Matthieu Viteau, Nicola Malossi, Paul Huillery, Ennio Arimondo, Donatella Ciampini, Rosario Fazio, Vittorio Giovannetti, Riccardo Mannella, and Oliver Morsch. High-fidelity quantum driving. Nature Physics, 8 (2): 147–152, 2012. https:/​/​​10.1038/​nphys2170.

[40] S Gasparinetti, P Solinas, and Jukka P Pekola. Geometric Landau-Zener interferometry. Physical Review Letters, 107 (20): 207002, 2011. https:/​/​​10.1103/​PhysRevLett.107.207002.

[41] Xinsheng Tan, Dan-Wei Zhang, Zhentao Zhang, Yang Yu, Siyuan Han, and Shi-Liang Zhu. Demonstration of geometric Landau-Zener interferometry in a superconducting qubit. Physical Review Letters, 112 (2): 027001, 2014. https:/​/​​10.1103/​PhysRevLett.112.027001.

[42] Junhua Zhang, Jingning Zhang, Xiang Zhang, and Kihwan Kim. Realization of geometric Landau-Zener-Stückelberg interferometry. Physical Review A, 89 (1): 013608, 2014. https:/​/​​10.1103/​PhysRevA.89.013608.

[43] Li Wang, Tao Tu, Bo Gong, Cheng Zhou, and Guang-Can Guo. Experimental realization of non-adiabatic universal quantum gates using geometric Landau-Zener-Stückelberg interferometry. Scientific reports, 6 (1): 19048, 2016. https:/​/​​10.1038/​srep19048.

[44] Edwin Barnes, Fernando A Calderon-Vargas, Wenzheng Dong, Bikun Li, Junkai Zeng, and Fei Zhuang. Dynamically corrected gates from geometric space curves. Quantum Science and Technology, 7 (2): 023001, jan 2022. https:/​/​​10.1088/​2058-9565/​ac4421.

[45] Junkai Zeng, Xiu-Hao Deng, Antonio Russo, and Edwin Barnes. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling. New Journal of Physics, 20 (3): 033011, 2018. https:/​/​​10.1088/​1367-2630/​aaafe9.

[46] Junkai Zeng and Edwin Barnes. Fastest pulses that implement dynamically corrected single-qubit phase gates. Physical Review A, 98 (1): 012301, 2018. https:/​/​​10.1103/​PhysRevA.98.012301.

[47] Junkai Zeng, CH Yang, AS Dzurak, and Edwin Barnes. Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates. Physical Review A, 99 (5): 052321, 2019. https:/​/​​10.1103/​PhysRevA.99.052321.

[48] Raph Levien. The Euler spiral: a mathematical history. Technical Report UCB/​EECS-2008-111, EECS Department, University of California, Berkeley, Sep 2008. URL http:/​/​​Pubs/​TechRpts/​2008/​EECS-2008-111.html.

[49] Laurent Bartholdi and André Henriques. Orange peels and Fresnel integrals. The Mathematical Intelligencer, 34 (3): 1–3, 2012. https:/​/​​10.1007/​s00283-012-9304-1.

[50] Matteo Cherchi, Sami Ylinen, Mikko Harjanne, Markku Kapulainen, and Timo Aalto. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt. Express, 21 (15): 17814–17823, Jul 2013. https:/​/​​10.1364/​OE.21.017814.

[51] Lan Li, Hongtao Lin, Shutao Qiao, Yi-Zhong Huang, Jun-Ying Li, Jérôme Michon, Tian Gu, Carlos Alosno-Ramos, Laurent Vivien, Anupama Yadav, Kathleen Richardson, Nanshu Lu, and Juejun Hu. Monolithically integrated stretchable photonics. Light: Science & Applications, 7 (2): 17138–17138, 2018. https:/​/​​10.1038/​lsa.2017.138.

[52] Edwin Barnes and S. Das Sarma. Analytically solvable driven time-dependent two-level quantum systems. Phys. Rev. Lett., 109: 060401, Aug 2012. https:/​/​​10.1103/​PhysRevLett.109.060401.

[53] Edwin Barnes. Analytically solvable two-level quantum systems and landau-zener interferometry. Phys. Rev. A, 88: 013818, Jul 2013. https:/​/​​10.1103/​PhysRevA.88.013818.

[54] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A quantum engineer's guide to superconducting qubits. Applied Physics Reviews, 6 (2): 021318, 2019. https:/​/​​10.1063/​1.5089550.

[55] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in few-electron quantum dots. Rev. Mod. Phys., 79: 1217–1265, Oct 2007. https:/​/​​10.1103/​RevModPhys.79.1217.

[56] Frederico Martins, Filip K. Malinowski, Peter D. Nissen, Edwin Barnes, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Charles M. Marcus, and Ferdinand Kuemmeth. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett., 116: 116801, Mar 2016. https:/​/​​10.1103/​PhysRevLett.116.116801.

[57] J M S Lehto and K-A Suominen. Geometry of adiabatic Hamiltonians for two-level quantum systems. Journal of Physics A: Mathematical and Theoretical, 48 (23): 235301, may 2015. https:/​/​​10.1088/​1751-8113/​48/​23/​235301.

[58] Donovan Buterakos, Sankar Das Sarma, and Edwin Barnes. Geometrical formalism for dynamically corrected gates in multiqubit systems. PRX Quantum, 2: 010341, Mar 2021. https:/​/​​10.1103/​PRXQuantum.2.010341.

[59] Edwin Barnes, Xin Wang, and S. Das Sarma. Robust quantum control using smooth pulses and topological winding. Scientific Reports, 5 (1): 12685, 2015. https:/​/​​10.1038/​srep12685.

[60] Utkan Güngördü and J. P. Kestner. Analytically parametrized solutions for robust quantum control using smooth pulses. Phys. Rev. A, 100: 062310, Dec 2019. https:/​/​​10.1103/​PhysRevA.100.062310.

[61] Robert E. Throckmorton and S. Das Sarma. Conditions allowing error correction in driven qubits. Phys. Rev. B, 99: 045422, Jan 2019. https:/​/​​10.1103/​PhysRevB.99.045422.

[62] Wenzheng Dong, Fei Zhuang, Sophia E. Economou, and Edwin Barnes. Doubly geometric quantum control. PRX Quantum, 2: 030333, Aug 2021. https:/​/​​10.1103/​PRXQuantum.2.030333.

[63] Bikun Li, Fernando A. Calderon-Vargas, Junkai Zeng, and Edwin Barnes. Designing arbitrary single-axis rotations robust against perpendicular time-dependent noise. New J. Phys, 23 (9): 093032, sep 2021. https:/​/​​10.1088/​1367-2630/​ac22ea.

[64] Ghassen Dridi, Kaipeng Liu, and Stéphane Guérin. Optimal robust quantum control by inverse geometric optimization. Phys. Rev. Lett., 125: 250403, Dec 2020. https:/​/​​10.1103/​PhysRevLett.125.250403.

[65] D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin. Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett., 111: 050404, Jul 2013. https:/​/​​10.1103/​PhysRevLett.111.050404.

[66] Joel L. Weiner. Closed curves of constant torsion. Archiv der Mathematik, 25 (1): 313–317, 1974. https:/​/​​10.1007/​BF01238680.

[67] Joel L Weiner. Closed curves of constant torsion. II. Proceedings of the American mathematical society, 67 (2): 306–308, 1977. https:/​/​​10.2307/​2041292.

Cited by

[1] K. Z. Li and G. F. Xu, "Robust population transfer of spin states by geometric formalism", Physical Review A 105 5, 052433 (2022).

[2] Edwin Barnes, Fernando A. Calderon-Vargas, Wenzheng Dong, Bikun Li, Junkai Zeng, and Fei Zhuang, "Dynamically corrected gates from geometric space curves", Quantum Science and Technology 7 2, 023001 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2022-05-29 06:15:21) and SAO/NASA ADS (last updated successfully 2022-05-29 06:15:22). The list may be incomplete as not all publishers provide suitable and complete citation data.