Strongly nonlocal unextendible product bases do exist

Fei Shi1, Mao-Sheng Li2,3, Mengyao Hu4, Lin Chen4,5, Man-Hong Yung2,6, Yan-Ling Wang7, and Xiande Zhang8

1School of Cyber Security, University of Science and Technology of China, Hefei, 230026, People's Republic of China
2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
3Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
4LMIB (Beihang University), Ministry of Education, and School of Mathematical Sciences, Beihang University, Beijing 100191, People's Republic of China
5International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, People's Republic of China
6Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
7School of Computer Science and Techonology, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
8School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

A set of multipartite orthogonal product states is locally irreducible, if it is not possible to eliminate one or more states from the set by orthogonality-preserving local measurements. An effective way to prove that a set is locally irreducible is to show that only trivial orthogonality-preserving local measurement can be performed to this set. In general, it is difficult to show that such an orthogonality-preserving local measurement must be trivial. In this work, we develop two basic techniques to deal with this problem. Using these techniques, we successfully show the existence of unextendible product bases (UPBs) that are locally irreducible in every bipartition in $d\otimes d\otimes d$ for any $d\geq 3$, and $3\otimes3\otimes 3$ achieves the minimum dimension for the existence of such UPBs. These UPBs exhibit the phenomenon of strong quantum nonlocality without entanglement. Our result solves an open question given by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)] and Yuan et al. [Phys. Rev. A 102, 042228 (2020)]. It also sheds new light on the connections between UPBs and strong quantum nonlocality.

The most well-known form of quantum nonlocality-Bell nonlocality, arises from entangled states. Bennett et al. [Phys. Rev. A 59, 1070 (1999)] showed that product states can exhibit nonlocal properties in a way which is fundamentally different from Bell nonlocality. In fact, they presented nine orthogonal product states of two qutrit systems such that these states are indistinguishable by using local operation and classical communication.

More recently, Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)] introduced a strongest form of nonlocality and they presented two examples in tripartite systems to show the existence of such kind of strong nonlocality. Although there are several works on this kind of strong nonlocality, the current method is very difficult to verify the strong nonlocality because of a large number of calculations.

Our main contribution is to develop two basic techniques which are very useful for showing that a set of orthogonal product states is strongly nonlocal. By using these techniques, we successfully show the existence of strongly nonlocal unextendible product bases in $d\otimes d\otimes d$ for $d\geq 3$. This result solves an open question given by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)] and Yuan et al. [Phys. Rev. A 102, 042228 (2020)]. It also sheds new light on the strong quantum nonlocality without entanglement.

► BibTeX data

► References

[1] B. M. Terhal, D. P. DiVincenzo, and D. W. Leung. Hiding bits in bell states. Phys. Rev. Lett., 86: 5807–5810, Jun 2001. https:/​/​doi.org/​10.1103/​PhysRevLett.86.5807.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.5807

[2] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal. Quantum data hiding. IEEE Trans. Inf. Theory, 48 (3): 580–598, 2002. https:/​/​doi.org/​10.1109/​18.985948.
https:/​/​doi.org/​10.1109/​18.985948

[3] T. Eggeling and R. F. Werner. Hiding classical data in multipartite quantum states. Phys. Rev. Lett., 89: 097905, Aug 2002. https:/​/​doi.org/​10.1103/​PhysRevLett.89.097905.
https:/​/​doi.org/​10.1103/​PhysRevLett.89.097905

[4] W. Matthews, S. Wehner, and A. Winter. Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys., 291 (3): p.813–843, 2009. https:/​/​doi.org/​10.1007/​s00220-009-0890-5.
https:/​/​doi.org/​10.1007/​s00220-009-0890-5

[5] D. Markham and B. C. Sanders. Graph states for quantum secret sharing. Phys. Rev. A, 78: 042309, Oct 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.042309.
https:/​/​doi.org/​10.1103/​PhysRevA.78.042309

[6] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters. Quantum nonlocality without entanglement. Phys. Rev. A, 59: 1070–1091, Feb 1999a. https:/​/​doi.org/​10.1103/​PhysRevA.59.1070.
https:/​/​doi.org/​10.1103/​PhysRevA.59.1070

[7] D. P. Divincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys., 238 (3): 379–410, 2003. https:/​/​doi.org/​10.1007/​s00220-003-0877-6.
https:/​/​doi.org/​10.1007/​s00220-003-0877-6

[8] Y. Feng and Y. Shi. Characterizing locally indistinguishable orthogonal product states. IEEE Trans. Inf. Theory, 55 (6): 2799–2806, 2009. https:/​/​doi.org/​10.1109/​TIT.2009.2018330.
https:/​/​doi.org/​10.1109/​TIT.2009.2018330

[9] J. Niset and N. J. Cerf. Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A, 74: 052103, Nov 2006. https:/​/​doi.org/​10.1103/​PhysRevA.74.052103.
https:/​/​doi.org/​10.1103/​PhysRevA.74.052103

[10] Y.-H. Yang, F. Gao, G.-J. Tian, T.-Q. Cao, and Q.-Y. Wen. Local distinguishability of orthogonal quantum states in a $2{\bigotimes}2{\bigotimes}2$ system. Phys. Rev. A, 88: 024301, Aug 2013. https:/​/​doi.org/​10.1103/​PhysRevA.88.024301.
https:/​/​doi.org/​10.1103/​PhysRevA.88.024301

[11] S. Halder. Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A, 98: 022303, Aug 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.022303.
https:/​/​doi.org/​10.1103/​PhysRevA.98.022303

[12] G. Xu, Q. Wen, F. Gao, S. Qin, and H. Zuo. Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process., 16 (11): 276, 2017. https:/​/​doi.org/​10.1007/​s11128-017-1725-5.
https:/​/​doi.org/​10.1007/​s11128-017-1725-5

[13] Y.-L. Wang, M.-S. Li, Z.-J. Zheng, and S.-M. Fei. The local indistinguishability of multipartite product states. Quantum Inf. Process., 16 (1): 5, 2017. https:/​/​doi.org/​10.1007/​s11128-016-1477-7.
https:/​/​doi.org/​10.1007/​s11128-016-1477-7

[14] Z.-C. Zhang, K.-J. Zhang, F. Gao, Q.-Y. Wen, and C. H. Oh. Construction of nonlocal multipartite quantum states. Phys. Rev. A, 95: 052344, May 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.052344.
https:/​/​doi.org/​10.1103/​PhysRevA.95.052344

[15] S. Ghosh, G. Kar, A. Roy, and D. Sarkar. Distinguishability of maximally entangled states. Phys. Rev. A, 70: 022304, Aug 2004. https:/​/​doi.org/​10.1103/​PhysRevA.70.022304.
https:/​/​doi.org/​10.1103/​PhysRevA.70.022304

[16] H. Fan. Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett., 92: 177905, Apr 2004. https:/​/​doi.org/​10.1103/​PhysRevLett.92.177905.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.177905

[17] M. Nathanson. Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases. J. Math. Phys, 46 (6): 062103, 2005. https:/​/​doi.org/​10.1063/​1.1914731.
https:/​/​doi.org/​10.1063/​1.1914731

[18] N. Yu, R. Duan, and M. Ying. Any $2{\bigotimes}n$ subspace is locally distinguishable. Phys. Rev. A, 84: 012304, Jul 2011. https:/​/​doi.org/​10.1103/​PhysRevA.84.012304.
https:/​/​doi.org/​10.1103/​PhysRevA.84.012304

[19] R. Duan, Y. Feng, Z. Ji, and M. Ying. Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. Phys. Rev. Lett., 98: 230502, Jun 2007. https:/​/​doi.org/​10.1103/​PhysRevLett.98.230502.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.230502

[20] S. Bandyopadhyay, S. Ghosh, and G. Kar. LOCC distinguishability of unilaterally transformable quantum states. New J. Phys., 13 (12): 123013, 2011. https:/​/​doi.org/​10.1088/​1367-2630/​13/​12/​123013.
https:/​/​doi.org/​10.1088/​1367-2630/​13/​12/​123013

[21] A. Cosentino. Positive-partial-transpose-indistinguishable states via semidefinite programming. Phys. Rev. A, 87: 012321, Jan 2013. https:/​/​doi.org/​10.1103/​PhysRevA.87.012321.
https:/​/​doi.org/​10.1103/​PhysRevA.87.012321

[22] N. Yu, R. Duan, and M. Ying. Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett., 109: 020506, Jul 2012. https:/​/​doi.org/​10.1103/​PhysRevLett.109.020506.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.020506

[23] S. Bandyopadhyay. Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A, 85: 042319, Apr 2012. https:/​/​doi.org/​10.1103/​PhysRevA.85.042319.
https:/​/​doi.org/​10.1103/​PhysRevA.85.042319

[24] S. De Rinaldis. Distinguishability of complete and unextendible product bases. Phys. Rev. A, 70: 022309, Aug 2004. https:/​/​doi.org/​10.1103/​PhysRevA.70.022309.
https:/​/​doi.org/​10.1103/​PhysRevA.70.022309

[25] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett., 82: 5385–5388, Jun 1999b. https:/​/​doi.org/​10.1103/​PhysRevLett.82.5385.
https:/​/​doi.org/​10.1103/​PhysRevLett.82.5385

[26] J. Tura, R. Augusiak, P. Hyllus, M. Kuś, J. Samsonowicz, and M. Lewenstein. Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A, 85: 060302, Jun 2012. https:/​/​doi.org/​10.1103/​PhysRevA.85.060302.
https:/​/​doi.org/​10.1103/​PhysRevA.85.060302

[27] J. Chen, L. Chen, and B. Zeng. Unextendible product basis for fermionic systems. J. Math. Phys., 55 (8), 2014. https:/​/​doi.org/​10.1063/​1.4893358.
https:/​/​doi.org/​10.1063/​1.4893358

[28] R. Augusiak, T. Fritz, M. Kotowski, M. Kotowski, M. Pawlowski, M. Lewenstein, and A. Acín. Tight bell inequalities with no quantum violation from qubit unextendible product bases. Phys. Rev. A, 85: 042113, Apr 2012. https:/​/​doi.org/​10.1103/​PhysRevA.85.042113.
https:/​/​doi.org/​10.1103/​PhysRevA.85.042113

[29] R. Augusiak, J. Stasińska, C. Hadley, J. K. Korbicz, M. Lewenstein, and A. Acín. Bell inequalities with no quantum violation and unextendable product bases. Phys. Rev. Lett., 107: 070401, Aug 2011. https:/​/​doi.org/​10.1103/​PhysRevLett.107.070401.
https:/​/​doi.org/​10.1103/​PhysRevLett.107.070401

[30] N. Alon and L. Lovász. Unextendible product bases. J Comin. Theo. Ser. A, 95 (1): 169–179, 2001. https:/​/​doi.org/​10.1006/​jcta.2000.3122.
https:/​/​doi.org/​10.1006/​jcta.2000.3122

[31] K. Feng. Unextendible product bases and $1$-factorization of complete graphs. Discrete Appl. Math., 154: 942–949, 2006. https:/​/​doi.org/​10.1016/​j.dam.2005.10.011.
https:/​/​doi.org/​10.1016/​j.dam.2005.10.011

[32] N. Johnston. The minimum size of qubit unextendible product bases. arXiv:1302.1604, 2013. URL https:/​/​arxiv.org/​abs/​1302.1604. https:/​/​doi.org/​10.4230/​LIPIcs.TQC.2013.93.
https:/​/​doi.org/​10.4230/​LIPIcs.TQC.2013.93
arXiv:1302.1604

[33] J. Chen and N. Johnston. The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys., 333 (1): 351–365, 2013. https:/​/​doi.org/​10.1007/​s00220-014-2186-7.
https:/​/​doi.org/​10.1007/​s00220-014-2186-7

[34] N. Johnston. The structure of qubit unextendible product bases. J. Phys. A: Math. Theor., 47 (42): 424034, 2014. https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424034.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424034

[35] S. Halder, M. Banik, and S. Ghosh. Family of bound entangled states on the boundary of the peres set. Phys. Rev. A, 99: 062329, Jun 2019a. https:/​/​doi.org/​10.1103/​PhysRevA.99.062329.
https:/​/​doi.org/​10.1103/​PhysRevA.99.062329

[36] S. Agrawal, S. Halder, and M. Banik. Genuinely entangled subspace with all-encompassing distillable entanglement across every bipartition. Phys. Rev. A, 99: 032335, Mar 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.032335.
https:/​/​doi.org/​10.1103/​PhysRevA.99.032335

[37] F. Shi, X. Zhang, and L. Chen. Unextendible product bases from tile structures and their local entanglement-assisted distinguishability. Phys. Rev. A, 101: 062329, Jun 2020a. https:/​/​doi.org/​10.1103/​PhysRevA.101.062329.
https:/​/​doi.org/​10.1103/​PhysRevA.101.062329

[38] P. Bej and S. Halder. Unextendible product bases, bound entangled states, and the range criterion. Phys. Lett. A, 386: 126992, 2020. https:/​/​doi.org/​10.1016/​j.physleta.2020.126992.
https:/​/​doi.org/​10.1016/​j.physleta.2020.126992

[39] S. Halder, M. Banik, S. Agrawal, and S. Bandyopadhyay. Strong quantum nonlocality without entanglement. Phys. Rev. Lett., 122: 040403, Feb 2019b. https:/​/​doi.org/​10.1103/​PhysRevLett.122.040403.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.040403

[40] P. Yuan, G. Tian, and X. Sun. Strong quantum nonlocality without entanglement in multipartite quantum systems. Phys. Rev. A, 102: 042228, Oct 2020. https:/​/​doi.org/​10.1103/​PhysRevA.102.042228.
https:/​/​doi.org/​10.1103/​PhysRevA.102.042228

[41] B. Che, Z. Dou, M. Lei, and Y. Yang. The construction of sets with strong quantum nonlocality using fewer states. arXiv:2011.00924v2, 2020. URL https:/​/​arxiv.org/​abs/​2011.00924.
arXiv:2011.00924v2
https:/​/​arxiv.org/​abs/​2011.00924

[42] F. Shi, M.-S. Li, M. Hu, L. Chen, M.-H. Yung, Y.-L. Wang, and X. Zhang. Strong quantum nonlocality from hypercubes. arXiv:2110.08461, 2021a. URL https:/​/​arxiv.org/​abs/​2110.08461.
arXiv:2110.08461

[43] F. Shi, M. Hu, L. Chen, and X. Zhang. Strong quantum nonlocality with entanglement. Phys. Rev. A, 102: 042202, Oct 2020b. https:/​/​doi.org/​10.1103/​PhysRevA.102.042202.
https:/​/​doi.org/​10.1103/​PhysRevA.102.042202

[44] Y.-L. Wang, M.-S. Li, and M.-H. Yung. Graph-connectivity-based strong quantum nonlocality with genuine entanglement. Phys. Rev. A, 104: 012424, Jul 2021. https:/​/​doi.org/​10.1103/​PhysRevA.104.012424.
https:/​/​doi.org/​10.1103/​PhysRevA.104.012424

[45] Z.-C. Zhang and X. Zhang. Strong quantum nonlocality in multipartite quantum systems. Phys. Rev. A, 99: 062108, Jun 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.062108.
https:/​/​doi.org/​10.1103/​PhysRevA.99.062108

[46] M.-S. Li, Y.-L. Wang, F. Shi, and M.-H. Yung. Local distinguishability based genuinely quantum nonlocality without entanglement. Journal of Physics A: Mathematical and Theoretical, 54 (44): 445301, 2021. https:/​/​doi.org/​10.1088/​1751-8121/​ac28cd.
https:/​/​doi.org/​10.1088/​1751-8121/​ac28cd

[47] S. Rout, A. G. Maity, A. Mukherjee, S. Halder, and M. Banik. Genuinely nonlocal product bases: Classification and entanglement-assisted discrimination. Phys. Rev. A, 100: 032321, Sep 2019. https:/​/​doi.org/​10.1103/​PhysRevA.100.032321.
https:/​/​doi.org/​10.1103/​PhysRevA.100.032321

[48] H. k. S V, A. Ranjan, and M. Banik. State space structure of tripartite quantum systems. Phys. Rev. A, 104: 022437, Aug 2021. https:/​/​doi.org/​10.1103/​PhysRevA.104.022437.
https:/​/​doi.org/​10.1103/​PhysRevA.104.022437

[49] M. Demianowicz and R. Augusiak. From unextendible product bases to genuinely entangled subspaces. Phys. Rev. A, 98: 012313, Jul 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.012313.
https:/​/​doi.org/​10.1103/​PhysRevA.98.012313

[50] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge, UK, 2010. https:/​/​doi.org/​10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[51] S. M. Cohen. Understanding entanglement as resource: Locally distinguishing unextendible product bases. Phys. Rev. A, 77: 012304, Jan 2008. https:/​/​doi.org/​10.1103/​PhysRevA.77.012304.
https:/​/​doi.org/​10.1103/​PhysRevA.77.012304

[52] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. volume 70, pages 1895–1899. American Physical Society, Mar 1993. https:/​/​doi.org/​10.1103/​PhysRevLett.70.1895.
https:/​/​doi.org/​10.1103/​PhysRevLett.70.1895

[53] Z.-C. Zhang, X. Wu, and X. Zhang. Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A, 101: 022306, Feb 2020. https:/​/​doi.org/​10.1103/​PhysRevA.101.022306.
https:/​/​doi.org/​10.1103/​PhysRevA.101.022306

[54] F. Shi, M.-S. Li, L. Chen, and X. Zhang. Strong quantum nonlocality for unextendible product bases in heterogeneous systems. Journal of Physics A: Mathematical and Theoretical, 55 (1): 015305, 2021b. https:/​/​doi.org/​10.1088/​1751-8121/​ac3bea.
https:/​/​doi.org/​10.1088/​1751-8121/​ac3bea

Cited by

[1] Maciej Demianowicz, "Negative result about the construction of genuinely entangled subspaces from unextendible product bases", Physical Review A 106 1, 012442 (2022).

[2] Fei Shi, Zuo Ye, Lin Chen, and Xiande Zhang, "Strong quantum nonlocality in N -partite systems", Physical Review A 105 2, 022209 (2022).

[3] Fei Shi, Mao-Sheng Li, Mengyao Hu, Lin Chen, Man-Hong Yung, Yan-Ling Wang, and Xiande Zhang, "Strong quantum nonlocality from hypercubes", arXiv:2110.08461.

[4] Yan-Ling Wang, Mao-Sheng Li, and Man-Hong Yung, "Graph-connectivity-based strong quantum nonlocality with genuine entanglement", Physical Review A 104 1, 012424 (2021).

[5] Fei Shi, Mao-Sheng Li, Lin Chen, and Xiande Zhang, "Strong quantum nonlocality for unextendible product bases in heterogeneous systems", Journal of Physics A Mathematical General 55 1, 015305 (2022).

[6] Mao-Sheng Li and Zhu-Jun Zheng, "Genuine hidden nonlocality without entanglement: from the perspective of local discrimination", New Journal of Physics 24 4, 043036 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-02 00:29:45) and SAO/NASA ADS (last updated successfully 2022-10-02 00:29:46). The list may be incomplete as not all publishers provide suitable and complete citation data.