Simulating Effective QED on Quantum Computers

Torin F. Stetina1,2, Anthony Ciavarella3,4, Xiaosong Li1, and Nathan Wiebe4,5,6,7

1Department of Chemistry, University of Washington, Seattle, Washington, USA
2Simons Institute for the Theory of Computation, University of California, Berkeley, California, USA
3Institute for Nuclear Theory, University of Washington, Seattle, Washington, USA
4Department of Physics, University of Washington, Seattle, Washington, USA
5Pacific Northwest National Laboratory, Richland, Washington, USA
6Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
7Challenge Institute for Quantum Computation, University of Washington, Seattle, Washington, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


In recent years simulations of chemistry and condensed materials has emerged as one of the preeminent applications of quantum computing, offering an exponential speedup for the solution of the electronic structure for certain strongly correlated electronic systems. To date, most treatments have ignored the question of whether relativistic effects, which are described most generally by quantum electrodynamics (QED), can also be simulated on a quantum computer in polynomial time. Here we show that effective QED, which is equivalent to QED to second order in perturbation theory, can be simulated in polynomial time under reasonable assumptions while properly treating all four components of the wavefunction of the fermionic field. In particular, we provide a detailed analysis of such simulations in position and momentum basis using Trotter-Suzuki formulas. We find that the number of $T$-gates needed to perform such simulations on a $3D$ lattice of $n_s$ sites scales at worst as $O(n_s^3/\epsilon)^{1+o(1)}$ in the thermodynamic limit for position basis simulations and $O(n_s^{4+2/3}/\epsilon)^{1+o(1)}$ in momentum basis. We also find that qubitization scales slightly better with a worst case scaling of $\widetilde{O}(n_s^{2+2/3}/\epsilon)$ for lattice eQED and complications in the prepare circuit leads to a slightly worse scaling in momentum basis of $\widetilde{O}(n_s^{5+2/3}/\epsilon)$. We further provide concrete gate counts for simulating a relativistic version of the uniform electron gas that show challenging problems can be simulated using fewer than $10^{13}$ non-Clifford operations and also provide a detailed discussion of how to prepare multi-reference configuration interaction states in effective QED which can provide a reasonable initial guess for the ground state. Finally, we estimate the planewave cutoffs needed to accurately simulate heavy elements such as gold.

► BibTeX data

► References

[1] Yuri Manin. Computable and uncomputable. Sovetskoye Radio, Moscow, 128, 1980.

[2] Richard P Feynman. Simulating physics with computers. Int. J. Theor. Phys, 21 (6/​7), 1982. 10.1007/​BF02650179.

[3] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin, Marcelo P Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Barbieri, et al. Towards quantum chemistry on a quantum computer. Nature chemistry, 2 (2): 106–111, 2010. 10.1038/​nchem.483.

[4] James D Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum computers. Molecular Physics, 109 (5): 735–750, 2011. 10.1080/​00268976.2011.552441.

[5] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5: 4213, 2014. 10.1038/​ncomms5213.

[6] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 114 (29): 7555–7560, 2017. 10.1073/​pnas.1619152114.

[7] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer. Quantum computing enhanced computational catalysis. Physical Review Research, 3 (3): 033055, 2021. 10.1103/​PhysRevResearch.3.033055.

[8] Joonho Lee, Dominic W Berry, Craig Gidney, William J Huggins, Jarrod R McClean, Nathan Wiebe, and Ryan Babbush. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum, 2 (3): 030305, 2021. 10.1103/​PRXQuantum.2.030305.

[9] Ian D Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik. Bounding the costs of quantum simulation of many-body physics in real space. Journal of Physics A: Mathematical and Theoretical, 50 (30): 305301, 2017. 10.1088/​1751-8121/​aa77b8.

[10] Ryan Babbush, Dominic W Berry, Jarrod R McClean, and Hartmut Neven. Quantum simulation of chemistry with sublinear scaling in basis size. npj Quantum Information, 5 (1): 1–7, 2019. 10.1038/​s41534-019-0199-y.

[11] Rene Gerritsma, Gerhard Kirchmair, Florian Zähringer, E Solano, R Blatt, and CF Roos. Quantum simulation of the dirac equation. Nature, 463 (7277): 68–71, 2010. 10.1038/​nature08688.

[12] François Fillion-Gourdeau, Steve MacLean, and Raymond Laflamme. Algorithm for the solution of the dirac equation on digital quantum computers. Physical Review A, 95 (4): 042343, 2017. 10.1103/​PhysRevA.95.042343.

[13] Markus Reiher and Alexander Wolf. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science. John Wiley & Sons, 2014. 10.1002/​9783527627486.

[14] Kenneth G Dyall and Knut Fægri Jr. Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. 10.1093/​oso/​9780195140866.001.0001.

[15] S. P. Jordan, K. S. M. Lee, and J. Preskill. Quantum algorithms for quantum field theories. Science, 336 (6085): 1130–1133, May 2012. ISSN 1095-9203. 10.1126/​science.1217069.

[16] Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum computation of scattering in scalar quantum field theories. Quant. Inf. Comput., 14, 2014a. 10.26421/​QIC14.11-12-8.

[17] John Preskill. Simulating quantum field theory with a quantum computer. PoS, LATTICE2018: 024, 2018. 10.22323/​1.334.0024.

[18] Gavin K. Brennen, Peter Rohde, Barry C. Sanders, and Sukhwinder Singh. Multiscale quantum simulation of quantum field theory using wavelets. Physical Review A, 92 (3), Sep 2015. ISSN 1094-1622. 10.1103/​physreva.92.032315.

[19] Kevin Marshall, Raphael Pooser, George Siopsis, and Christian Weedbrook. Quantum simulation of quantum field theory using continuous variables. Physical Review A, 92 (6), Dec 2015. ISSN 1094-1622. 10.1103/​physreva.92.063825.

[20] Anthony Ciavarella. Algorithm for quantum computation of particle decays. Physical Review D, 102 (9), Nov 2020. ISSN 2470-0029. 10.1103/​physrevd.102.094505.

[21] João Barata, Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. Single-particle digitization strategy for quantum computation of a $\phi^4$ scalar field theory. Physical Review A, 103 (4): 042410, 2021. 10.1103/​PhysRevA.103.042410.

[22] Natalie Klco and Martin J. Savage. Digitization of scalar fields for quantum computing. Phys. Rev., A99 (5): 052335, 2019. 10.1103/​PhysRevA.99.052335.

[23] Natalie Klco and Martin J Savage. Hierarchical qubit maps and hierarchically implemented quantum error correction. Physical Review A, 104 (6): 062425, 2021. 10.1103/​PhysRevA.104.062425.

[24] Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum algorithms for fermionic quantum field theories. arXiv:1404.7115, 2014b. URL https:/​/​​abs/​1404.7115.

[25] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. Parton physics on a quantum computer. Physical Review Research, 2 (1), Mar 2020. ISSN 2643-1564. 10.1103/​physrevresearch.2.013272.

[26] Leonardo Mazza, Alejandro Bermudez, Nathan Goldman, Matteo Rizzi, Miguel Angel Martin-Delgado, and Maciej Lewenstein. An optical-lattice-based quantum simulator for relativistic field theories and topological insulators. New Journal of Physics, 14 (1): 015007, jan 2012. 10.1088/​1367-2630/​14/​1/​015007.

[27] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev., A98 (3): 032331, 2018. 10.1103/​PhysRevA.98.032331.

[28] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and et al. Self-verifying variational quantum simulation of lattice models. Nature, 569 (7756): 355–360, May 2019. ISSN 1476-4687. 10.1038/​s41586-019-1177-4.

[29] Dmitri E Kharzeev and Yuta Kikuchi. Real-time chiral dynamics from a digital quantum simulation. Physical Review Research, 2 (2): 023342, 2020. 10.1103/​PhysRevResearch.2.023342.

[30] Hsuan-Hao Lu, Natalie Klco, Joseph M. Lukens, Titus D. Morris, Aaina Bansal, Andreas Ekström, Gaute Hagen, Thomas Papenbrock, Andrew M. Weiner, Martin J. Savage, and et al. Simulations of subatomic many-body physics on a quantum frequency processor. Physical Review A, 100 (1), Jul 2019. ISSN 2469-9934. 10.1103/​physreva.100.012320.

[31] Bipasha Chakraborty, Masazumi Honda, Taku Izubuchi, Yuta Kikuchi, and Akio Tomiya. Digital quantum simulation of the schwinger model with topological term via adiabatic state preparation. arXiv:2001.00485, 2020. URL https:/​/​​abs/​2001.00485.

[32] Alexander F Shaw, Pavel Lougovski, Jesse R Stryker, and Nathan Wiebe. Quantum algorithms for simulating the lattice schwinger model. Quantum, 4: 306, 2020. 10.22331/​q-2020-08-10-306.

[33] Julian Bender, Erez Zohar, Alessandro Farace, and J Ignacio Cirac. Digital quantum simulation of lattice gauge theories in three spatial dimensions. New Journal of Physics, 20 (9): 093001, Sep 2018. ISSN 1367-2630. 10.1088/​1367-2630/​aadb71.

[34] Erez Zohar and Michele Burrello. Formulation of lattice gauge theories for quantum simulations. Physical Review D, 91 (5), Mar 2015. ISSN 1550-2368. 10.1103/​physrevd.91.054506.

[35] Natalie Klco, Martin J Savage, and Jesse R Stryker. Su(2) non-abelian gauge field theory in one dimension on digital quantum computers. Physical Review D, 101 (7): 074512, 2020. 10.1103/​PhysRevD.101.074512.

[36] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. Quantum simulations of gauge theories with ultracold atoms: Local gauge invariance from angular-momentum conservation. Physical Review A, 88 (2), Aug 2013a. ISSN 1094-1622. 10.1103/​physreva.88.023617.

[37] Erez Zohar, J Ignacio Cirac, and Benni Reznik. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Reports on Progress in Physics, 79 (1): 014401, Dec 2015. ISSN 1361-6633. 10.1088/​0034-4885/​79/​1/​014401.

[38] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. General methods for digital quantum simulation of gauge theories. Physical Review D, 100 (3), Aug 2019. ISSN 2470-0029. 10.1103/​physrevd.100.034518.

[39] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Harmalkar, Henry Lamm, Scott Lawrence, and Neill C. Warrington. Gluon field digitization for quantum computers. Physical Review D, 100 (11), Dec 2019a. ISSN 2470-0029. 10.1103/​physrevd.100.114501.

[40] Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, and et al. Simulating lattice gauge theories within quantum technologies. The European Physical Journal D, 74 (8), Aug 2020. ISSN 1434-6079. 10.1140/​epjd/​e2020-100571-8.

[41] L. Tagliacozzo, A. Celi, P. Orland, M. W. Mitchell, and M. Lewenstein. Simulation of non-abelian gauge theories with optical lattices. Nature Communications, 4 (1), Oct 2013a. ISSN 2041-1723. 10.1038/​ncomms3615.

[42] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein. Optical abelian lattice gauge theories. Annals of Physics, 330: 160–191, Mar 2013b. ISSN 0003-4916. 10.1016/​j.aop.2012.11.009.

[43] A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, and M. A. Martin-Delgado. Wilson fermions and axion electrodynamics in optical lattices. Phys. Rev. Lett., 105: 190404, Nov 2010. 10.1103/​PhysRevLett.105.190404.

[44] Simon V Mathis, Guglielmo Mazzola, and Ivano Tavernelli. Toward scalable simulations of lattice gauge theories on quantum computers. Physical Review D, 102 (9): 094501, 2020. 10.1103/​PhysRevD.102.094501.

[45] Tim Byrnes and Yoshihisa Yamamoto. Simulating lattice gauge theories on a quantum computer. Physical Review A, 73 (2), Feb 2006. ISSN 1094-1622. 10.1103/​physreva.73.022328.

[46] Anthony Ciavarella, Natalie Klco, and Martin J. Savage. Trailhead for quantum simulation of su(3) yang-mills lattice gauge theory in the local multiplet basis. Physical Review D, 103 (9), May 2021. ISSN 2470-0029. 10.1103/​physrevd.103.094501.

[47] Angus Kan and Yunseong Nam. Lattice quantum chromodynamics and electrodynamics on a universal quantum computer. arXiv:2107.12769, 2021. URL https:/​/​​abs/​2107.12769.

[48] Jesse R Stryker. Shearing approach to gauge invariant trotterization. arXiv:2105.11548, 2021. URL https:/​/​​abs/​2105.11548.

[49] Danny Paulson, Luca Dellantonio, Jan F. Haase, Alessio Celi, Angus Kan, Andrew Jena, Christian Kokail, Rick van Bijnen, Karl Jansen, Peter Zoller, and Christine A. Muschik. Simulating 2d effects in lattice gauge theories on a quantum computer. PRX Quantum, 2: 030334, Aug 2021. 10.1103/​PRXQuantum.2.030334.

[50] Zohreh Davoudi, Norbert M. Linke, and Guido Pagano. Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach. Phys. Rev. Research, 3: 043072, Oct 2021a. 10.1103/​PhysRevResearch.3.043072.

[51] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. Simulating Compact Quantum Electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects. Phys. Rev. Lett., 109: 125302, 2012. 10.1103/​PhysRevLett.109.125302.

[52] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory. Phys. Rev. Lett., 110 (12): 125304, 2013b. 10.1103/​PhysRevLett.110.125304.

[53] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U. J. Wiese, and P. Zoller. Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories. Phys. Rev. Lett., 110 (12): 125303, 2013. 10.1103/​PhysRevLett.110.125303.

[54] D. Banerjee, M. Dalmonte, M. Muller, E. Rico, P. Stebler, U. J. Wiese, and P. Zoller. Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench. Phys. Rev. Lett., 109: 175302, 2012. 10.1103/​PhysRevLett.109.175302.

[55] Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature, 534: 516 EP –, Jun 2016. 10.1038/​nature18318.

[56] Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp Schindler, Berit Vogell, Marcello Dalmonte, Philipp Hauke, Rainer Blatt, and Peter Zoller. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys., 19 (10): 103020, 2017. 10.1088/​1367-2630/​aa89ab.

[57] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ignacio Cirac. Digital lattice gauge theories. Phys. Rev., A95 (2): 023604, 2017. 10.1103/​PhysRevA.95.023604.

[58] Mari Carmen Banuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Stefan Kuhn. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states. Phys. Rev., X7 (4): 041046, 2017. 10.1103/​PhysRevX.7.041046.

[59] David B. Kaplan and Jesse R. Stryker. Gauss's law, duality, and the hamiltonian formulation of u(1) lattice gauge theory. Phys. Rev. D, 102: 094515, Nov 2020. 10.1103/​PhysRevD.102.094515.

[60] T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, J. Berges, and P. Hauke. Quantum simulation of lattice gauge theories using Wilson fermions. Sci. Technol., 3: 034010, 2018. 10.1088/​2058-9565/​aac33b.

[61] Jesse R. Stryker. Oracles for Gauss's law on digital quantum computers. Phys. Rev., A99 (4): 042301, 2019. 10.1103/​PhysRevA.99.042301.

[62] Indrakshi Raychowdhury. Low energy spectrum of SU(2) lattice gauge theory. Eur. Phys. J., C79 (3): 235, 2019. 10.1140/​epjc/​s10052-019-6753-0.

[63] Zohreh Davoudi, Mohammad Hafezi, Christopher Monroe, Guido Pagano, Alireza Seif, and Andrew Shaw. Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Research, 2: 023015, Apr 2020. 10.1103/​PhysRevResearch.2.023015.

[64] Jan F. Haase, Luca Dellantonio, Alessio Celi, Danny Paulson, Angus Kan, Karl Jansen, and Christine A. Muschik. A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum, 5: 393, February 2021. ISSN 2521-327X. 10.22331/​q-2021-02-04-393.

[65] Zohreh Davoudi, Indrakshi Raychowdhury, and Andrew Shaw. Search for efficient formulations for hamiltonian simulation of non-abelian lattice gauge theories. Phys. Rev. D, 104: 074505, Oct 2021b. 10.1103/​PhysRevD.104.074505.

[66] Alexander Buser, Hrant Gharibyan, Masanori Hanada, Masazumi Honda, and Junyu Liu. Quantum simulation of gauge theory via orbifold lattice. J. High Energ. Phys., 11 2021. 10.1007/​JHEP09(2021)034.

[67] Indrakshi Raychowdhury and Jesse R. Stryker. Solving gauss's law on digital quantum computers with loop-string-hadron digitization. Phys. Rev. Research, 2: 033039, Jul 2020a. 10.1103/​PhysRevResearch.2.033039.

[68] Indrakshi Raychowdhury and Jesse R. Stryker. Loop, string, and hadron dynamics in SU(2) Hamiltonian lattice gauge theories. Phys. Rev. D, 101 (11): 114502, 2020b. 10.1103/​PhysRevD.101.114502.

[69] L. Tagliacozzo, A. Celi, P. Orland, and M. Lewenstein. Simulations of non-Abelian gauge theories with optical lattices. Nature Commun., 4: 2615, 2013c. 10.1038/​ncomms3615.

[70] Yao Ji, Henry Lamm, and Shuchen Zhu. Gluon Field Digitization via Group Space Decimation for Quantum Computers. Phys. Rev. D, 102: 114513, 2020. 10.1103/​PhysRevD.102.114513.

[71] S. Chandrasekharan and U.J. Wiese. Quantum link models: A Discrete approach to gauge theories. Nucl. Phys. B, 492: 455–474, 1997. 10.1016/​S0550-3213(97)00006-0.

[72] R. Brower, S. Chandrasekharan, S. Riederer, and U.J. Wiese. D theory: Field quantization by dimensional reduction of discrete variables. Nucl. Phys. B, 693: 149–175, 2004. 10.1016/​j.nuclphysb.2004.06.007.

[73] U.J. Wiese. D-theory: A quest for nature's regularization. Nucl. Phys. B Proc. Suppl., 153: 336–347, 2006. 10.1016/​j.nuclphysbps.2006.01.027.

[74] Yasar Y Atas, Jinglei Zhang, Randy Lewis, Amin Jahanpour, Jan F Haase, and Christine A Muschik. Su (2) hadrons on a quantum computer via a variational approach. Nature communications, 12 (1): 1–11, 2021. 10.1038/​s41467-021-26825-4.

[75] Natalie Klco, Alessandro Roggero, and Martin J Savage. Standard model physics and the digital quantum revolution: thoughts about the interface. arXiv:2107.04769, 2021. URL https:/​/​​abs/​2107.04769.

[76] Wibe A de Jong, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, and Xiaojun Yao. Quantum simulation of non-equilibrium dynamics and thermalization in the schwinger model. arXiv:2106.08394, 2021. URL https:/​/​​abs/​2106.08394.

[77] Yannick Meurice. Theoretical methods to design and test quantum simulators for the compact abelian higgs model, 2021. 10.1103/​PhysRevD.104.094513.

[78] Erez Zohar. Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods. Philos. Trans. Royal Soc. A, 380 (2216): 20210069, 2022. 10.1098/​rsta.2021.0069.

[79] Tsafrir Armon, Shachar Ashkenazi, Gerardo García-Moreno, Alejandro González-Tudela, and Erez Zohar. Photon-mediated stroboscopic quantum simulation of a ${\mathbb{z}}_{2}$ lattice gauge theory. Phys. Rev. Lett., 127: 250501, Dec 2021. 10.1103/​PhysRevLett.127.250501.

[80] Bárbara Andrade, Zohreh Davoudi, Tobias Graß, Mohammad Hafezi, Guido Pagano, and Alireza Seif. Engineering an effective three-spin hamiltonian in trapped-ion systems for applications in quantum simulation. arXiv:2108.01022, 2021. URL https:/​/​​abs/​2108.01022.

[81] Hrant Gharibyan, Masanori Hanada, Masazumi Honda, and Junyu Liu. Toward simulating superstring/​m-theory on a quantum computer. Journal of High Energy Physics, 2021 (7), Jul 2021. ISSN 1029-8479. 10.1007/​jhep07(2021)140.

[82] Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, and Scott Lawrence. Sigma models on quantum computers. Physical Review Letters, 123 (9), Aug 2019b. ISSN 1079-7114. 10.1103/​physrevlett.123.090501.

[83] Hersh Singh and Shailesh Chandrasekharan. Qubit regularization of the $O(3)$ sigma model. Phys. Rev. D, 100 (5): 054505, 2019. 10.1103/​PhysRevD.100.054505.

[84] Tanmoy Bhattacharya, Alexander J. Buser, Shailesh Chandrasekharan, Rajan Gupta, and Hersh Singh. Qubit regularization of asymptotic freedom. Phys. Rev. Lett., 126: 172001, Apr 2021. 10.1103/​PhysRevLett.126.172001.

[85] Leon Hostetler, Jin Zhang, Ryo Sakai, Judah Unmuth-Yockey, Alexei Bazavov, and Yannick Meurice. Clock model interpolation and symmetry breaking in o(2) models. Phys. Rev. D, 104: 054505, Sep 2021. 10.1103/​PhysRevD.104.054505.

[86] Michael Kreshchuk, William M Kirby, Gary Goldstein, Hugo Beauchemin, and Peter J Love. Quantum simulation of quantum field theory in the light-front formulation. arXiv:2002.04016, 2020a. URL https:/​/​​abs/​2002.04016.

[87] Michael Kreshchuk, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary, and Peter J. Love. Light-Front Field Theory on Current Quantum Computers. Entropy, 9 2020b. 10.3390/​e23050597.

[88] Kenneth G Wilson. Ab initio quantum chemistry: A source of ideas for lattice gauge theorists. Nuclear Physics B-Proceedings Supplements, 17: 82–92, 1990. 10.1016/​0920-5632(90)90223-H.

[89] Libor Veis, Jakub Višňák, Timo Fleig, Stefan Knecht, Trond Saue, Lucas Visscher, and Jiří Pittner. Relativistic quantum chemistry on quantum computers. Physical Review A, 85 (3): 030304, 2012. 10.1103/​PhysRevA.85.030304.

[90] Pekka Pyykkö. The physics behind chemistry and the periodic table. Chemical reviews, 112 (1): 371–384, 2012. 10.1021/​cr200042e.

[91] Wenjian Liu. Effective quantum electrodynamics hamiltonians: A tutorial review. International Journal of Quantum Chemistry, 115 (10): 631–640, 2015. 10.1002/​qua.24852.

[92] Wenjian Liu and Ingvar Lindgren. Going beyond “no-pair relativistic quantum chemistry”. The Journal of Chemical Physics, 139 (1): 014108, 2013. 10.1063/​1.4811795.

[93] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press, 2014. ISBN 1107034736, 9781107034730. 10.1017/​9781139540940.

[94] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan. Low-depth quantum simulation of materials. Physical Review X, 8 (1): 011044, 2018a. 10.1103/​PhysRevX.8.011044.

[95] Tobias Hagge. Optimal fermionic swap networks for hubbard models. arXiv:2001.08324, 2020. URL https:/​/​​abs/​2001.08324.

[96] Holger Bech Nielsen and M. Ninomiya. No Go Theorem for Regularizing Chiral Fermions. Phys. Lett. B, 105: 219–223, 1981a. 10.1016/​0370-2693(81)91026-1.

[97] Holger Bech Nielsen and M. Ninomiya. Absence of Neutrinos on a Lattice. 2. Intuitive Topological Proof. Nucl. Phys. B, 193: 173–194, 1981b. 10.1016/​0550-3213(81)90524-1.

[98] Kenneth G Wilson. New phenomena in subnuclear physics, 1977.

[99] John Kogut and Leonard Susskind. Hamiltonian formulation of wilson's lattice gauge theories. Phys. Rev. D, 11: 395–408, Jan 1975. 10.1103/​PhysRevD.11.395.

[100] Sidney D. Drell, Marvin Weinstein, and Shimon Yankielowicz. Strong-coupling field theories. ii. fermions and gauge fields on a lattice. Phys. Rev. D, 14: 1627–1647, Sep 1976. 10.1103/​PhysRevD.14.1627.

[101] Paolo Nason. The lattice schwinger model with slac fermions. Nuclear Physics B, 260 (2): 269 – 284, 1985. ISSN 0550-3213. 10.1016/​0550-3213(85)90072-0.

[102] David B. Kaplan. A method for simulating chiral fermions on the lattice. Physics Letters B, 288 (3): 342–347, 1992. ISSN 0370-2693. 10.1016/​0370-2693(92)91112-M.

[103] Herbert Neuberger. Exactly massless quarks on the lattice. Physics Letters B, 417 (1-2): 141–144, Jan 1998a. ISSN 0370-2693. 10.1016/​s0370-2693(97)01368-3.

[104] Herbert Neuberger. More about exactly massless quarks on the lattice. Physics Letters B, 427 (3-4): 353–355, May 1998b. ISSN 0370-2693. 10.1016/​s0370-2693(98)00355-4.

[105] Frank Verstraete, J Ignacio Cirac, and José I Latorre. Quantum circuits for strongly correlated quantum systems. Physical Review A, 79 (3): 032316, 2009. 10.1103/​PhysRevA.79.032316.

[106] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996. 10.1126/​science.273.5278.1073.

[107] Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454 (1969): 313–322, 1998. 10.1098/​rspa.1998.0162.

[108] Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders. Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2007. 10.1007/​s00220-006-0150-x.

[109] Nathan Wiebe, Dominic W Berry, Peter Høyer, and Barry C Sanders. Simulating quantum dynamics on a quantum computer. Journal of Physics A: Mathematical and Theoretical, 44 (44): 445308, 2011. 10.1088/​1751-8113/​44/​44/​445308.

[110] Yuan Su, Hsin-Yuan Huang, and Earl T Campbell. Nearly tight trotterization of interacting electrons. Quantum, 5: 495, 2021. 10.22331/​q-2021-07-05-495.

[111] Masuo Suzuki. Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations. Physics Letters A, 146 (6): 319–323, 1990. 10.1016/​0375-9601(90)90962-N.

[112] Andrew M Childs, Yuan Su, Minh C Tran, Nathan Wiebe, and Shuchen Zhu. Theory of trotter error with commutator scaling. Physical Review X, 11 (1): 011020, 2021. 10.1103/​PhysRevX.11.011020.

[113] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, 2018. 10.1073/​pnas.1801723115.

[114] Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum algorithms for quantum chemistry. Quantum Information & Computation, 15 (1-2): 1–21, 2015. 10.26421/​QIC15.1-2-1.

[115] Jacob T Seeley, Martin J Richard, and Peter J Love. The bravyi-kitaev transformation for quantum computation of electronic structure. The Journal of chemical physics, 137 (22): 224109, 2012. 10.1063/​1.4768229.

[116] Bryan O'Gorman, William J Huggins, Eleanor G Rieffel, and K Birgitta Whaley. Generalized swap networks for near-term quantum computing. arXiv:1905.05118, 2019. URL https:/​/​​abs/​1905.05118.

[117] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of trotter-suzuki errors in quantum chemistry simulation. Physical Review A, 91 (2): 022311, 2015. 10.1103/​PhysRevA.91.022311.

[118] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge university press, 2012. 10.1017/​CBO9780511810817.

[119] Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. American Association of Physics Teachers, 2002. 10.1017/​CBO9780511976667.

[120] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient exact synthesis of single qubit unitaries generated by clifford and t gates. arXiv:1206.5236, 2012. 10.26421/​QIC13.7-8-4. URL https:/​/​​abs/​1206.5236.

[121] Neil J Ross and Peter Selinger. Optimal ancilla-free clifford+ t approximation of z-rotations. arXiv:1403.2975, 2014. 10.26421/​QIC15.11-12-4. URL https:/​/​​abs/​1403.2975.

[122] Dominic W Berry, Craig Gidney, Mario Motta, Jarrod R McClean, and Ryan Babbush. Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization. Quantum, 3: 208, 2019. 10.22331/​q-2019-12-02-208.

[123] Brendon L Higgins, Dominic W Berry, Stephen D Bartlett, Howard M Wiseman, and Geoff J Pryde. Entanglement-free heisenberg-limited phase estimation. Nature, 450 (7168): 393–396, 2007. 10.1038/​nature06257.

[124] AA Abrikosov, LD Landau, and IM Khalatnikov. On the elimination of infinities in quantum electrodynamics. In Dokl. Akad. Nauk SSSR, volume 95, page 497, 1954.

[125] David J.E. Callaway. Triviality pursuit: Can elementary scalar particles exist? Physics Reports, 167 (5): 241 – 320, 1988. ISSN 0370-1573. 10.1016/​0370-1573(88)90008-7.

[126] M. Gockeler, R. Horsley, E. Laermann, P. Rakow, G. Schierholz, R. Sommer, and U.J. Wiese. The continuum limit of qed. renormalization group analysis and the question of triviality. Physics Letters B, 251 (4): 567 – 574, 1990. ISSN 0370-2693. 10.1016/​0370-2693(90)90798-B.

[127] D. Djukanovic, J. Gegelia, and Ulf-G. Meißner. Triviality of quantum electrodynamics revisited. Communications in Theoretical Physics, 69 (3): 263, Mar 2018. ISSN 0253-6102. 10.1088/​0253-6102/​69/​3/​263.

[128] Andrew M Childs. On the relationship between continuous-and discrete-time quantum walk. Communications in Mathematical Physics, 294 (2): 581–603, 2010. 10.1007/​s00220-009-0930-1.

[129] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by qubitization. Quantum, 3: 163, 2019. 10.22331/​q-2019-07-12-163.

[130] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204, 2019. 10.1145/​3313276.3316366.

[131] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits with linear t complexity. Physical Review X, 8 (4): 041015, 2018b. 10.1103/​PhysRevX.8.041015.

[132] David Poulin, Alexei Kitaev, Damian S Steiger, Matthew B Hastings, and Matthias Troyer. Quantum algorithm for spectral measurement with a lower gate count. Physical review letters, 121 (1): 010501, 2018. 10.1103/​PhysRevLett.121.010501.

[133] Mario Motta, Erika Ye, Jarrod R McClean, Zhendong Li, Austin J Minnich, Ryan Babbush, and Garnet Kin Chan. Low rank representations for quantum simulation of electronic structure. arXiv:1808.02625, 2018. 10.1038/​s41534-021-00416-z. URL https:/​/​​abs/​1808.02625.

[134] Ian D Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Physical review letters, 120 (11): 110501, 2018. 10.1103/​PhysRevLett.120.110501.

[135] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing in python. PeerJ Computer Science, 3: e103, January 2017. ISSN 2376-5992. 10.7717/​peerj-cs.103.

[136] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits with linear t complexity. Physical Review X, 8 (4): 041015, 2018c. 10.1103/​PhysRevX.8.041015.

[137] Alex Bocharov, Martin Roetteler, and Krysta M Svore. Efficient synthesis of universal repeat-until-success quantum circuits. Physical Review Letters, 114 (8): 080502, 2015. 10.1103/​PhysRevLett.114.080502.

[138] Peter G Szalay, Thomas Muller, Gergely Gidofalvi, Hans Lischka, and Ron Shepard. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chemical reviews, 112 (1): 108–181, 2012. 10.1021/​cr200137a.

[139] Hans Lischka, Ron Shepard, Franklin B Brown, and Isaiah Shavitt. New implementation of the graphical unitary group approach for multireference direct configuration interaction calculations. International Journal of Quantum Chemistry, 20 (S15): 91–100, 1981. 10.1002/​qua.560200810.

[140] Hang Hu, Andrew J Jenkins, Hongbin Liu, Joseph M Kasper, Michael J Frisch, and Xiaosong Li. Relativistic two-component multireference configuration interaction method with tunable correlation space. Journal of Chemical Theory and Computation, 16 (5): 2975–2984, 2020. 10.1021/​acs.jctc.9b01290.

[141] Zhang Jiang, Kevin J Sung, Kostyantyn Kechedzhi, Vadim N Smelyanskiy, and Sergio Boixo. Quantum algorithms to simulate many-body physics of correlated fermions. Physical Review Applied, 9 (4): 044036, 2018. 10.1103/​PhysRevApplied.9.044036.

Cited by

[1] S. Hasibul Hassan Chowdhury, Talal Ahmed Chowdhury, Salah Nasri, Omar Ibna Nazim, and Shaikh Saad, "Quantum simulation of quantum mechanical system with spatial noncommutativity", International Journal of Quantum Information 21 06, 2350028 (2023).

[2] Marc Illa, Caroline E. P. Robin, and Martin J. Savage, "Quantum simulations of SO(5) many-fermion systems using qudits", Physical Review C 108 6, 064306 (2023).

[3] Zohreh Davoudi, Alexander F. Shaw, and Jesse R. Stryker, "General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory", Quantum 7, 1213 (2023).

[4] Luis Hidalgo and Patrick Draper, "Quantum simulations for strong-field QED", Physical Review D 109 7, 076004 (2024).

[5] Matteo Turco, Gonçalo Quinta, João Seixas, and Yasser Omar, "Quantum Simulation of Bound State Scattering", PRX Quantum 5 2, 020311 (2024).

[6] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage, "Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions. I. Axial gauge", Physical Review D 107 5, 054512 (2023).

[7] Bin Xu and Wei Xue, "( 3+1 )-dimensional Schwinger pair production with quantum computers", Physical Review D 106 11, 116007 (2022).

[8] Kenji Sugisaki, V S Prasannaa, Satoshi Ohshima, Takahiro Katagiri, Yuji Mochizuki, B K Sahoo, and B P Das, "Bayesian phase difference estimation algorithm for direct calculation of fine structure splitting: accelerated simulation of relativistic and quantum many-body effects", Electronic Structure 5 3, 035006 (2023).

[9] Marko J. Rančić, "Exactly solving the Kitaev chain and generating Majorana-zero-modes out of noisy qubits", Scientific Reports 12 1, 19882 (2022).

[10] Heather M. Gray and Koji Terashi, "Quantum Computing Applications in Future Colliders", Frontiers in Physics 10, 864823 (2022).

[11] Xabier Feal, Andrey Tarasov, and Raju Venugopalan, "QED as a many-body theory of worldlines: General formalism and infrared structure", Physical Review D 106 5, 056009 (2022).

[12] João Barata, Xiaojian Du, Meijian Li, Wenyang Qian, and Carlos A. Salgado, "Medium induced jet broadening in a quantum computer", Physical Review D 106 7, 074013 (2022).

[13] Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert M. Linke, "Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions", PRX Quantum 3 2, 020324 (2022).

[14] Arpan Bhattacharyya, Lata Kh. Joshi, and Bhuvanesh Sundar, "Quantum information scrambling: from holography to quantum simulators", The European Physical Journal C 82 5, 458 (2022).

[15] Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, Martin J. Savage, and Pavel Lougovski, "Simulating Heisenberg interactions in the Ising model with strong drive fields", Physical Review A 108 4, 042216 (2023).

[16] Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti, "Quantum Simulation for High-Energy Physics", PRX Quantum 4 2, 027001 (2023).

[17] Christian W. Bauer, Benjamin Nachman, and Marat Freytsis, "Simulating Collider Physics on Quantum Computers Using Effective Field Theories", Physical Review Letters 127 21, 212001 (2021).

[18] Christopher Kane, Dorota M. Grabowska, Benjamin Nachman, and Christian W. Bauer, "Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constraints", arXiv:2211.10497, (2022).

[19] Jue Xu, "On Lagrangian Formalism of Quantum Computation", arXiv:2112.04892, (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-21 07:56:09) and SAO/NASA ADS (last updated successfully 2024-05-21 07:56:10). The list may be incomplete as not all publishers provide suitable and complete citation data.