Sequential optical response suppression for chemical mixture characterization
1Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
2Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
3Department of Physics, Tulane University, New Orleans, LA 70118, USA
4Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
Published: | 2022-01-20, volume 6, page 626 |
Eprint: | arXiv:2010.13859v3 |
Doi: | https://doi.org/10.22331/q-2022-01-20-626 |
Citation: | Quantum 6, 626 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The characterization of mixtures of non-interacting, spectroscopically similar quantum components has important applications in chemistry, biology, and materials science. We introduce an approach based on quantum tracking control that allows for determining the relative concentrations of constituents in a quantum mixture, using a single pulse which enhances the distinguishability of components of the mixture and has a length that scales linearly with the number of mixture constituents. To illustrate the method, we consider two very distinct model systems: mixtures of diatomic molecules in the gas phase, as well as solid-state materials composed of a mixture of components. A set of numerical analyses are presented, showing strong performance in both settings.

Featured image: The diagram shows an input pulse $E(t)$, which serves as a “photonic reagent” for inducing an optical response of a mixture. This present work introduces a tracking control procedure for designing $E(t)$ in order to sequentially suppress the optical responses of the mixture components, thereby enhancing their distinguishability. The output optical response information can then be used to estimate the relative concentrations of the components.
Popular summary
► BibTeX data
► References
[1] Sushovit Adhikari, Cristian L. Cortes, Xiewen Wen, Shobhana Panuganti, David J. Gosztola, Richard D. Schaller, Gary P. Wiederrecht, and Stephen K. Gray. Accelerating ultrafast spectroscopy with compressive sensing. Phys. Rev. Applied, 15: 024032, 2021. 10.1103/PhysRevApplied.15.024032.
https://doi.org/10.1103/PhysRevApplied.15.024032
[2] C Bruce Bagwell and Earl G Adams. Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. N. Y. Acad. Sci., 677 (1): 167–184, 1993. 10.1111/j.1749-6632.1993.tb38775.x.
https://doi.org/10.1111/j.1749-6632.1993.tb38775.x
[3] T Brixner, NH Damrauer, P Niklaus, and G Gerber. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature, 414 (6859): 57–60, 2001. 10.1038/35102037.
https://doi.org/10.1038/35102037
[4] Andre G. Campos, Denys I. Bondar, Renan Cabrera, and Herschel A. Rabitz. How to make distinct dynamical systems appear spectrally identical. Phys. Rev. Lett., 118: 083201, 2017. 10.1103/PhysRevLett.118.083201.
https://doi.org/10.1103/PhysRevLett.118.083201
[5] A. Castro, J. Werschnik, and E. K. U. Gross. Controlling the dynamics of many-electron systems from first principles: A combination of optimal control and time-dependent density-functional theory. Phys. Rev. Lett., 109: 153603, 2012. 10.1103/PhysRevLett.109.153603.
https://doi.org/10.1103/PhysRevLett.109.153603
[6] Yu Chen, Peter Gross, Viswanath Ramakrishna, Herschel Rabitz, and Kenneth Mease. Competitive tracking of molecular objectives described by quantum mechanics. J. Chem. Phys., 102 (8001), 1995. 10.1063/1.468998.
https://doi.org/10.1063/1.468998
[7] Yu Chen, Peter Gross, Viswanath Ramakrishna, Herschel Rabitz, Kenneth Mease, and Harjinder Singh. Control of Classical Regime Molecular Objectives -Applications of Tracking and Variations on the Theme*. Automatica, 33 (9): 1617–1633, 1997. 10.1016/S0005-1098(97)00077-0.
https://doi.org/10.1016/S0005-1098(97)00077-0
[8] Patrick Doria, Tommaso Calarco, and Simone Montangero. Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett., 106: 190501, 2011. 10.1103/PhysRevLett.106.190501.
https://doi.org/10.1103/PhysRevLett.106.190501
[9] Ugaitz Elu, Luke Maidment, Lenard Vamos, Francesco Tani, David Novoa, Michael H Frosz, Valeriy Badikov, Dmitrii Badikov, Valentin Petrov, Philip St J Russell, et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat. Photonics, pages 1–4, 2020. 10.1038/s41566-020-00735-1.
https://doi.org/10.1038/s41566-020-00735-1
[10] Guoping Feng, Rebecca H Mellor, Michael Bernstein, Cynthia Keller-Peck, Quyen T Nguyen, Mia Wallace, Jeanne M Nerbonne, Jeff W Lichtman, and Joshua R Sanes. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of gfp. Neuron, 28 (1): 41–51, 2000. 10.1016/S0896-6273(00)00084-2.
https://doi.org/10.1016/S0896-6273(00)00084-2
[11] Richard Feynman. The Feynman lectures on physics. Basic Books, a member of the Perseus Books Group, New York, 2011. ISBN 0465023827.
[12] Shambhu Ghimire, Anthony D. Dichiara, Emily Sistrunk, Pierre Agostini, Louis F. Dimauro, and David A. Reis. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys., 7 (2): 138–141, 2011. 10.1038/nphys1847.
https://doi.org/10.1038/nphys1847
[13] Shambhu Ghimire, Anthony D. Dichiara, Emily Sistrunk, Georges Ndabashimiye, Urszula B. Szafruga, Anis Mohammad, Pierre Agostini, Louis F. Dimauro, and David A. Reis. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A, 85 (4): 043836, 2012. 10.1103/PhysRevA.85.043836.
https://doi.org/10.1103/PhysRevA.85.043836
[14] Alexei Goun, Denys I. Bondar, Ali O. Er, Zachary Quine, and Herschel A. Rabitz. Photonic reagents for concentration measurement of fluorescent proteins with overlapping spectra. Sci. Rep., 6: 25827, 2016. 10.1038/srep25827.
https://doi.org/10.1038/srep25827
[15] Peter Gross, Harjinder Singh, Herschel Rabitz, Kenneth Mease, and GM Huang. Inverse quantum-mechanical control: A means for design and a test of intuition. Phys. Rev. A, 47 (6): 4593, 1993. 10.1103/PhysRevA.47.4593.
https://doi.org/10.1103/PhysRevA.47.4593
[16] Daniel MB Lesko, Henry Timmers, Sida Xing, Abijith Kowligy, Alexander J Lind, and Scott A Diddams. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photonics, 15 (4): 281–286, 2021. 10.1038/s41566-021-00778-y.
https://doi.org/10.1038/s41566-021-00778-y
[17] Baiqing Li, Gabriel Turinici, Viswanath Ramakrishna, and Herschel Rabitz. Optimal dynamic discrimination of similar molecules through quantum learning control. J. Phys. Chem. B, 106 (33): 8125–8131, 2002. 10.1021/jp0204657.
https://doi.org/10.1021/jp0204657
[18] Baiqing Li, Herschel Rabitz, and Jean-Pierre Wolf. Optimal dynamic discrimination of similar quantum systems with time series data. J. Chem. Phys, 122 (15): 154103, 2005. 10.1063/1.1883170.
https://doi.org/10.1063/1.1883170
[19] Gang Li, Iouli E. Gordon, Robert J. Le Roy, Photos G. Hajigeorgiou, John A. Coxon, Peter F. Bernath, and Laurence S. Rothman. Reference spectroscopic data for hydrogen halides. part i: Construction and validation of the ro-vibrational dipole moment functions. J. Quant. Spectrosc. Radiat. Transf., 121: 78 – 90, 2013. 10.1016/j.jqsrt.2013.02.005.
https://doi.org/10.1016/j.jqsrt.2013.02.005
[20] Jeff W Lichtman and José-Angel Conchello. Fluorescence microscopy. Nat. Methods, 2 (12): 910–919, 2005. 10.1038/nmeth817.
https://doi.org/10.1038/nmeth817
[21] Daniel A Lidar and Sara Schneider. Stabilizing qubit coherence via tracking-control. Quantum Inf. Comput., 5 (4), 2005. URL https://dl.acm.org/doi/10.5555/2011645.2011651.
https://dl.acm.org/doi/10.5555/2011645.2011651
[22] Sanjaya Lohani, Erin M. Knutson, Wenlei Zhang, and Ryan T. Glasser. Dispersion characterization and pulse prediction with machine learning. OSA Continuum, 2 (12): 3438, 2019. 10.1364/OSAC.2.003438.
https://doi.org/10.1364/OSAC.2.003438
[23] Alicia Magann, Tak-San Ho, and Herschel Rabitz. Singularity-free quantum tracking control of molecular rotor orientation. Phys. Rev. A, 98: 043429, 2018. 10.1103/PhysRevA.98.043429.
https://doi.org/10.1103/PhysRevA.98.043429
[24] Alicia B. Magann, Matthew D. Grace, Herschel A. Rabitz, and Mohan Sarovar. Digital quantum simulation of molecular dynamics and control. Phys. Rev. Research, 3: 023165, Jun 2021. 10.1103/PhysRevResearch.3.023165.
https://doi.org/10.1103/PhysRevResearch.3.023165
[25] Gerard McCaul, Christopher Orthodoxou, Kurt Jacobs, George H Booth, and Denys I Bondar. Controlling arbitrary observables in correlated many-body systems. Phys. Rev. A, 101 (5): 053408, 2020a. 10.1103/PhysRevA.101.053408.
https://doi.org/10.1103/PhysRevA.101.053408
[26] Gerard McCaul, Christopher Orthodoxou, Kurt Jacobs, George H Booth, and Denys I Bondar. Driven imposters: Controlling expectations in many-body systems. Phys. Rev. Lett., 124 (18): 183201, 2020b. 10.1103/PhysRevLett.124.183201.
https://doi.org/10.1103/PhysRevLett.124.183201
[27] Colin D Medley, Timothy J Drake, Jeffrey M Tomasini, Richard J Rogers, and Weihong Tan. Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells. Anal. Chem., 77 (15): 4713–4718, 2005. 10.1021/ac050881y.
https://doi.org/10.1021/ac050881y
[28] Michael Messina, Kent R Wilson, and Jeffrey L Krause. Quantum control of multidimensional systems: Implementation within the time?dependent hartree approximation. J. Chem. Phys., 104: 173, 1996. 10.1063/1.470887.
https://doi.org/10.1063/1.470887
[29] Abhra Mitra and Herschel Rabitz. Identifying mechanisms in the control of quantum dynamics through hamiltonian encoding. Phys. Rev. A, 67 (3): 033407, 2003. 10.1103/PhysRevA.67.033407.
https://doi.org/10.1103/PhysRevA.67.033407
[30] Abhra Mitra and Herschel Rabitz. Mechanistic analysis of optimal dynamic discrimination of similar quantum systems. J. Phys. Chem. A, 108 (21): 4778–4785, 2004. 10.1021/jp0495390.
https://doi.org/10.1021/jp0495390
[31] Abhra Mitra and Herschel Rabitz. Quantum control mechanism analysis through field based hamiltonian encoding. J. Chem. Phys., 125 (19): 194107, 2006. 10.1063/1.2371079.
https://doi.org/10.1063/1.2371079
[32] Philip M. Morse. Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev., 34: 57–64, 1929. 10.1103/PhysRev.34.57.
https://doi.org/10.1103/PhysRev.34.57
[33] Michael Mundt and David J Tannor. Optimal control of interacting particles: a multi-configuration time-dependent hartree–fock approach. New J. Phys, 11 (10): 105038, 2009. 10.1088/1367-2630/11/10/105038.
https://doi.org/10.1088/1367-2630/11/10/105038
[34] Yuta Murakami, Martin Eckstein, and Philipp Werner. High-Harmonic Generation in Mott Insulators. Phys. Rev. Lett., 121 (5): 057405, 2018. 10.1103/PhysRevLett.121.057405.
https://doi.org/10.1103/PhysRevLett.121.057405
[35] Stephen P Perfetto, Pratip K Chattopadhyay, and Mario Roederer. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol., 4 (8): 648–655, 2004. 10.1038/nri1416.
https://doi.org/10.1038/nri1416
[36] Ariana Rondi, Luigi Bonacina, A Trisorio, C Hauri, and J-P Wolf. Coherent manipulation of free amino acids fluorescence. Phys. Chem. Chem. Phys., 14 (26): 9317–9322, 2012. 10.1039/C2CP23357F.
https://doi.org/10.1039/C2CP23357F
[37] Jonathan Roslund, Matthias Roth, Laurent Guyon, Véronique Boutou, Francois Courvoisier, Jean-Pierre Wolf, and Herschel Rabitz. Resolution of strongly competitive product channels with optimal dynamic discrimination: Application to flavins. J. Chem. Phys., 134 (3): 034511, 2011. 10.1063/1.3518751.
https://doi.org/10.1063/1.3518751
[38] Matthias Roth, Laurent Guyon, Jonathan Roslund, Véronique Boutou, Francois Courvoisier, Jean-Pierre Wolf, and Herschel Rabitz. Quantum control of tightly competitive product channels. Phys. Rev. Lett., 102: 253001, 2009. 10.1103/PhysRevLett.102.253001.
https://doi.org/10.1103/PhysRevLett.102.253001
[39] Markus Schröder, José-Luis Carreón-Macedo, and Alex Brown. Implementation of an iterative algorithm for optimal control of molecular dynamics into mctdh. Phys. Chem. Chem. Phys., 10: 850, 2008. 10.1039/B714821F.
https://doi.org/10.1039/B714821F
[40] R. E.F. Silva, Igor V. Blinov, Alexey N. Rubtsov, O. Smirnova, and M. Ivanov. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photonics, 12 (5): 266–270, 2018. 10.1038/s41566-018-0129-0.
https://doi.org/10.1038/s41566-018-0129-0
[41] A Sommer, E M Bothschafter, S A Sato, C Jakubeit, T Latka, O Razskazovskaya, H Fattahi, M Jobst, W Schweinberger, V Shirvanyan, V S Yakovlev, R Kienberger, K Yabana, N Karpowicz, M Schultze, and F Krausz. Attosecond nonlinear polarization and light–matter energy transfer in solids. 534 (7605): 86–90, 2016. 10.1038/nature17650.
https://doi.org/10.1038/nature17650
[42] Michael R Speicher, Stephen Gwyn Ballard, and David C Ward. Karyotyping human chromosomes by combinatorial multi-fluor fish. Nat. Genet., 12 (4): 368–375, 1996. 10.1038/ng0496-368.
https://doi.org/10.1038/ng0496-368
[43] Henrik Stapelfeldt and Tamar Seideman. Colloquium: Aligning molecules with strong laser pulses. Rev. Mod. Phys., 75: 543–557, Apr 2003. 10.1103/RevModPhys.75.543.
https://doi.org/10.1103/RevModPhys.75.543
[44] Hal Tasaki. The Hubbard model - An introduction and selected rigorous results. J. Phys. Cond. Mat., 10 (20): 4353–4378, 1998. 10.1088/0953-8984/10/20/004.
https://doi.org/10.1088/0953-8984/10/20/004
[45] Ian Wilson. Encyclopedia of separation science. Academic Press, San Diego, 2000. ISBN 0122267702.
[46] Wusheng Zhu and Herschel Rabitz. Quantum control design via adaptive tracking. J. Chem. Phys., 119 (7): 3619–3625, 2003. 10.1063/1.1582847.
https://doi.org/10.1063/1.1582847
[47] Wusheng Zhu, Martina Smit, and Herschel Rabitz. Managing singular behavior in the tracking control of quantum dynamical observables. J. Chem. Phys., 110 (4): 1905–1915, 1999. 10.1063/1.477857.
https://doi.org/10.1063/1.477857
Cited by
[1] Gerard McCaul, Kurt Jacobs, and Denys I. Bondar, "Towards single atom computing via high harmonic generation", The European Physical Journal Plus 138 2, 123 (2023).
[2] Jacob Masur, Denys I. Bondar, and Gerard McCaul, "Optical distinguishability of Mott insulators in the time versus frequency domain", Physical Review A 106 1, 013110 (2022).
[3] Gerard McCaul, Alexander F. King, and Denys I. Bondar, "Non‐Uniqueness of Driving Fields Generating Non‐Linear Optical Response", Annalen der Physik 534 10, 2100523 (2022).
[4] Gerard McCaul, Alexander F. King, and Denys I. Bondar, "Optical Indistinguishability via Twinning Fields", Physical Review Letters 127 11, 113201 (2021).
[5] Gerard McCaul, Kurt Jacobs, and Denys I. Bondar, "Towards Single Atom Computing via High Harmonic Generation", arXiv:2104.06322, (2021).
[6] Gerard McCaul, Alexander F. King, and Denys I. Bondar, "Non-Uniqueness of Non-Linear Optical Response", arXiv:2110.06189, (2021).
The above citations are from Crossref's cited-by service (last updated successfully 2023-05-29 21:03:38) and SAO/NASA ADS (last updated successfully 2023-05-29 21:03:39). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.