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Reinforcement learning with neural networks (RLNN) has recently demon-
strated great promise for many problems, including some problems in quantum
information theory. In this work, we apply RLNN to quantum hypothesis test-
ing and determine the optimal measurement strategy for distinguishing between
multiple quantum states {ρj} while minimizing the error probability. In the
case where the candidate states correspond to a quantum system with many
qubit subsystems, implementing the optimal measurement on the entire system
is experimentally infeasible.

We use RLNN to find locally-adaptive measurement strategies that are ex-
perimentally feasible, where only one quantum subsystem is measured in each
round. We provide numerical results which demonstrate that RLNN success-
fully finds the optimal local approach, even for candidate states up to 20 subsys-
tems. We additionally demonstrate that the RLNN strategy meets or exceeds
the success probability for a modified locally greedy approach in each random
trial.

While the use of RLNN is highly successful for designing adaptive local
measurement strategies, in general a significant gap can exist between the suc-
cess probability of the optimal locally-adaptive measurement strategy and the
optimal collective measurement. We build on previous work to provide a set
of necessary and sufficient conditions for collective protocols to strictly outper-
form locally adaptive protocols. We also provide a new example which, to our
knowledge, is the simplest known state set exhibiting a significant gap between
local and collective protocols. This result raises interesting new questions about
the gap between theoretically optimal measurement strategies and practically
implementable measurement strategies.

1 Introduction
Optimal quantum hypothesis testing consists of finding the quantummeasurement {Πj}|mj=1
to optimally distinguish betweenm candidate states {ρj}mj=1 with prior probabilities {qj}mj=1.
For example, this can be used to discriminate between coherent quantum states [1] and
also to decode one of m codewords that has been sent through a known noisy quantum
channel [2,3]. One important example of locally adaptive multiple hypothesis testing pro-
tocols is the Dolinar receiver, which uses an adaptive measurement scheme to distinguish
between m different optical signals [4].
Sarah Brandsen: sarah.brandsen@duke.edu
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Although the optimal (Helstrom) measurement has a compact expression when m = 2,
the solution is more complicated for general non-binary state discrimination. In general,
the optimal measurement can be written as the solution of a semidefinite programming
problem [5, 6]. Techniques for solving semidefinite programming then can be used to find
the minimal-error measurement and compute the optimal success probability [7, 8].

When the candidate states are high-dimensional (corresponding to a quantum system
composed of many qubit subsystems), it can be experimentally difficult to implement
operations on all subsystems at once. Thus, we also focus on finding optimal (or near-
optimal) approaches that include the experimentally necessary property of locality, where
only a single subsystem is measured in each round. We know that dynamic programming
can be used to find an optimal local approach [9]. However, even in the simplest case where
m = 2, the complexity grows like O(2nnQ), where n is the number of qubit subsystems
and Q is the number of different local measurements considered [10].

A powerful alternative tool for developing optimal adaptive protocols is reinforcement
learning with neural networks (RLNN), where an agent learns an optimized protocol
through repeated interaction with an environment. While RLNN was introduced more
than 20 years ago [11,12], interest in these methods was recently rekindled by its remark-
able success for Atari games [13, 14]. RLNN and other machine-learning approaches have
been successfully applied to a variety of problems in quantum information theory: gen-
erating error-correcting sequences [15, 16], preparation of special quantum states [17–19],
setting up experimental Bell tests [20], quantum communication [21], fault-tolerant quan-
tum computation [22], quantum control [23–26], and nonequilibrium quantum thermody-
namics [27]. Additionally, RLNN has been applied in the closely related topic of adaptive
quantum metrology [28–31]. Motivated by these successes, in this work we use RLNN to
find optimal locally-adaptive measurement protocols.

To demonstrate the effectiveness of reinforcement learning, we compare the RLNN per-
formance to other locally adaptive and collective protocols. In all our numerical results,
the neural network meets or exceeds the probability of success achieved by a modified
locally greedy approach. Additionally, for every simulation with randomly generated can-
didate state sets, the RLNN scheme approximately meets an upper bound corresponding
to the optimal collective success probability (i.e., the optimal measurement scheme when
measurements are not restricted to be local). This upper bound is found via semidefinite
programming (SDP) techniques outlined in [32]. The RLNN performance as a function
of subsystem number is investigated, and we demonstrate that the neural network attains
good performance for up to 20 subsystems. We additionally show that, for any locally
adaptive method, the success probability is stable under small perturbations of the candi-
date state sets, such as rotation errors.

While our numerical tests show that RLNNs are a powerful tool for calculating an op-
timal or near-optimal locally-adaptive strategy, we additionally provide analytical results
for some specific systems. These specific results help complete the picture regarding the
optimality of locally adaptive protocols in four key regimes: pure binary state discrimina-
tion, mixed binary state discrimination, pure non-binary state discrimination, and mixed
non-binary state discrimination. Prior to this work it was known that locally adaptive,
projective measurement strategies are optimal for pure binary state discrimination [10,33]
and are in general are not optimal for both pure and mixed nonbinary state discrimina-
tion [34,35]. In contrast to the pure state case, few analytical results are known for mixed
binary state discrimination. Previous work had shown that certain fixed strategies were
not optimal for mixed binary states [36] and had suggested via numerics [37] that any
quantized locally adaptive strategy may be suboptimal. To our knowledge, we are the first
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to prove this analytically. Moreover, while previous work discusses a potential gap in the
case of multiple subsystems where both states are noisy, we demonstrate that a gap can
exist for any nontrivial subsystem number and only one mixed state.

Still, the main significance of our paper lies in applying novel machine learning meth-
ods to quantum state discrimination. To our knowledge, we provide the first algorithm
capable of successfully distinguishing between an arbitrary candidate state set via locally
adaptive protocols. Our result demonstrates that not only is the optimal locally adaptive
measurement strategy unknown for general state discrimination problems, but additionally
the optimal locally adaptive success probability is also unknown. This further motivates
the need for a reliable algorithm which can always find the optimal or close-to-optimal
locally adaptive strategy, which our RLNN provides. Such an algorithm would be of broad
interest not only to researchers working in the field of quantum hypothesis testing, but
also to any researchers who are applying machine learning techniques to similar problems
in other areas of physics.

2 Applying Reinforcement Learning to Quantum Hypothesis Testing
Each round of the reinforcement learning process involves an agent choosing one action
from an allowed action space, implementing the action, and receiving a reward from the
environment. For a Markov decision process, the agent can eventually learn to choose
actions according to an optimal policy that maximizes the expected future reward. For
the problem at hand, the agent is trained to learn the optimal adaptive measurement
strategy as well as the optimal adaptive order in which subsystems should be measured.

In the context of state discrimination, the environment is a parameterized measurement
protocol for the quantum system of interest. The action space (denoted by A) is the set
of allowed quantum measurements. Denote by st the state of the environment just before
round t and let n be the total number of rounds. The agent’s policy, πθ(at|st), is parame-
terized by θ and equals the probability of selecting action at ∈ A in round t conditioned on
the state st of the environment. The goal of training is for the agent to learn the optimal
policy π∗θ which maximizes a given reward function.

We consider the task of deriving the minimum-error adaptive measurement protocol
to distinguish between m tensor-product quantum states {ρj}|mj=1 with prior probability
vector q where qj = Pr(ρ = ρj). To reduce the number of measurement parameters and
thus the size of the action space, we restrict to the case where each candidate state is
real-valued. Since each candidate state is assumed to be a tensor product of n subsystems,
it can be written as

ρj =
n⊗
k=1

ρ
(k)
j ,

where ρ(k)
j is a qubit density matrix for all j ∈ {1, ...,m} and all k ∈ {1, ..., n}. Thus, the

quantum system ρ is composed of n unentangled qubit subsystems.
We build an OpenAI gym environment [38] capable of simulating local measurement

protocols. In each round, the algorithm chooses the next subsystem j to measure as well
as which measurement to implement.

The action space A consists of elements (`, k) where ` ∈ {1, ..., 20} selects which mea-
surement in the allowed measurement set is to be implemented and k ∈ {1, ..., n} is the
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subsystem to be measured. More specifically, ` corresponds to implementing the binary
real qubit POVM,

Π̂Q(`) ,
{sin2( `π2Q) 1

2 sin( `πQ )
1
2 sin( `πQ ) cos2( `π2Q)

 ,
 cos2( `π2Q) −1

2 sin( `πQ )
−1

2 sin( `πQ ) sin2( `π2Q)

 ,}

and Q = 20 (unless otherwise specified). The set of allowed measurement is {Π̂Q(`)}|Q`=1
which corresponds to binary real qubit POVMs spaced evenly on the Bloch sphere. For
a given Q, this action set minimizes the worst case quantization error. Increasing the
quantization beyond Q = 20 (or allowing continuous choice of measurement) slowed the
training time and did not offer observable gain in performance, so Q = 20 was chosen as
the smallest quantization which yields near optimal results.
For a given set of candidate states, the state set S consists of elements (p,v) where p de-
notes the updated probabilities for each candidate state and v is a length-n vector which
specifies which subsystems have been measured. More specifically, given starting prior q
and measurement results d, the updated prior is denoted by p(q,d). The list of subsystems
which have been measured is given by the length-n vector v where vk = 1 if subsystem k
has already been measured and 0 otherwise. Thus, the overall state of the environment,
given starting prior q and measurement history d, may be represented as s , (p(q,d),v).
The episode is terminated when all subsystems except one have been measured, or equiv-
alently when

∑
i vi = n− 1.

When only one subsystem remains unmeasured the optimal final measurement is automati-
cally determined through semidefinite programming. The reward is given by the probability
of successfully decoding the actual state (ρ = ρj∗) after the final local measurement, where
a successful decoding occurs if

j∗ = argmax
j∈{1,...,m}

(pj(q,d)),

where d is the vector containing all previous measurement results and p(q,d) is the updated
probability given initial prior q and measurement results d. Additionally, in each round a
penalty of−0.3 is given if the agent attempts to re-measure an already measured subsystem,
as for qubit subsystems re-measuring an already measured subsystem is non-informative.

3 Details of Implementation
We train the agent using the proximal policy optimization (PPO) algorithm [39]. From
numerical simulations, we found that a PPO algorithm significantly outperformed a DQN-
based algorithm which had poor performance and training instability. Given that the
environment in our problem is not too expensive to sample from, PPO worked well and
we did not try DDPG or SAC, which can be more sample efficient. PPO algorithms gen-
erally train well on problems with discrete action spaces and environments that are cheap
to sample from. PPO algorithms additionally offer the benefit of relatively straightfor-
ward hyperparameter tuning and hyperparameters did not need to be re-tuned for each
combination of (m,n).

Results are then generated using the default PPO algorithm from the RLlib package
included in Ray version 0.7.3 [40, 41]. After hyperparameter tuning of the learning rate,
we set the learning rate to be η = 5 × 10−5. For the remaining hyperparameters, we find
the default parameter settings to be optimal, including the clipping parameter ε = 0.3 and
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Figure 1: Performance of tuned network ver-
sus the SDP upper bound on the optimal suc-
cess probability.
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Figure 2: Performance of network before tun-
ing versus the SDP upper bound on the opti-
mal success probability.

Input
Layer

Two Hidden Layers

π(a1|s)
π(a2|s)

π(a|A||s)

V (s)

Figure 3: Neural Network configuration, consisting of one input layer, two parallel subnetworks. One
subnetwork outputs an estimate of the value V (s) for state s, one outputs an estimate of the policy
π(a|s).

the discount factor γ = 0.99. Comparison of the tuned versus untuned training is depicted
in Figures 1 and 2.

We use a fully connected neural network where the input layer (with m+n−1 neurons)
takes the state s as the input, as depicted in Fig. 12. This feeds into two parallel sets of
subnetworks, each of which has two hidden layers of 256 neurons, tanh activation functions,
and their own linear output layers. Although additional hidden layers could be added, this
would increase the training time required. The output layer of the first subnetwork consists
of a single neuron, and computes an estimate for the value of states. The output layer of the
second subnetwork has nQ neurons (i.e. the number of allowed actions) and computes the
policy, π(a|s). See https://github.com/SarahBrandsen/RLNN-QSD for numerical results
and the source code used to obtain them.
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4 Numerical Results for RLNN Performance
As an initial benchmark of the RLNN performance, we compare it to known optimal results
in several special cases.

In the case of binary discrimination (i.e. m = 2) between tensor products of pure states
such that ρ(k)

j = |ψ(k)
j 〉〈ψ

(k)
j | for all k ∈ {1, ..., n} and j ∈ {1, 2}, it has been shown that

the optimal collective success probability, PSDP can be achieved through locally-adaptive
strategies [10, 33]. The collective success probability, PSDP, is found using semidefinite
programming techniques introduced by [32]. We randomly generate ten trials with n = 3
and order the trials according to increasing distinguishability measured by PSDP. For each
trial, we compare this success probability with the RLNN success probability, PRLNN, as
shown in Fig. 4. The neural network attains the correct (optimal) success probability in
each case, with a very small gap that is likely due to action space quantization.
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SDP
RLNN

Figure 4: Probability of success for the op-
timal RLNN policy after 1000 training itera-
tions vs. the optimal collective measurement
for tensor-products of pure states whenm = 2,
n = 3. The neural network closely approxi-
mates the optimal success probability in each
trial, with any gap likely arising from quanti-
zation of the action space.
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Figure 5: Difference between RLNN reward
and Helstrom (SDP) success probability as a
function of training iteration. We observe that
the RLNN success probability stabilizes after
100 training iterations, with occasional fluctu-
ations.

An additional case where locally adaptive protocols are strictly optimal has been found
by Sasaki et. al in [42]. Consider a set of states S1 , {ρj}|mj=1 and associated probabilities
{qj}|mj=1. Suppose the known optimal POVM for these is {Πj}|mj=1. The set of n-subsystem
product states generated by S can be written as

Sn ,
{ n⊗
j=1

ρij

∣∣∣ i ∈ {1, ...,m}n},
with corresponding probabilities defined as qi1...in , qi1 × ... × qin . Then, the optimal
POVM candidate state set Sn has elements that can be written in tensor product form as:

Πi1...in =
n⊗
j=1

Πij .

This provides a useful test of the neural network performance. We take the initial state
set to be S1 = {ρ1, ρ2}, where ρ1 = ( 0.85 0

0 0.15 ) and ρ2 = ( 0.15 0
0 0.85 ). Since the optimal local
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Figure 6: Performance of the RLNN policy after 150 training iterations vs. the optimal success
probability as a function of the number of subsystems n. The RLNN approach converges to the optimal
local approach in this example for 1 ≤ n ≤ 8.

POVM belongs to the allowed action set, there should be no quantization loss. We train the
neural network for 1000 iterations (using a custom learning rate schedule where the learning
rate starts at 5.5× 10−5 and decays by 0.95 every 10 iterations), and compare the neural
network performance after training to the optimal success probability. For 1 ≤ n ≤ 8, the
neural network attains or approximately attains the exact success probability, as depicted
in Fig. 6.

5 Comparison to SDP-based Locally Adaptive Strategies
Just as the collective SDP measurement provides an upper bound for the optimal locally
adaptive success probability, simple locally adaptive algorithms such as locally greedy al-
gorithms provide a lower bound. In this section, we introduce a local SDP-based approach,
and demonstrate numerically that the RLNN always meets or exceeds the success proba-
bility of the local SDP-based approach.

In the case of binary state discrimination, locally greedy algorithms are optimal for pure
states and close-to-optimal for mixed states. Our choice of the local SDP-based algorithm
as a “good” simple strategy is motivated by the fact that it reduces to a locally greedy
protocol when m = 2. Additionally, for m > 2, we found through numerical simulation
that the local SDP-based based approach generally performs better than locally greedy
protocols. Finally, we compare the RLNN algorithm to the local SDP-based algorithm
via simulations with n = 3 and n = 4 and demonstrate that the RLNN always meets or
significantly exceeds the local SDP-based success probability.

The SDP-based local algorithm selects the local measurement which maximizes the
expected (collective) success probability of future rounds. Let S be the set of remaining
unmeasured subsystems. For each round, the algorithm chooses to measure the subsystem
l ∈ S and implement the measurement a such that

(a, l) = argmax
(a,`)∈A×S

|a|∑
d′=0

Pr(dn−|S\`| = d′)

× Psucc, coll

(
{ρS\lj }

∣∣ q, dn−|S\`| = d′
)
,
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where Psucc, coll
(
{ρS\lj }

∣∣ q, dn−|S\`| = d′
)
equals the success probability of implementing

an optimal collective measurement on the remaining subsystems (with indices belonging
to set S\l), given the prior for round j was q and the outcome of action a was d′.

In the special case where m = n = 3, all candidate states are pure states, and all
subsystems identical copies, the performance of the SDP-based local algorithm and the
RLNN algorithm appear to be identical for each of 5 random trials, as depicted in Fig. 7.
However, we demonstrate that simpler locally adaptive strategies such as the min-entropy
approach are not sufficient to find the optimal locally adaptive strategy, as when n = 4
and the candidate states are mixed, a significant gap appears between the RLNN results
and the SDP-based local algorithm, as shown in Fig. 8.
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Figure 7: Plot of success probability for RLNN
after 250 training iterations, the collective op-
timal (SDP) measurement, and the SDP-based
local algorithm, over 5 trials with m = 3,
n = 3 and pure states.
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Figure 8: Plot of success probability for RLNN
after 250 training iterations, the collective op-
timal (SDP) measurement, and the SDP-based
local algorithm, over 5 trials with m = 3,
n = 5.

6 Pure State Discrimination
In the special case of binary state discrimination (m = 2), it has been shown [10, 33]
that locally-greedy algorithms are optimal for distinguishing between pure tensor product
states. Thus, for pure binary state discrimination, the success probability of the optimal
collective measurement can be achieved through a simple locally-greedy algorithm. It has
additionally been demonstrated that for m ≥ 3, there exist simple state sets such that the
optimal locally adaptive algorithm performs worse than the optimal collective measure-
ment [44].

We now build on these results to determine whether, for a given m and n, there exists
a candidate state set such that there exists a significant gap between the optimal locally
adaptive and optimal collective measurement.

Theorem 1 Denote by Ploc({ρj}, q) the optimal probability of success using locally adaptive
projective measurements for candidate state set {ρj} with prior probability vector q. Like-
wise, denote by Pcoll({ρj}, q) the success probability for the optimal collective measurement
on the full quantum system. Then for a given m and a given n > 1, there exists at least
one set of tensor product states {ρj =

⊗n
k=1 ρ

(k)
j }|mj=1 and some starting prior q such that

Ploc({ρj}, q) < Pcoll({ρj}, q) if and only if at least one of the following conditions is met:
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1. There are more than two candidate states (m > 2)

2. At least one candidate state is not a pure state.

Proof Sketch: The full proof is listed in Appendix A. As a proof sketch, we note that the
“only if” direction of the proof follows immediately from [43], where it was shown that
locally adaptive methods are optimal for any binary pure state discrimination problem
(including discrimination problems involving entangled states.)

To show the “if” direction, we introduce a simple binary state discrimination with two
qutrit subsystems and demonstrate that a significant gap exists for the following candidate
states:

ρ+ ,
(1

2 |0〉〈0|+
1
2 |1〉〈1|

)
⊗
(1

2 |0〉〈0|+
1
2 |1〉〈1|

)
ρ− ,

1
3
( 2∑
j=0
|j〉 ⊗ |j〉

)( 2∑
k=0
〈k| ⊗ 〈k|

)
.

The “if” direction is completed by previous results which demonstrate a significant gap can
exist even in the case of three two-qubit candidate states [44].

7 Gap between Locally Optimal Algorithm and Collective Measurement
Finally, we use RLNN to estimate the gap between the best locally adaptive algorithm
and the optimal collective (non-local) measurement in more general cases where the best
locally adaptive algorithm is not otherwise known.

The simulation setup for a given m and n is as follows: for each trial, we randomly
generate pure tensor product candidate states and then apply depolarizing noise with a
randomly chosen noise parameter. The RLNN algorithm is independently trained 5 times
over 2000 iterations, and the average final success probability is compared (with error bars)
to the optimal collective success probability found via SDP. Results are plotted for m = 2,
n = 3 in Figure 9 and for m = 3, n = 3 in Figure 10, and indicate that the gap between
local and collective measurements increases with m.

8 Performance for a Large Number of Subsystems
We examine how the RLNN performance varies as a function of n, and demonstrate good
performance for up to n = 10 subsystems. However, for n ≥ 20, the RLNN begins to have
suboptimal performance.

First, we consider the case of binary pure state discrimination, where a locally-greedy
(LG) technique is known to be optimal. We restrict the LG algorithm to the same action
space as the RLNN to remove any gap due to action space quantization, and compare the
resulting success probabilities. Results are depicted in Fig. 12, and indicate that the RLNN
matches or almost matches the LG algorithm when n = 10 but develops a performance
gap for n = 20.

Next, we consider the performance of multiple state discrimination where m = 3. For
n < 8 we can compare directly to the collective SDP. For n ≥ 8, computing Psucc via
SDP techniques is infeasibly slow, so we instead look at the RLNN training curve shape
to determine whether the neural network converges to a steady solution.
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Figure 9: Probability of success for SDP and
RLNN when m = 2 and n = 3. For each
trial, the RLNN success probability is com-
puted by separately training the neural network
five times with 2000 iterations each. The er-
ror bars, were they visible, would represent the
standard deviation in the final success proba-
bility over the five independent trainings. But
in all trials, the error bars have collapsed to
nothing, and the gap between local and non-
local measurements is very small.
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Figure 10: Probability of success for SDP and
RLNN after 2000 training iterations whenm =
3, n = 3. For each trial, the RLNN success
probability is computed by separately training
the neural network five times with 2000 iter-
ations each. In all trials, the error bars have
collapsed to nothing and the gap between lo-
cal and non-local measurements is very small.
Compared to the case where m = 2, there is a
slightly larger gap between local and non-local
measurements.
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Figure 11: Success probability for m = 2,
n = 10 where all candidate states are pure.
Success probability for the RLNN is based on
750 training iterations for each round.
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Figure 12: Success probability for m = 2,
n = 20 where all candidate states are pure.
Success probability for the RLNN is based on
1000 training iterations for each round.

As a first test of RLNN performance when m = 3, we consider the case of pure states
with n = 5 and plot the success probability vs SDP as well as the training curves in
Fig. 13.The RLNN success probability plateaus after approximately 100 training iterations,
and the RLNN success probability comes close to the collective SDP in each case.

We then examine the training curves for general state discrimination when m = 3 as a
function of n, with results shown in Fig. 17. Although stable plateaus are reached for both
n = 10 and n = 20, as n increases the RLNN spends more training iterations learning not
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Figure 13: 10 trials with m = 3, n = 5. Suc-
cess probability for RLNN after 300 training
iterations compared to success probability of
SDP
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Figure 14: Difference between RLNN reward
and SDP success probability as a function of
training iteration. We observe that the RLNN
success probability approximately plateaus af-
ter 100 training iterations

to re-measure subsystems. In the case where n = 50, approximately 500 training iterations
are spent learning not to re-measure subsystems, leading to a negative initial reward. This
leads to the question of whether it is possible to extend the RLNN performance to a larger
number of subsystems by predetermining a close-to-optimal ordering,

Figure 15: Training curves for five independent trials where n = 10 (right), n = 20 (centre), and
one trial of n = 50 (left). As n increases, the training curve becomes less stable, and the number of
iterations required for the reward to reach its maximal value increases. For n = 50, the shape of the
training curve changes to include an initial dip in reward before convergence to the ideal and we also
observe less stability.

9 Robustness under noise
We demonstrate that the success probability is stable when the candidate states are subject
to a small perturbation. Consider an over-rotation noise model where the perturbation is
parametrised by rotation angle θ with

ρ̃
(k)
j (θ) = U(θ)ρ(k)

j U †(θ),
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where ρ̃(k)
j (θ) is the noisy state and we set the rotation matrix as U(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

We prove that the error due to noise is negligible for sufficiently small enough perturbations,
indicating that the RLNN adaptive method is still close-to-optimal when the candidate
states are subjected to sufficiently small amounts of unitary noise.

Theorem 2 Consider candidate set {ρj}|mj=1 with prior q. Denote by Psucc

(
{ρj}

)
the prob-

ability of success using the optimal locally adaptive method on the original state set. Like-
wise, let Psucc

(
{ρ̃j(θ)}

)
be the success probability for the noisy state set. Then for all

θ, ∣∣∣Psucc

(
{ρj}

)
− Psucc

(
{ρ̃j(θ)}

)∣∣∣ ≤ 4n sin
( |θ|

2

)
,

where n is the number of subsystems.

Proof: See Appendix B for a complete proof.
Finally, we generate five candidate state sets with m = 3, d = 2. For each candidate

state set {ρj}, we train the neural network to find the optimal locally adaptive method.
The original adaptive measurement scheme is then applied to the rotated state set {ρ̃j(θ)},
and we plot the gap in success probabilities diff(θ) , Psucc

(
{ρj}

)
− Psucc

(
{ρ̃j(θ)}

)
.

10−3 10−2 10−1

0

5 · 10−2

0.1

θ

di
ff(
θ)

Figure 16: Gap in success probability as a function of rotation parameter θ for five trials where
m = n = 3. We observe that the gap is negligible for sufficiently small θ.

10 Conclusion
We apply RLNN to calculate a near-optimal locally-adaptive measurement scheme for
multiple state discrimination. We provide preliminary results for the neural network per-
formance in cases where the locally-adaptive probability of success is known, and show that
the network can achieve good performance when the total number of subsystems is 10 or
fewer. This performance holds even when the candidate states are subjected to small per-
turbations. For cases where the exact locally optimal protocol is not known, we compare
the RLNN performance to an SDP upper bound and find that for each trial the RLNN
comes close to the upper bound. Additionally, we introduce a min-entropy based locally
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adaptive approach which reduces to the optimal local approach for binary pure states, and
show that the RLNN meets or exceeds this approach in every trial.

Finally, we characterize types of candidate state sets where there is a gap between
optimal locally adaptive algorithms and optimal collective algorithms. While previous work
has demonstrated gaps for candidate state sets with a more complex structure, we provide
state sets where a gap exists for the simplest possible case of binary state discrimination
with three depolarized qubits, as well as a binary state discrimination problem with an
even smaller system composed of two qutrits. Future work aims to extend the RLNN
performance to a larger number of subsystems, as well as to characterize the maximal gap
between the optimal local and optimal collective success probability as a function of the
number of candidate states and subsystems.
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A Proof of Theorem 1
The “only if” direction of the proof follows immediately from [43], where it was shown that
locally adaptive methods are optimal for any binary pure state discrimination problem
(including discrimination problems involving entangled states.)

We now demonstrate that even in the case of binary state discrimination, purity is a
necessary condition for optimal state discrimination for any number of subsystems m. We
consider the following set of two qutrit candidate states:

ρ+ ,
(1

2 |0〉〈0|+
1
2 |1〉〈1|

)
⊗
(1

2 |0〉〈0|+
1
2 |1〉〈1|

)
ρ− ,

1
3
( 2∑
j=0
|j〉 ⊗ |j〉

)( 2∑
k=0
〈k| ⊗ 〈k|

)
.
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To our knowledge, this is the smallest dimensional system where binary state discrim-
ination cannot be optimally performed via projective locally adaptive measurements.

The collective success probability is Psucc = 1
48(33 +

√
129) ≈ 0.924121. We now utilize

a computer-assisted proof to demonstrate that the gap between the collective and local
success probability is strictly positive. To this aim, we introduce a set of closely quantized
measurements, find the optimal measurement strategy from the quantized set, and then
demonstrate that the success probability is smooth enough that any projective local mea-
surement strategy must be strictly worse than the optimal collective measurement.

The set of projective qutrit measurements with parameters φ, θ, and ω is given by:{
|u1(φ, θ, ω)〉〈u1(φ, θ, ω)| , |u2(φ, θ, ω)〉〈u2(φ, θ, ω)| , |u3(φ, θ, ω)〉〈u3(φ, θ, ω)|

}
where

|u1(φ, θ, ω)〉 ,

− cos(ω) sin(φ) + cos(φ) cos(θ) sin(ω)
cos(φ) cos(ω) + cos(θ) sin(φ) sin(ω)

− sin(θ) sin(ω)


|u2(φ, θ, ω)〉 ,

cos(φ) cos(θ) cos(ω) + sin(φ) sin(ω)
cos(θ) cos(ω) sin(φ)− cos(φ) sin(ω)

− cos(ω) sin(θ)


|u3(φ, θ, ω)〉 ,

cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

 .

Any locally adaptive strategy will then consist of a sequence of measurements, such that
Π̂(φ, θ, ω) is implemented on the first subsystem and, given measurement outcome d1
from the first measurement, Π̂′(d1) = {Π′+(d1),Π′−(d1)} is implemented on the second
subsystem. Evidently, the optimal measurement on the second subsystem will always be
the Helstrom measurement given the updated prior and candidate states.
Thus, finding the optimal locally adaptive strategy is equivalent to finding the optimal first
measurement Π̂(φ, θ, ω). Using the state set above with starting prior q = 1

2 , the success
probability is given by

Ps(φ, θ, ω) =
3∑

j=1
Tr
[(

Πj(φ, θ, ω)⊗ I
)(1

2ρ+ + 1
2ρ−

)](1
2 + 1

2

∥∥∥Pr(ρ = ρ+
∣∣φ, θ, ω, d1 = j)ρ+(d1 = j)

−
(

1− Pr(ρ = ρ+
∣∣φ, θ, ω, d1 = j)

)
ρ−(d1 = j)

∥∥∥
1

)
,

where ρ±(d1 = j) is the post-measurement state for ρ± given that the measurement
outcome d1 is observed to correspond to Πj(φ, θ, ω) on the first subsystem. We now
simplify the above expression so that it can be computed directly in Mathematica. First,
we note that

ρ+(d1 = j) , |uj(φ, θ, ω)〉〈uj(φ, θ, ω)| ⊗
(1

2 |0〉〈0|+
1
2 |1〉〈1|

)
ρ−(d1 = j) , |uj(φ, θ, ω)〉〈uj(φ, θ, ω)| ⊗ |uj(φ, θ, ω)〉〈uj(φ, θ, ω)|
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and likewise

Tr
[(

Πj(φ, θ, ω)⊗ I
)(1

2ρ+ + 1
2ρ−

)]
= 1

2

(
1
3 + Tr

[(
Πj(φ, θ, ω)⊗ I

)
ρ+
])

= 1
2

(
1
3 + Tr

[
Πj(φ, θ, ω)

(1
2 |0〉〈0|+

1
2 |1〉〈1|

)])
,

where the first line follows from noting that all measurement outcomes are equally likely
on the maximally entangled state. Finally, we can rewrite the success probability as

Ps(φ, θ, ω) =
3∑
j=1

1
2

(
1
3 + Tr

[
Πj(φ, θ, ω) |0〉〈0|+ |1〉〈1|2

])(1
2 + 1

2

∥∥∥Pr(ρ = ρ+
∣∣φ, θ, ω, d1 = j)

× |0〉〈0|+ |1〉〈1|2 − Pr(ρ = ρ−
∣∣φ, θ, ω, d1 = j) |uj(φ, θ, ω)〉〈uj(φ, θ, ω)|

∥∥∥
1

)

= 1
2 +

9∑
j=1

gk(φ, θ, ω)
∣∣fk(φ, θ, ω)

∣∣,
where in the last step we rewrite the success probability in terms of functions gk(φ, θ, ω),
which correspond to the probability of observing measurement outcome bk3c when measur-
ing the first subsystem, and fk(φ, θ, ω) which correspond to eigenvalues arising from the
trace norm. More specifically, for a given j ∈ {1, 2, 3}, let λj,1, λj,2, λj,3 denote the three
eigenvalues of the operator

Pr(ρ = ρ+
∣∣φ, θ, ω, d1 = j) |0〉〈0|+ |1〉〈1|2 − Pr(ρ = ρ−

∣∣φ, θ, ω, d1 = j) |uj(φ, θ, ω)〉〈uj(φ, θ, ω)| .

The functions {fk(φ, θ, ω)}9k=1 are then defined as f3(j−1)+`(φ, θ, ω) := λj,` where j, ` ∈
{1, 2, 3}. Likewise,

gk(φ, θ, ω) = 1
4
(1

3 + Tr
[
Πb k3 c(φ, θ, ω) |0〉〈0|+ |1〉〈1|2

])
The full expression for Ps(φ, θ, ω) is independent of φ and therefore can be denoted as
Ps(θ, ω). While Ps(φ, θ, ω) can be computed directly via Mathematica, the closed form
expression is extremely lengthy. For completeness, we provide the code used to generate
and plot Ps(φ, θ, ω) at https://github.com/SarahBrandsen/RLNN-QSD. In Figure 17, we
plot Ps(θ, ω) to show the continuity of the function and demonstrate graphically that
Ps(θ, ω) is upper bounded by 0.87.

To prove this, we quantize θ and ω into 10, 000 discrete values such that θ, ω ∈
{ 2πj

10000}|
10000
j=1 , and find that the best success probability achieved is

1
384

(
240 +

√
1054− 42

√
5 +

√
2302 + 630

√
5
)
≈ 0.864325

Then, we demonstrate that any error due to quantization is sufficiently small (i.e., the gap
between the local and collective measurement strategy cannot be due to quantization.)
Consider a fixed θ and ω and for any θ′ and ω′ satisfying |θ′− θ| ≤ ε and |ω−ω′| ≤ ε, then
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Figure 17: Psucc(θ, ω) plotted over the range 0 ≤ θ ≤ π and 0 ≤ ω ≤ π.

∣∣∣Ps(θ, ω)− Ps(θ′, ω′)
∣∣∣

=
∣∣∣∑
j

gj(θ, ω)
∣∣fj(θ, ω)

∣∣− gj(θ′, ω′)∣∣fj(θ′, ω′)∣∣∣∣∣
=
∣∣∣∑
j

(
gj(θ, ω)− gj(θ′, ω′) + gj(θ′, ω′)

)∣∣fj(θ, ω)
∣∣− gj(θ′, ω′)∣∣fj(θ′, ω′)∣∣∣∣∣

≤
∑
j

∣∣gj(θ, ω)− gj(θ′, ω′)
∣∣∣∣fj(θ, ω)

∣∣+ ∣∣gj(θ′, ω′)∣∣∣∣fj(θ, ω)− fj(θ′, ω′)
∣∣

≤
(

max
j

∣∣gj(θ, ω)− gj(θ′, ω′)
∣∣)∑

j

∣∣fj(θ, ω)
∣∣

+
(

max
j

∣∣fj(θ, ω)− fj(θ′, ω′)
∣∣)∑

j

∣∣gj(θ′, ω′)∣∣
By mean-value theorem, there exists a point (θrj , ωrj ) along the line connecting (θ, ω) and
(θ′, ω′) so that

|gj(θ, ω)− gj(θ′, ω′)| = |∇gj(θrj , ωrj ) · (θ − θ′, ω − ω′)|

≤ ε
(∣∣∣∂gj
∂θ

(θrj , ωrj )
∣∣∣+ ∣∣∣∂gj

∂ω
(θrj , ωrj )

∣∣∣)
where the last line follows from Holder’s inequality. Similarly, there exists a point (θr′j , ωr′j )
so that ∣∣fj(θ, ω)− fj(θ′, ω′)

∣∣ ≤ ε(∣∣∣∂fj
∂θ

(θr′j , ωr′j )
∣∣∣+ ∣∣∣∂fj

∂ω
(θr′j , ωr′j )

∣∣∣)
Using the explicit formula for gj(θ, ω) and fj(θ, ω) we computed with Mathematica, it can
be checked that

max
θ,ω

∑
j

∣∣fj(θ, ω)
∣∣ ≤ 9 max

j,θ,ω

(∣∣∣∂fj
∂θ

(θ, ω)
∣∣∣+ ∣∣∣∂fj

∂ω
(θ, ω)

∣∣∣) ≤ 12 (1)

max
θ,ω

∑
j

∣∣gj(θ, ω)
∣∣ ≤ 3 max

j,θ,ω

(∣∣∣∂gj
∂θ

(θ, ω)
∣∣∣+ ∣∣∣∂gj

∂ω
(θ, ω)

∣∣∣) ≤ 1
4 (2)
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Hence, we finally conclude that 1

max
θ′,ω′

∣∣∣Ps(θ, ω)− Ps(θ′, ω′)
∣∣∣ ≤ 1

4ε× 9 + 12ε× 3

= 153
4 ε

Setting ε = Π
10000 then gives

max
θ′,ω′

∣∣∣Ps(θ, ω)− Ps(θ′, ω′)
∣∣∣ ≤ 0.015.

It follows that the observed gap between the locally adaptive and collective measurement
scheme (with an approximate magnitude of 0.06) persists even after accounting for quan-
tisation.
We likewise demonstrate that for the candidate states

ρ+ ,

(
0.85009903 0.1343714
0.1343714 0.14990097

)⊗3

ρ− ,

(
0.58134943 0.36607003
0.36607003 0.41865057

)⊗3

with q = 1
2 , then Pcoll−Plocal ≥ 0.011 even when the quantization for the qubit projective

measurements is set to 10, 000. (It follows from the proof of Theorem 2, discussed in
Appendix B, that the largest error due to quantization in this case would be upper bounded
by 3× 23 × π

10000 and thus is negligible.)
Finally, we utilize the result found in [44] to demonstrate that even for pure state state

discrimination, if n ≥ 3, then for any m there exists a candidate state with a gap. We
restate the result found in [44] and provide a simplified proof which draws on their later
work in [45]. Consider as an example the case where n = 2, m = 3 and where each
candidate state set consists of the trine ensemble, defined to be symmetric with

ρj ,
(
U j |0〉〈0| (U j)†

)⊗2

= (U ⊗ U)j |00〉 〈00|
(
(U ⊗ U)j

)†
,

where U ,
(

cos( 2π
3 ) − sin( 2π

3 )
sin( 2π

3 ) cos( 2π
3 )

)
and q = [1/3, 1/3, 1/3]. Since (U ⊗ U)m = I, and the

starting prior is balanced, the PGM is optimal [46], with a corresponding collective success
probability of Pcoll = 1

6(3 + 2
√

2) ≈ 0.971.
We now demonstrate that the optimal local strategy is to measure the first subsystem

with an “anti-trine” measurement, defined as Π̂AT = {2
3U

1
2 ρj(U

1
2 )†}|3j=1, such that each

measurement outcome is orthogonal to one of the candidate states. After obtaining the
measurement outcome for the first subsystem, the updated prior is a permutation of q =
[1
2 ,

1
2 , 0], and the second subsystem is measured according to the optimal measurement for

the remaining two candidate states.
The most general local approach is to implement measurement Π̂1 =

{
Π1,j

}
|mj=1 on the

first subsystem. We may label the result of the first subsystem out1. Then the second and

1While the current proof shows an analytical bound of 153
4 , computer-assisted proofs may potentially

show tighter bounds.
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last measurement can be chosen as Π̂2(out1) =
{
Π2,j(out1)

}
|3j=1 and is in general allowed

to depend on the outcome out1. It is conventional to label the elements of the second
measurement such that state ρ is decoded as ρj if measurement element j is obtained in
the final round. Then

Psucc

(
Π̂1,

{
Π̂2(d1)

})
=

m∑
d1=1

Pr[out1 = Π(1)
d1

]Psucc
(
Π̂(2)(d1)

∣∣∣out1 = Π(1)
d1

)
≤ max

Π̂1,
{

Π̂2(d1)
}Psucc

(
Π̂(2)(d1)

∣∣∣out1 = Π(1)
d1

)
Thus, the second line presents an upper bound on the success probability of any locally
adaptive strategy, as it gives the success probability of the best possible measurement
sequence.

It follows that a sufficient condition for the optimality of the anti-trine based method
is

Psucc

(
Π̂AT,

{
Π̂∗2(d1)

})
≥ max

Π̂1,
{

Π̂2(d1)
}Psucc

(
Π̂(2)(d1)

∣∣∣out1 = Π(1)
d1

)
By symmetry, we know the expected success probability for the anti-trine is equivalent

regardless of which outcome is obtained, and can immediately compute Psucc(Π̂AT) = 0.933.
From [45], when the outcome for the first subsystem is Π(θ) =

(
sin2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) cos2(θ)

)
, the

expected success probability given optimal choice of subsequent measurement is given by

max
{Π̂(2)(d1)}

(
Psucc

(
Π̂(2)(θ)

∣∣∣out1 = Π(θ)
))
≤ max

θ

(1
3 −

1
12 cos(2θ)− 0.288675 cos(θ) sin(θ)

+ 1
2

√
5
12 −

1
6 cos(2θ)− 0.57735 cos(θ) sin(θ), 0.85

)
= 0.933

= Psucc

(
Π̂AT,

{
Π̂∗2(d1)

})
.

This proves that the best locally optimal strategy is the anti-trine with a success probability
of Ploc({ρj},q) = 0.933. Clearly, Ploc({ρj},q) < Pcoll({ρj},q), from which it follows that
a necessary condition for optimal locally adapative state discrimination of pure states is
that m = 2.

B Proof of Theorem 2
Any adaptive protocol consists of a series of measurements, {Π1,Π2(d1), ...Πn(d[n−1])},
where all measurements after the first depend on previous measurement results. Then any
individual measurement sequence can be written as a tensor product

Πd[n] =
n⊗
k=1

Πk(d[k−1]).

Let Sj be the set of all measurement sequences d[n] such that the post-measurement
decoding is ρ̂ = ρj . Then, we can define Π′j =

∑
d[n]∈Sj Πd[n] as the measurement element

which leads to decoding ρ̂ = ρj , and the difference between the two success probabilities
can be bounded with
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Psucc

(
{ρj}

)
− Psucc

(
{ρ̃j(θ)}

)
=
∑

qjTr[Π′j(ρj − ρ̃j(θ))]

≤ max
j

(
Tr
[
Π′j
(
ρj − ρ̃j(θ)

)])
.

Then, by Hölder’s inequality, we see that∣∣∣∣∣Tr[Π′j⊗
k

ρ
(k)
j

]
− Tr

[
Π′j
⊗
k

ρ̃
(k)
j (θ)

]∣∣∣∣∣ ≤ ∥∥∥Π′j∥∥∥∞
∥∥∥⊗

k

ρ
(k)
j −

⊗
k

ρ̃
(k)
j

∥∥∥
1

≤
∥∥∥⊗

k

ρ
(k)
j −

⊗
k

ρ̃
(k)
j

∥∥∥
1
,

where the last inequality follows from noting that Π′j ≤ I. Then we find that

∥∥∥ n⊗
k=1

ρk −
n⊗
k=1

ρ̃k
∥∥∥

1
=
∥∥∥ n⊗
k=1

ρk − ρ1 ⊗
n⊗
k=2

ρ̃k + ρ1 ⊗
n⊗
k=2

ρ̃k −
n⊗
k=1

ρ̃k
∥∥∥

1

≤
∥∥∥ n⊗
k=1

ρk − ρ1 ⊗
n⊗
k=2

ρ̃k
∥∥∥+

∥∥∥ρ1 ⊗
n⊗
k=2

ρ̃k −
n⊗
k=1

ρ̃k
∥∥∥

1

≤
n−1∑
`=0

∥∥∥ `+1⊗
k=1

ρk ⊗
n⊗

k=`+2
ρ̃k −

⊗̀
k=1

ρk ⊗
n⊗

k=`+1
ρ̃k
∥∥∥

1

=
n−1∑
`=0

∥∥∥ ⊗̀
k=1

ρk ⊗
(
ρ`+1 − ρ̃`+1

)
⊗

n⊗
k=`+2

ρ̃k
∥∥∥

1
.

Let us consider the `th term. We denote the eigenvalues of ρk as {λ(k)
1 , λ

(k)
2 } and likewise

the eigenvalues of ρ̃k as {λ̃(k)
1 , λ̃

(k)
2 }. Finally, we denote the eigenvalues of ρ`+1 − ρ̃`+1(θ)

as {σ1(θ), σ2(θ)}. Then, we have

∥∥∥ ⊗̀
k=1

ρk ⊗
(
ρ`+1 − ρ̃`+1

)
⊗

n⊗
k=`+2

ρ̃k
∥∥∥

1
=
∏̀
k=1

(
|λ(k)

1 |+ |λ
(k)
2 |
)
×
(
|σ1(θ)|+ |σ2(θ)|

)

×
n∏

k=`+2

(
|λ̃(k)

1 |+ |λ̃
(k)
2 |
)

= |σ1(θ)|+ |σ2(θ)|

since |λ(k)
1 |+ |λ

(k)
2 | = 1 for all k. Now, we bound the eigenvalues of ρ` − ρ̃` with∥∥∥ρ` − ρ̃`∥∥∥

1
=
∥∥∥ρ` − U(θ)ρ`U(θ)†

∥∥∥
1

=
∥∥∥[ρ`, U(θ)

]
U(θ)†

∥∥∥
1

=
∥∥∥[ρ` − I, U(θ)− I

]∥∥∥
1
,

where we have used that identity commutes with all operators and the unitary invariance
of the trace norm. Since 0 ≤ ρ` ≤ I all ` we have that∥∥∥ρ` − ρ̃`∥∥∥

1
≤
∥∥∥U(θ)− I

∥∥∥
1
.
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Since U(θ) is a rotation, we can easily calculate its eigenvalues to e±iθ. Hence, we conclude
that ∥∥∥ρ` − ρ̃`∥∥∥

1
≤
∣∣∣eiθ − 1

∣∣∣+ ∣∣∣e−iθ − 1
∣∣∣

= 4 sin(|θ|/2).

From this, we have

∥∥∥ n⊗
k=1

ρk −
n⊗
k=1

ρ̃k
∥∥∥

1
≤

n−1∑
`=0

4 sin(|θ|/2) = 4n sin(|θ|/2)

and the statement follows.
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