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Most quantum key distribution (QKD) pro-
tocols can be classified as either a discrete-
variable (DV) protocol or continuous-variable
(CV) protocol, based on how classical infor-
mation is being encoded and decoded. We
propose a protocol that combines the best
of both worlds—the simplicity of quantum
state preparation in DV-QKD together with
the cost-effective and high-bandwidth of ho-
modyne detectors used in CV-QKD. Our pro-
posed protocol has two highly practical fea-
tures: (1) it does not require the honest par-
ties to share the same reference phase (as re-
quired in CV-QKD) and (2) the selection of
decoding basis can be performed after mea-
surement. We also prove the security of the
proposed protocol in the asymptotic limit un-
der the assumption of collective attacks. Our
simulation suggests that the protocol is suit-
able for secure and high-speed practical key
distribution over metropolitan distances.

1 Introduction
Quantum key distribution (QKD) provides an
information-theoretic method to exchange secret keys
between distant parties, whose security is promised by
the laws of quantum mechanics [1–3]. Based on how
classical information is being encoded and decoded,
QKD can be divided into two broad protocol cate-
gories, namely, discrete-variable (DV) protocols and
continuous-variable (CV) protocols. In the former,
the information is typically encoded into discrete op-
tical modes of a single photon, e.g., polarisation or
time bin. In this case, single-photon detectors are
normally used to perform decoding. In the latter,
quantum states are described in an optical domain
where the eigenstates are continuous and have infinite
dimension [4, 5], e.g., using Gaussian optical states.
One of the key benefits of CV-QKD is the use of ho-
modyne detectors, which possess appealing features
like high quantum efficiency, cost-effectiveness, and
room-temperature operation. Moreover, homodyne
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detectors can be readily integrated into a photonic
integrated circuit [6–9], which holds great promise for
monolithic CMOS-compatible fabrication and large-
scale integrated quantum networks.

Like DV-QKD, the current research trend of CV-
QKD is focused on closing the gaps between the-
ory and experiment. One prominent example is the
GG02 protocol proposed by Grosshans and Grang-
ier [10], which requires two key assumptions: (1) the
users are able to perform ideal Gaussian modulation
and that (2) their local oscillators (LOs) are coordi-
nated/calibrated (in terms of relative phase and wave-
length). While in theory these conditions are well de-
fined and understood, their practical implementations
are not straightforward. Indeed, in the case of the
first assumption, one would need an infinite amount
of randomness to simulate the required Gaussian dis-
tribution, which is clearly not possible in practice.
To overcome this gap, one solution is to consider the
discrete approximation of Gaussian modulation [11],
or alternatively, discrete-modulated CV-QKD proto-
cols based on constellations of coherent states (or
displaced thermal states) [12–22]. Moreover, work-
ing with discrete modulation protocols has another
advantage, in that could significantly reduce the im-
plementation complexity and computational resources
required by the classical post-processing layer [5, 14–
16, 23, 24].

For the second assumption, one can try to dis-
tribute a common LO together with the quantum
signals using time/polarisation-division multiplexing,
an approach commonly known as the transmitted LO
scheme. However, this approach is not entirely secure
as it has been shown that the transmitted LO’s in-
tensity can be manipulated to break the security of
the protocol [33–35]. A good solution is to use the
so-called local LO scheme, where the LOs are pre-
pared independently [31, 32, 36]. Here, the relative
phase between signal and LO has to be tracked and
corrected accordingly [31, 32, 36–40] , with the help
of pilot pulses acting as a phase reference. As such,
the scheme is immune against side-channel attacks on
the transmitted LO. In addition, it could reduce the
power requirement for transmitted LO and bypass the
excess noises caused by the transmission of a strong
LO (which was needed previously). However, the lo-
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Protocol class modulation type detector type pilot pulse maximum
requirement transmission distance [2]

Standard DV-QKD discrete single-photon detector 7 long (>100km)
Gaussian-modulated CV-QKD continuous homodyne/heterodyne 3 mid
Discrete-modulated CV-QKD discrete homodyne/heterodyne 3 mid

DV-QKD with homodyne detection discrete homodyne/heterodyne 7 metropolitan (<20km)

Table 1: Typical features of different classes of QKD protocols. Here, we briefly compare between standard DV-QKD proto-
cols, Gaussian-modulated CV-QKD protocols, discrete-modulation CV-QKD protocols and DV-QKD protocols with homodyne
detection. Some popular protocols of standard DV-QKD are BB84 [25], B92 [26], SARG04 [27], as well as distributed-phase-
reference protocols [28, 29]. An example of Gaussian-modulated CV-QKD is the aforementioned GG02 protocol [10], while
some examples of discrete-modulated CV-QKD can be found in Refs. [11–22]. Finally, DV-QKD with homodyne detection
includes Ref. [30] and this work. Note that the header ‘pilot pulse requirement’ refers to the need of sending pilot pulses in
CV-QKD to generate the LO locally using independent laser sources [31, 32]. Here, the term ‘standard DV-QKD’ refers to
protocols that encode classical information into optical modes and decode them via single-photon detection. For CV-QKD,
we restrict our consideration to protocols with a local LO to avoid side-channel attacks on the LO.

cal LO scheme typically requires a carefully designed
phase tracking system and phase correction or com-
pensation system, which may increase the experimen-
tal complexity of the protocol [36–40].

Given the pros and cons of DV-QKD and CV-QKD,
it is thus of interest to study hybrid QKD schemes
that tap on the best of both approaches. In particular,
this raises the question whether one could combine
discrete encoding with continuous decoding without
a common phase reference, using the transmission of
randomly prepared single photons like in decoy-state
BB84 QKD. Indeed, using homodyne detection to de-
code quantum information encoded in single photons
is not trivial—the inherent quantum noise of homo-
dyne detection generally engulfs the presence of sin-
gle photons in a single-shot setting. Consequently,
this makes it very hard to distinguish the underlying
quantum code words. However, not all is lost: one
can still exploit the noisy photon counting features of
homodyne detection to learn some information about
the underlying photon number distribution, as was re-
cently shown in Ref. [30] assuming the use of a perfect
single-photon source for quantum encoding.

Here, arising from an independent work based on
the estimation of input-output photon number distri-
bution over an untrusted photonic channel [41], we
present a practical hybrid QKD protocol based on
decoy-state method and homodyne detection. More
specifically, in our proposal, the quantum transmit-
ter uses a standard phase-randomised coherent laser
source, while the quantum receiver uses a single ho-
modyne detector whose local oscillator’s phase is ran-
domised. As such, unlike CV-QKD, there is no need
to distribute a common phase reference between the
transmitter and receiver. The other key feature of
our protocol is that the inherent quantum noise of the
homodyne detector can be isolated from the measure-
ment statistics related to the security analysis. This
allows us to effectively restrict the analysis to the un-
trusted quantum channel. Moreover, unlike standard
BB84 QKD, our protocol does not require the receiver

to select a random basis for each measurement—basis
selection can be deferred to the post-processing stage
after all the measurements are done. Concerning its
security performance, using state-of-the-art security
proof techniques, we find that the protocol is able to
distribute secret keys over metropolitan distances (up
to 15 km fibre length) based on typical device and
channel parameters. For an overview of the different
practical features of different classes of QKD proto-
cols, we refer the readers to Table 1.

A more detailed description of our proposed pro-
tocol is presented in Section 2. Then, in Section 3,
we analyse the security of the protocol in the asymp-
totic limit under the assumption of collective attacks.
Next, in Section 4, we simulate the performance of
the protocol in realistic settings.

2 Protocol
As mentioned, in our proposed protocol, Alice pre-
pares time-phase BB84 states [25] using phase-
randomised weak coherent pulses (with decoy-state
method [42]) and Bob performs random quadrature
measurement using homodyne detection.

For time-phase encoding implementation of the
BB84 protocol, when Alice chooses the Z-basis, she
sends a signal in either the ‘early’ or ‘late’ pulse de-
pending on her randomly chosen bit value. In the
language of quantum optics, these temporal modes
could be associated with orthogonal annihilation op-
erators: namely, â0 for the ‘early’ pulse and â1 for the
‘late’ pulse. On the other hand, when the X-basis is
chosen, Alice sends two successive pulses that are ei-
ther ‘in-phase’ or ‘out-of-phase’. The corresponding
annihilation operators associated to these modes are
given by â± = (â0 ± â1)/

√
2. When implemented us-

ing weak coherent source, Alice would then prepare
a coherent state (with its global phase randomised)
associated to the appropriate annihilation operator.

The schematic setup of the protocol is shown in
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Figure 1: Schematic setup of the protocol. Alice pre-
pares time-phase BB84 states from phase-randomised coher-
ent states using a set of intensity modulator (IM), phase mod-
ulator (PM) and variable optical attenuator (ATTN). After
the quantum channel, Bob performed a phase-randomised
quadrature measurement upon the input states using an in-
dependent local oscillator (LO) with a balanced homodyne
detector (BHD). OSC: oscilloscope.

Fig. 1. The protocol runs as follows:

1. State preparation: For each round, Alice
randomly chooses an intensity setting µ ∈
{µ0, µ1, µ2, µ3} with their corresponding proba-
bility pµi and a basis X ∈ {Z,X} with proba-
bility {pZ , 1− pZ} respectively. In this protocol,
keys are only generated when µ = µ0 and X = Z.
Next, she chooses a bit value A ∈ {0, 1} with
uniform probability. Based on these choices, she
would then prepare a phase-randomised coherent
state with intensity µ in the appropriate optical
mode. Finally, she sends the prepared states to
Bob via an untrusted quantum channel.

2. Measurement: Bob performs homodyne mea-
surement on the state that he receives using a
local oscillator with a random global phase (the
phase of the local oscillator for the ‘late’ pulse
is the same as the one for the ‘early’ pulse). He
records the outcome of the homodyne measure-
ment for the ‘early’ time-bin (denoted by q0) and
for the ‘late’ time-bin (denoted by q1). He also
calculates q± = (q0 ± q1)/

√
2.

For each β ∈ {0, 1,+,−}, he maps the continuous
outcome qβ into a discrete bin νβ . If the size of
the bin is δ, then for all ν ∈ Z, we denote the
interval [νδ, (ν + 1)δ) by Iν . Bob has νβ = ν if
and only if qβ ∈ Iν .
(Remark: In practice, the outcome qβ is already
digitised. In this case, νβ can be seen as an ad-
ditional coarse-graining.)
They repeat Step 1 and 2 for N times.

3. Basis and intensity announcement and decoding:
For all the rounds, Alice declares her basis choice
x and her intensity setting µ. Finally, depend-
ing on Alice’s basis choice, Bob assign his bit
value B = b according to the following decoding
scheme:
For Z-basis:

b =


0, |q0| ≥ τ, |q1| < τ

1, |q0| < τ, |q1| ≥ τ
?, |q0|, |q1| ≥ τ
∅, |q0|, |q1| < τ

.

For X-basis:

b =


0, (|q0|, |q1| ≥ τ) ∧ (sign(q0) = sign(q1))
1, (|q0|, |q1| ≥ τ) ∧ (sign(q0) 6= sign(q1))
?, (|q0| ≥ τ, |q1| < τ) ∨ (|q0| < τ, |q1| ≥ τ)
∅, |q0|, |q1| < τ

,

where τ is the threshold value that is fixed before
executing the protocol. When B ∈ {0, 1}, we
say that the outcome is conclusive. On the other
hand, when B =?, we say that the outcome is
inconclusive and when B = ∅, we say that there
is no-click.

4. Parameter estimation: For each round, if B =?
or B = ∅, Bob will reveal qβ (for each β) and ask
Alice to reveal her bit value A. Furthermore, if
Alice chooses the X-basis or µ 6= µ0, she would
also reveal her bit value A and ask Bob to reveal
his decoded bit B and his measurement outcome
qβ . After that, Alice would randomly sample a
few of the remaining rounds where she reveals
her bit value A and asks Bob to reveals his bit
value B and his measurement outcome qβ . The
remaining rounds are used as their raw keys.
From these announcements, for each intensity
setting µi and basis choice x, they can estimate
the gain, i.e., the probability of obtaining con-
clusive outcome conditioned on Alice’s intensity
setting and basis choice

Qxµi = Pr[B ∈ {0, 1}|µ = µi,X = x],

as well as the quantum bit-error rate (QBER)

Exµi = Pr[A 6= B|µ = µi,X = x,B ∈ {0, 1}],

and the more fine-grained behaviour, i.e., the set
of conditional probabilities

G(b|a,x)
µi = Pr[B = b|µ = µi,A = a,X = x].

They could also estimate the probability of ob-
taining discretised bin νβ = ν, conditioned on
Alice’s basis choice, bit value and intensity set-
ting

W β
ν|µi,a,x = Pr[νβ = ν|µ = µi,A = a,X = x].

Lastly, Bob could estimate the average value of
q 2
β conditioned on Alice’s basis choice, bit value
and intensity settings. They can then calculate

ω
(β,a,x)
i =

〈q 2
β 〉µi,a,x − 1

2 .

If these estimated quantities lie within the tol-
erated intervals that are fixed before executing
protocol, then they continue to the next step of
the protocol, else, they abort the protocol.

5. Classical post-processing : Alice and Bob will em-
ploy a reverse-reconciliation error-correction pro-
tocol as well as privacy amplification to obtain a
pair of identical and secret key.
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3 Security analysis
In this section, we analyse the security of our proposed
protocol. To simplify the analysis, in this work, we as-
sume that Eve performs collective attacks (when she
attacks identically and independently in each round)
and we restrict our analysis to the asymptotic limit
(when N → ∞). We leave the security analysis
against the general attacks in the finite-key setting
for future work.

Furthermore, throughout this paper, we are work-
ing in the device-dependent setting. More precisely,
we assume that Alice’s source will emit the exact
states that are specified by the protocol. As such,
we have to assume that sufficient isolation and filter-
ing are provided to prevent side-channel attacks such
as the Trojan horse attacks or leakages through other
degrees-of-freedom. If such side-channels are present,
one could adopt the techniques from Refs. [43–45] to
take those side-channels into account in the security
analysis. On Bob’s side, in analysing the security of
the protocol, we assume that Bob is performing a
shot-noise-limited balanced homodyne measurement
and any imperfections therein are well characterised.
It is also important to ensure that any detector vul-
nerabilities (such as the one demonstrated in Ref. [46])
are appropriately addressed.

Since we have limited our analysis to the asymptotic
limit, we could neglect statistical fluctuations in the
parameter estimation as well as we can consider the
case where pZ → 1 and the fraction of rounds used
for parameter estimation can be taken to be almost
zero. The asymptotic secret key rate R of the protocol
under these assumptions are given by the Devetak-
Winter bound [47]

R = pZpµ0Q
Z
µ0

[
H(B|E,X = Z, µ = µ0,B ∈ {0, 1})

−H(B|A,X = Z, µ = µ0,B ∈ {0, 1})
]
, (1)

where QZµ0
is the gain, conditioned on µ = µ0 and X =

Z and H(·) denotes the von Neumann entropy. The
first term quantifies Eve’s uncertainty about Bob’s
bit values whereas the second term quantifies Alice’s
uncertainty about Bob’s bit value. The latter can be
bounded in terms of the QBER

H(B|A,X = Z, µ = µ0,B ∈ {0, 1}) ≤ h2
(
EZµ0

)
, (2)

where h2(x) = −x log2(x)− (1− x) log2(1− x) is the
binary entropy function.

3.1 Virtual entanglement-based protocol
As such, our task is to find a lower bound on the
first term of (1). To that end, we consider a virtual
entanglement-based protocol which, from the point-
of-view of Eve, is indistinguishable from the actual
protocol. In other words, the classical and quantum

side-information that Eve has in the actual protocol
would be the same as the ones she holds in the virtual
protocol.

In the actual protocol, Alice utilises a phase-
randomised laser which emits Poissonian mixture of
photon number states. For a given intensity set-
ting µ, she emits n-photons with probability pn|µ =
e−µµn/n!. To convert this to an entanglement-based
protocol, we could replace this source with the follow-
ing entangled state which Alice prepares with proba-
bility pn|µ

|Φn〉XAA′ = √pZ |Z〉X
∣∣ΦZn 〉AA′+

√
1− pZ |X〉X

∣∣ΦXn 〉AA′ ,

where {|Z〉X , |X〉X} are orthogonal states that encode
Alice’s basis choice and∣∣ΦZn 〉AA′ =

|0〉A |0Z〉
n
A′ + |1〉A |1Z〉

n
A′√

2∣∣ΦXn 〉AA′ =
|0〉A |0X〉

n
A′ + |1〉A |1X〉

n
A′√

2
.

(3)

Here, the states {|0〉A , |1〉A} are orthogonal states
that encode her bit value. On the other hand,
{|0Z〉nA′ , |1Z〉nA′ , |0X〉nA′ , |1X〉nA′} are n-photon BB84
states. More precisely, denoting the vacuum state as
|v〉 and defining the orthogonal annihilation opera-
tors â0 and â1 such that [â0, â

†
1] = 0, for j ∈ {0, 1},

we have

|jZ〉nA′ =
(â†j)n√
n!
|v〉 ,

|jX〉nA′ = (â†0 + (−1)j â†1)n√
2nn!

|v〉 .
(4)

Hence, |0Z〉nA′ and |1Z〉nA′ are Fock states in the â0
and â1 mode, meanwhile |0X〉nA′ and |1X〉nA′ are Fock
states in the â+ and â− mode, respectively.

Next, Alice sends the quantum system A′ to Bob
via an untrusted quantum channel and then measures
the register X and A in their corresponding standard
basis. This is equivalent to Alice randomly choosing
her basis and bit value from the appropriate probabil-
ity distributions. One could see that by projecting the
systems X and A to the appropriate states, we get the
same signal states that we have in the actual prepare-
and-measure protocol (for a given photon number n).

We can then describe Eve’s attack by a map E(n)
A′→B .

In passing, we remark that since Alice sends states
that are block diagonal in the photon number ba-
sis, Eve could in principle perform a photon number
measurement without perturbing the states that Al-
ice sends. Hence, the map may, in general, depend on
the emitted photon number n. The channel E(n)

A′→B
would then map the pure state |Φn〉〈Φn|XAA′ to a
mixed state ρ(n)

XAB . Since Eve is free to subtract/add
photons from/to the channel, the number of photons
that Bob receive may differ from the one emitted from
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Alice’s source. Thus, the system B, in general, lives
in an infinite-dimensional Hilbert space. On the other
hand, since Alice’s virtual systems X and A are stored
securely in her lab, we have the following constraint:

ρ
(n)
XA = TrB [ρ(n)

XAB ] = TrA′ [|Φn〉〈Φn|XAA′ ] (5)

Finally, upon receiving system B, Bob performs ho-
modyne detection on it. The rest of the protocol (Step
3 to Step 5) is identical to the actual protocol de-
scribed in Section 2.

3.2 State and measurements: block-diagonal
structure
Now, we turn our attention to Bob’s measurement.
For simplicity, we shall consider the case in which Bob
possesses an ideal homodyne detector. As we shall see
in the Appendix A, the same conclusion could be de-
rived when he uses an imperfect homodyne detector.

Since Bob randomises the global phase of his LO,
his measurement would be block-diagonal in the pho-
ton number basis. To see this, for a given value of
q0 and q1 and LO phase ϕ, Bob’s POVM element for
those particular outcomes is given by

Π(q0, q1) =
∫ 2π

0

dϕ
2π |q0(ϕ)〉〈q0(ϕ)| ⊗ |q1(ϕ)〉〈q1(ϕ)| ,

(6)
where |qj(ϕ)〉 is the eigenstate of the quadrature op-
erator

Q̂(j)
ϕ = âje

−iϕ + â†je
iϕ.

We could re-write |qj(ϕ)〉 in the photon number ba-
sis [48]

|qj(ϕ)〉 =
∞∑
m=0

ψm(qj)e−imϕ |m〉 , (7)

where {|m〉}m are Fock states and

ψm(qj) = 1√
2mm!

√
2π
Hm(qj/

√
2)e−q

2
j/4 (8)

is the wavefunction of the Fock state |m〉 in coordinate
representation. Then, we could perform the integra-
tion in Eq. (6) to obtain the block-diagonal structure

Π(q0, q1) =
∞∑

k0,k1,l0,l1=0
ψk0(q0)ψl0(q0)ψk1(q1)ψl1(q1)

δk0+k1,l0+l1 |k0, k1〉〈l0, l1| , (9)

where we used the following identity∫ 2π

0

dϕ
2π e

−i(k0+k1−l0−l1)ϕ = δk0+k1,l0+l1 .

We can simplify the summation in Eq. (9). Making
use of the Kronecker delta in the summation, we have

Π(q0, q1)

=
∞∑
m=0

m∑
k0=0

m∑
l0=0

ψk0(q0)ψl0(q0)

ψm−k0(q1)ψm−l0(q1) |k0,m− k0〉〈l0,m− l0|

=:
∞∑
m=0

Π(m)(q0, q1). (10)

Now, denoting the total photon number m = k0 +
k1 = l0 + l1, due to the block-diagonal structure, we
have

Π(q0, q1) =
∞∑
m=0

PmΠ(q0, q1)Pm

=
∞∑
m=0

PmΠ(m)(q0, q1)Pm (11)

where Pm is the projection to the m-photon sub-
space (the space in which Bob receives a total
of m-photons). In other words, we could inter-
pret Bob’s measurement as a virtual photon num-
ber measurement followed by a reduced measurement
Π(m)(q0, q1) = PmΠ(q0, q1)Pm which lives in the m-
photon subspace.

Since Bob’s measurement is indistinguishable to the
virtual measurement that we have just described, Eve
is not penalised if she performs the projection herself.
Hence, without loss of generality, we can consider the
state shared by Alice and Bob has the following block-
diagonal structure

ρ
(n)
XAB =

∞⊕
m=0

ρ̃
(m,n)
XAB (12)

where ρ̃(m,n)
XAB is a (sub-normalised) state with Bob re-

ceivingm photons distributed across the two temporal
modes when Alice sends n photons. If the normalised
version of ρ̃(m,n)

XAB is denoted by ρ(m,n)
XAB , we have

ρ̃
(m,n)
XAB = qm|nρ

(m,n)
XAB , (13)

with a normalisation factor qm|n. The normalisation
factor qm|n can therefore be interpreted as the prob-
ability of Bob receiving m-photons, conditioned on
Alice sending n-photons. Importantly, we can find
upper and lower bounds on qm|n using a variant of
decoy-state method proposed in Ref. [41] which we
will discuss in Section 3.4.

3.3 Refined Pinsker’s inequality
Now, to bound Eve’s uncertainty about Bob’s mea-
surement results, we want to find a lower bound to
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the conditional von Neumann entropy H(B|E,X =
Z, µ = µ0,B ∈ {0, 1}). We have

H(B|E,X = Z, µ = µ0,B ∈ {0, 1})
≥ H(B|E,X = Z, µ = µ0,B ∈ {0, 1},N,M),

where N and M denotes the input and output photon
number, respectively. We could further lower bound
the above by

QZµ0
H(B|E,X = Z, µ = µ0,B ∈ {0, 1},N,M)

≥
∑
n

pn|µ0qm≤n|nsm≤n|nH(B|E,N = n, PS),

where qm≤n|n = Pr[M ≤ n|N = n], sm≤n|n =
Pr[B ∈ {0, 1}|M ≤ n,N = n] and for brevity, we call
the event (X = Z, µ = µ0,B ∈ {0, 1},M ≤ N) as
‘postselected’ (in short, PS).

In passing, we remark that the honest parties do
not postselect on rounds in which M ≤ N (i.e., rounds
in which the number of photons that Bob receives is
not more than the one prepared by Alice). In the
protocol, neither Alice nor Bob know the number of
photons that they prepare or receive. The only post-
selection that is being performed in the protocol is
with respect to whether Bob’s measurement outcome
is conclusive. However, one can conservatively extract
secrecy from rounds in which M ≤ N and compute the
conditional entropy based on this event. The effect is
identical to a hypothetical scenario where Alice and
Bob perform non-demolition photon number measure-
ment on their optical systems and postselecting on the
event in which M ≤ N.

Following the argument from Ref. [49], we can lower
bound H(B|E,N = n, PS) as

H(B|E,N = n, PS) ≥ p(n)
PS

[
1− h2

(
1− Vn

2

)]
, (14)

where p(n)
PS = Pr[B ∈ {0, 1},M ≤ N|N = n,X = Z, µ = µ0]

and

Vn =
∥∥∥σ(n)

ABR − T
[
σ

(n)
ABR

]∥∥∥
1
, (15)

with T is the pinching channel associated to Bob’s
measurement, and σ

(n)
ABR is the Naimark’s dilated

state, when postselected on the conclusive event B ∈
{0, 1} and M ≤ n. The explicit form of the state σ(n)

ABR

is derived in Appendix B.

Hence, our task is to find a lower bound on
the trace-norm Vn. This can be formulated as a
semidefinite program (SDP). Denoting Λ := σ

(n)
ABR −

T
[
σ

(n)
ABR

]
, we have

Vn = min
Y1,Y2,ρ

(n)
XAB

1
2 Tr[Y1 + Y2]

s.t.
(
Y1 Λ
Λ† Y2

)
� 0,

Tr
[
ρ

(n)
XAB

]
= 1,

TrB [ρ(n)
XAB ] = ρ

(n)
XA,

ρ
(n)
XAB ∈ Sn,

(16)

where Sn is the set of density matrices that could
reproduce the statistics observed in the parameter es-
timation step. The set Sn can be characterised by
functions that are linear in ρ(n)

XAB . We have

Tr
[
|x〉〈x| ⊗ |a〉〈a| ⊗M (m≤n)

b|x ρ
(n)
XAB

]
= px

2 Γ(b|a,x)
m≤n ,

Tr
[
|x〉〈x| ⊗ |a〉〈a| ⊗ Pm ρ(n)

XAB

]
= px

2 q
(a,x)
m|n ,

(17)

for all values of (a, b, x, n) and for all m ≤ n, where
Γ(b|a,x)
m≤n = Pr[B = b,M ≤ n|A = a,X = x,N = n],
q

(a,x)
m|n = Pr[M = m|A = a,X = x,N = n] and M (m≤n)

b|x
is Bob’s measurement operators (for the space M ≤ n)
obtained by integrating

∑
m≤n Π(m)(q0, q1) over the

appropriate intervals defined by the decoding scheme
mentioned in Section 2. The operator Pm denotes the
projector on the m-photon subspace of Bob’s system.

The constraints (17) is a characterisation of the set
Sn. However, Γ(b|a,x)

m≤n and qm|n are not directly ob-
served in the experiment. Fortunately, it is possible
to establish upper and lower bounds on them by us-
ing a variant of the decoy-state method [41, 42] (Sec-
tion 3.4). For now, it suffices to assume that one can
obtain bounds of the type

Γ(b|a,x),L
m≤n ≤ Γ(b|a,x)

m≤n ≤ Γ(b|a,x),U
m≤n ,

q
(a,x),L
m|n ≤ q

(a,x)
m|n ≤ q(a,x),U

m|n .
(18)

By replacing the equality constraints (17) by the
inequality constraints (18), we construct a set S ′n such
that Sn ⊂ S ′n. Hence, this provides a relaxation for
the SDP (16) that would yield a valid lower bound on
Vn.

Unfortunately, even the relaxed SDP is still compu-
tationally intractable due to Bob’s system being infi-
nite dimensional. However, we shall prove that with-
out loss of generality, one could consider a state with
finite rank and hence reduces the infinite-dimensional
SDP into a finite-dimensional one.

To that end, suppose that ρopt is an optimiser of the
infinite-dimensional SDP. As mentioned previously,
without loss of generality, we can consider states that
are block-diagonal in the photon number basis. As
such, we can write ρopt as

ρopt = qm≤n|n ρ
(m≤n)
opt ⊕ qm>n|n ρ

(m>n)
opt , (19)
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where the state ρ(m≤n)
opt lives in the subspace where

Bob’s photon number is m ≤ n whereas the state
ρ

(m>n)
opt lives in the m > n subspace. Then, qm≤n|n

gives the probability of obtaining m ≤ n whereas
qm>n|n gives the probability of obtaining m > n,
both conditioned on Alice sending n-photons. Clearly,
ρ

(m≤n)
opt is finite-dimensional.
Now, consider the map G(n) that corresponds to the

postselection in the protocol, i.e., G(n)[ρ(n)
XAB ] = σ

(n)
ABR.

Since we only consider secrecy when M ≤ N, if Alice
emits n photons, we have G(n)[ρm>n] = 0 for any
state ρm>n that lives in the m > n subspace. Then,
consider the state

ρ′opt = qm≤n|n ρ
(m≤n)
opt ⊕ qm>n|n. (20)

By construction, if ρopt ∈ S ′n, we also have ρ′opt ∈ S ′n
since the constraints only depend on the part of the
states where m ≤ n. Secondly, we have G(n)[ρopt] =
G(n)[ρ′opt], which implies that the two states share the
same optimal value of Vn. This implies that there
exists a finite-dimensional optimiser for the infinite-
dimensional SDP. Hence, without loss of generality,
we can consider a finite-dimensional version of the
SDP (16). In particular, if the m ≤ n subspace has
a dimension of dim(Hm≤n) =

∑n
m=0(m + 1), it is

sufficient to consider the dimension of Bob’s system to
be dB = dim(Hm≤n) + 1. Hence, taking into account
the relaxation and the dimension reduction, we have
the following SDP:

Vn = min
Y1,Y2,ρ

(n)
XAB

1
2 Tr[Y1 + Y2]

s.t.
(
Y1 Λ
Λ† Y2

)
� 0,

Tr
[
ρ

(n)
XAB

]
= 1,

TrB [ρ(n)
XAB ] = ρ

(n)
XA,

ρ
(n)
XAB ∈ S

′
n,

dim
(
ρ

(n)
B

)
= dim(Hm≤n) + 1.

(21)

3.4 Estimating the channel behaviour and its
input-output photon number distribution
To formulate the SDP (21), we need a characteri-
sation of the set S ′n as linear functions of the state
ρ

(n)
XAB . As discussed in the previous section, this can

be done if we have lower and upper bounds as writ-
ten in Eq. (18). We will find these bounds using the
decoy-state method [42].

Recall that Alice prepares phase-randomised co-
herent states which are Poissonian mixtures of Fock
states. Assuming that the phase-randomisation is
done properly, given a Fock state, Eve would not be
able to deduce the intensity setting that Alice chose.
As such, Eve’s attack must not depend on Alice’s in-
tensity setting µ. Hence, by using different intensity

settings and observing how the resulting statistics de-
pend on the intensity settings, Alice and Bob could
estimate the channel behaviour and its input-output
photon number distribution.

Now, consider the behaviour, G(b|a,x)
µi , that Alice

and Bob estimate during the protocol. We can expand
the behaviour in terms of the n-photon behaviours

G(b|a,x)
µi =

∞∑
n=0

pn|µiΓ
(b|a,x)
n , (22)

where Γ(b|a,x)
n = Pr[B = b|A = a,X = x,N = n]. One

could obtain an upper and lower bound on Γ(b|a,x)
n via

the standard decoy-state method [42]. For example,
if we are interested in N = n′, one can formulate the
following linear program (LP)

max/min
{Γ(b|a,x)
n }n

Γ(b|a,x)
n′

s.t.
∑
n

pn|µiΓ
(b|a,x)
n = G(b|a,x)

µi ∀µi,

0 ≤ Γ(b|a,x)
n ≤ 1 ∀n.

(23)

The above LP involves infinitely many variables
{Γ(b|a,x)

n }n. However, using the fact that 0 ≤
Γ(b|a,x)
n ≤ 1 for all n > nmax, we can consider a photon

number cutoff nmax and relax the problem

max/min
{Γ(b|a,x)
n }n

Γ(b|a,x)
n′

s.t.
nmax∑
n=0

pn|µiΓ
(b|a,x)
n ≤ G(b|a,x)

µi ∀µi

nmax∑
n=0

pn|µiΓ
(b|a,x)
n ≥ G(b|a,x)

µi

−

(
1−

nmax∑
n=0

pn|µi

)
∀µi

0 ≤ Γ(b|a,x)
n ≤ 1 ∀n ∈ {0, ..., nmax}.

(24)

Note that, in our relaxation, we have enlarged the
feasible region of the original LP such that we obtain
a valid lower and upper bounds on Γ(b|a,x)

n′ .
In turn, we can also use the law of total probability

to expand Γ(b|a,x)
n and obtain

Γ(b|a,x)
n =

∞∑
m=0

q
(a,x)
m|n γ

(b|a,x)
m,n , (25)

where γ(b|a,x)
m,n = Pr[B = b|N = n,M = m,A = a,X = x].

Then, we have

Γ(b|a,x)
m≤n =

∑
m≤n

q
(a,x)
m|n γ

(b|a,x)
m,n

= Γ(b|a,x)
n −

∑
m>n

q
(a,x)
m|n γ

(b|a,x)
m,n (26)
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Using 0 ≤ γ
(b|a,x)
m,n ≤ 1, we have an upper and lower

bound on Γ(b|a,x)
m≤n

Γ(b|a,x)
m≤n ≤ Γ(b|a,x)

n (27)

Γ(b|a,x)
m≤n ≥ Γ(b|a,x)

n −
(

1− q(a,x)
m≤n|n

)
(28)

where q(a,x)
m≤n|n =

∑
m≤n q

(a,x)
m|n .

Therefore, our remaining task is to find upper and
lower bounds on the conditional probabilities q(a,x)

m|n .
Here, we use the linear programming method pro-
posed in Ref. [41].

Suppose that Bob receives m-photons in mode âβ ,
if he measures the quadrature Q̂(β)

ϕ = âβe
−iϕ + â†βe

iϕ

using a LO with randomised phase, the probability of
obtaining an outcome ν that lies within the interval
Iν is given by

Cβν|m =
∫ (ν+1)δ

νδ

dq |ψm(q)|2. (29)

Let |mβ〉 be the state with photon number m, all in
the mode âβ , i.e.,

|mβ〉 =

(
â†β

)m
√
n!
|v〉 .

Then, we have |mβ〉〈mβ | � 1m. As such, we have

q
(β,a,x)
m|n ≤ q(a,x)

m|n , (30)

where q(β,a,x)
m|n = Pr[M = m,mode = âβ |N = n,A = a,X = x].

For upper bounds, we can trivially use q(a,x)
m|n ≤ 1.

Using the chain rule and the law of total probability,
we can then write

W β
ν|µi,a,x =

∞∑
n=0

∞∑
m=0

pn|µiq
(β,a,x)
m|n Cβν|m. (31)

One could also consider the square of the quadrature
operator(
Q̂(β)
ϕ

)2
= â 2

βe
−2iϕ+

(
â†β

) 2
e2iϕ+â†β âβ+âβ â†β . (32)

Then randomising the phase, we get∫ 2π

0

dϕ
2π

(
Q̂(β)
ϕ

)2
= â†β âβ + âβ â

†
β = 2â†β âβ +1. (33)

Since â†β âβ is the number operator for the mode âβ ,
then

ω
(β,a,x)
i =

〈q 2
β 〉µi,a,x − 1

2
is the mean photon number in mode âβ that Bob re-
ceives. Suppose we are interested in bounding q(β,a,x)

m|n
for M = m′ and N = n′. Then we can consider the
following LP:

min
{q(β,a,x)
m|n }m,n

q
(β,a,x)
m′|n′

s.t.
∑
n,m

pn|µiq
(β,a,x)
m|n Cβν|m = W β

ν|µi,a,x, ∀µi, ν∑
n,m

pn|µi q
(β,a,x)
m|n m = ω

(β,a,x)
i , ∀µi

0 ≤ q(β,a,x)
m|n ≤ 1, ∀m,n∑

m

q
(β,a,x)
m|n = 1, ∀n.

(34)

Again, this LP involves infinitely many variables
which make it intractable. To get a valid relax-
ation, we choose some cutoffs nmax and mmax (for
n and m, respectively). Then, we use the fact that
0 ≤ q(β,a,x)

m|n ≤ 1 to relax the LP to

min
{q(β,a,x)
m|n }m,n

q
(β,a,x)
m′|n′

s.t.
nmax∑
n=0

mmax∑
m=0

pn|µiq
(β,a,x)
m|n Cβν|m ≤W

β
ν|µi,a,x, ∀µi, ν

nmax∑
n=0

mmax∑
m=0

pn|µi q
(β,a,x)
m|n (mmax + 1−m) ≥ (mmax + 1)

(
nmax∑
n=0

pn|µi

)
− ω(β,a,x)

i , ∀µi

0 ≤ q(β,a,x)
m|n ≤ 1, ∀m ∈ {0, ...,mmax}, n ∈ {0, ..., nmax}

mmax∑
m=0

q
(β,a,x)
m|n ≤ 1, ∀n ∈ {0, ..., nmax},

(35)

In practice, we only impose the first constraint
for ν ∈ {νmin, ..., νmax} for some cutoffs νmin and
νmax. Since the relaxed constraints are necessary con-

ditions that the original feasible points must satisfy,
the bounds that we obtain from the relaxed LP (35)
are valid lower bounds on q(β,a,x)

m|n . One could also find
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a lower bound on q
(a,x)
m≤n|n by changing the objective

function in (35) to
∑n
m=0 q

(β,a,x)
m|n .

To summarise, we could find a characterisation to
the set of feasible density matrices S ′n in terms of lin-
ear functions of the state ρ(n)

XAB . To this end, we need
to find bounds on Γ(b|a,x)

m≤n and q(a,x)
m|n . To bound the lat-

ter, we use the fact that q(β,a,x)
m|n ≤ q(a,x)

m|n ≤ 1. We can,

in turn, find a lower bound on q
(β,a,x)
m|n using the LP

(35). Using a similar LP, we can also bound q(a,x)
m≤n|n.

On the other hand, to bound Γ(b|a,x)
m≤n , we need to first

find bounds on Γ(b|a,x)
n . To do that, we can use the

standard decoy-state method. This can be done by
formulating a LP as shown in (24). Then, we can
plug in these bounds, together with the lower bound
on q

(a,x)
m≤n|n, to Eqs. (27) and (28). Finally, since we

have characterised S ′n as constraints that are linear in
the state ρ(n)

XAB , we can efficiently solve the SDP (21)
using standard SDP solvers 1.

4 Simulation
To simulate the performance of the protocol, we as-
sume that the loss in the channel can be modelled by
a beam-splitter of transmittivity η with

η = ηdet10−ξLAB/10 (36)

where ηdet is the effective efficiency of the homodyne
detector, ξ is the fiber loss coefficient in dB/km (for
standard fiber, ξ = 0.2 dB/km for telecom wave-
length) and LAB is the distance between Alice’s and
Bob’s lab.

The probability density function (PDF) for homo-
dyne measurement of a (single-mode) coherent state
|α〉 with local oscillator’s phase ϕ is given by

f(q|α,ϕ) = 1√
2π

exp
[
−(q − 2|α| cos(θ − ϕ))2

2

]
where θ = arg(α) is the phase of the coherent
state. Therefore, given the multimode coherent state
|α0〉 |α1〉, we have

f(q0, q1|α0, α1, ϕ)

= 1
2π exp

[
−(q0 − 2|α0| cos(θ0 − ϕ))2

2

]
exp

[
−(q1 − 2|α1| cos(θ1 − ϕ))2

2

]
(37)

To simulate the statistics G(b|a,x)
µi , we first notice

that the channel maps |αk| → |αk|
√
η. Furthermore,

1For example, the results we obtained in Section 4 are ob-
tained by solving the SDP and LP using the solver MOSEK [50]
via CVX [51], a package for specifying convex optimisation
problems.

we let θ0 = θglobal and θ
(a,x)
1 = θglobal + θ

(a,x)
rel since

the phase of the early temporal mode is always ran-
domised. The magnitude |α0| and |α1| are determined
by the intensity setting µ as well as Alice’s random
inputs (a, x). We have

G(b|a,x)
µi =

∫
I(b,x)

dq0 dq1∫ 2π

0

dϕ
2π f(q0, q1|α(a,x,µ)

0
√
η, α

(a,x,µ)
1

√
η, ϕ) (38)

where the integration over q0 and q1 is carried out over
intervals that depend on b and x as determined by
the decoding functions. Since both the global phase
θglobal and the local oscillator phase are randomised
and the PDF only depends on their difference, we
would observe the same statistics if we fix the global
phase θglobal and only randomise the phase of the local
oscillator ϕ.

Similarly, we can calculate W β
ν|µi,a,x using

W β
ν|µi,a,x =

∫ (ν+1)δ

νδ

dq
∫ 2π

0

dϕ
2π f(q|Kβ,a,x

√
µiη, ϕ),

(39)
where we have [â(a,x), â

†
β ] = Kβ,a,x1 and â(a,x) is the

mode associated to A = a and X = x and âβ is the
mode associated to β.

Using this model, we first plot the secret key rate
against the distance between Alice and Bob assuming
a perfect detection efficiency ηdet. In our simulation,
we consider the case where Alice and Bob only extract
secrecy from n = 0, 1, 2. The result is plotted in Fig. 2.
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100% detector efficiency

with infinitely many
decoy states

4 intensity protocol

Figure 2: Key rate vs distance between Alice and Bob for
100% detector efficiency. We compare the performance
of our proposed four intensity protocol against the case in
which we use infinitely many decoy states (such that Alice
and Bob could characterise q(a,x)

m|n and Γ(b|a,x)
m≤n exactly instead

of bounding them).

As one can see, in the short distance regime (.
5 km), the four-intensity protocol is almost optimal.
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distance parameters
(km) µ0 µ1 µ2 µ3 τ

0 1.200 2.3× 10−3 5.0× 10−4 1.0× 10−4 1.600
5 0.974 2.6× 10−3 5.2× 10−4 1.0× 10−4 1.999
10 0.568 1.8× 10−3 2.7× 10−4 1.0× 10−4 2.193
15 0.347 2.1× 10−3 3.0× 10−4 1.0× 10−4 3.314

Table 2: Protocol parameters used in the trusted detector efficiency scenario in Fig. 3. Here, we fix the lowest intensity
µ3 and heuristically optimise the other parameters using a grid search optimisation.

However, as the distance between Alice and Bob in-
creases, the gap between the four-intensity proto-
col and the infinite decoy-state protocol increases as
well. From our numerical investigation, this is mainly
caused by the two-photon decoy-state bounds which
tend to be loose as the loss increases. One possible
way to circumvent this is to increase the number of
decoy states.

To assess the practicality of the protocol, we also
perform a simulation for the case when Bob does not
use a perfect homodyne measurement. Such imperfec-
tions may include imperfect quantum efficiency and
electronic noise. However, following the argument of
Ref. [52], one could see an independent Gaussian elec-
tronic noise as an additional loss. As such, in our sim-
ulation, we assume that Bob has a lossy homodyne
detector with an effective efficiency of the homodyne
detector ηdet = 72%. The result is shown in Fig. 3.

0 5 10 15
distance (km)

10-5

10-4

10-3

10-2

10-1

ke
y 

ra
te

 (
bi

ts
/c

ha
nn

el
 u

se
)

72% detector efficiency

trusted detector efficiency

untrusted detector efficiency

Figure 3: Key rate vs distance between Alice and Bob
for 72% detector efficiency. We compare the performance
of our proposed four-intensity protocol under the trusted de-
tector efficiency scenario against the scenario in which the
detector loss is attributed to Eve.

As one can see from Fig. 3, by trusting the detector
imperfection, we can increase the key rate for a given
distance and improve the robustness of the protocol
against loss. However, the protocol could not tolerate
high loss even when the effective detector efficiency is
trusted.

To illustrate the range of parameters that are used
in the simulation of Fig. 3 with trusted detector effi-
ciency, we present the heuristically optimised protocol
parameters for selected transmission distances in Ta-
ble. 2

5 Discussion
As we can see from Section 4, our protocol is suitable
for high-speed QKD across metropolitan distances.
This feature is shared with the protocol proposed in
Ref. [30]. Furthermore, some aspects of the security
analysis presented in this work could also be adapted
to Ref. [30]’s protocol with some minor adjustments.
For example, one could also apply the SDP formu-
lation from the refined Pinsker’s inequality presented
in Section 3.3 and the channel estimation technique
described in Section 3.4 to analyse the security of
Ref. [30]’s protocol. Nevertheless, the dimension re-
duction used in this work relies heavily on the block-
diagonal structure of the measurement that Bob per-
forms. As such, to prove the security of Ref. [30]’s
protocol, one might need to use other methods of re-
ducing Bob’s dimension. For example, one can use
the technique presented recently in Ref. [18].

Next, we also remark that while our security anal-
ysis involved some dimension reduction on Bob’s sys-
tem, this dimension reduction is done by deriving
necessary conditions that any feasible solution to
the original infinite-dimensional optimisation problem
must satisfy. This results in a relaxation where the
feasible region of the relaxed optimisation problem
contains the feasible region of the original optimisa-
tion problem. Furthermore, due to the block-diagonal
structure of Bob’s measurement, we could show that
without loss of generality, it is sufficient to consider
finite-dimensional states. This is not the case for the
security analyses presented in Ref. [15, 16]. In those
cases, one could obtain a valid lower bound on the
secret key rate by further adopting the technique of
Ref. [18], but at a price of some correction term due
to the cutoffs.

It is also remarkable that our dimension reduction
bares some resemblance with the technique presented
in Ref. [53]. Similar to what we have done here, the
authors of Ref. [53] leveraged on the block-diagonal
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structure of the measurement and argue that one can
reduce the analysis to finite dimensional convex opti-
misation problem. To summarise the argument, they
formulated the so-called flag-state squasher which is a
quantum channel that maps the infinite-dimensional
quantum state to a finite-dimensional one. Then, one
can modify the measurement operators such that they
only span the finite-dimensional subspace in which
the squashed state lives. Furthermore, for any state
with the block-diagonal structure in the photon num-
ber basis, applying the modified measurement on the
squashed state is equivalent to applying the original
measurement to the original state.

While our method also exploits the fact that the
measurements are block-diagonal in the photon num-
ber basis, our argument to reduce the dimension of
the optimisation problem is different from the method
presented in Ref. [53]. To be precise, the constraints
that we use in our optimisation are based on the
bounds on the statistics for the case in which Bob
does not receive more photons than the ones pre-
pared by Alice. Then, we argue that there exists a
finite-dimensional state that is an optimal solution
to our optimisation problem. In contrast, Ref. [53]
formulated the constraints based on the statistics of
the full infinite-dimensional measurements and hence,
they have to construct the flag-state squasher to ac-
count for the contribution of the higher photon num-
ber subspace.

Finally, while we propose a protocol with reverse
reconciliation in this work, one could also consider
performing direct reconciliation. However, our initial
findings show that the variant with direct reconcilia-
tion has less robustness against loss compared to our
proposed protocol. However, interestingly, the direct
reconciliation protocol could also extract randomness
from the multiphoton components of the weak coher-
ent pulse, as long as the photon number is preserved in
the channel. When the photon number is preserved,
we know that Eve is not performing photon-number-
splitting attack and our method allows Alice and Bob
to bound the probability that the photon number is
preserved, i.e., qn|n, thanks to the homodyne detec-
tion with a random LO phase.

6 Conclusion

In conclusion, we have proposed a QKD protocol
which shares the features of discrete and continuous
variable protocols. A key advantage of our protocol
over most existing CV-QKD protocols is that the need
for a common phase reference between Alice and Bob
is now completely eliminated, which greatly simplifies
the system configuration.

We then analyse the security of the protocol under
the assumption of collective attacks and in the asymp-
totic limit. To bound Eve’s uncertainty about the key,
we adopt the refined Pinsker’s inequality proposed in
Ref. [49] and the channel estimation technique pre-
sented in Ref. [41]. Our security analysis framework
allows us to work in the trusted device scenario which
permits us to incorporate characterised device imper-
fections (such as limited detector efficiency) into our
security analysis.

From our simulation, we find that the protocol sup-
ports high key generation rate, especially in the low
loss regime. For instance, operating at a repetition
rate of 1 GHz would amount to an asymptotic secret
key rate of about 6.9 Mbit/s at 5 km assuming an
effective detector efficiency of 72%. While its perfor-
mance is not as robust to loss as compared to DV-
QKD protocols, it shows promising potential for ap-
plications in metropolitan-distance QKD as it could
potentially distribute keys across 15 km with a real-
istic detector efficiency.
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A Non-ideal homodyne detector
A.1 POVM element
In the Section 3 of the main text, we have assumed that the homodyne detection that we use is an ideal homodyne
detector with 100% quantum efficiency and no additional electronic noise. To account for the imperfection in
the homodyne detector, it is sufficient to consider imperfect quantum efficiency detector since electronic noise
is equivalent to optical loss after re-calibration of the vacuum noise [52]. Alternatively, one could also use the
model presented in Ref. [17].

Now, to model the imperfect quantum efficiency, we model the realistic homodyne detector using a virtual
beam-splitter with transmittivity ηdet, followed by an ideal quadrature measurement. Suppose the incoming
signal mode is associated to the annihilation operator â and the other input mode (the vacuum mode) to the
beam-splitter is associated to the annihilation operator b̂. Let the output mode of the beam-splitter in which
the ideal quadrature measurement is performed be denoted by â′. Then we have

â′ = √ηdet â+
√

1− ηdet b̂ (40)

and
Q̂(a′)
ϕ = √ηdet Q̂

(a)
ϕ +

√
1− ηdet Q̂

(b)
ϕ , (41)

where Q̂(aj)
ϕ = âje

−iϕ + â†je
iϕ is the quadrature operator in mode âj with local oscillator phase ϕ. Now, the

ideal POVM element Πϕ(q) can be written as

Πϕ(q) = |q(ϕ)〉〈q(ϕ)| =
∫

dq′ δ(q − q′) |q′(ϕ)〉〈q′(ϕ)| , (42)

where δ(·) is the Dirac’s delta function. Recalling the following identity

δ(q − q′) = 1
2π

∫
dλ eiλ(q−q′), (43)

and then using the spectral decomposition of the quadrature operator, we can write the ideal POVM element
as

Πϕ(q) = 1
2π

∫
dλ eiλ(Q̂ϕ−q). (44)

Applying the above relation to the quadrature measurement in mode â′, we have

Πϕ
ηdet

(q) = 1
2π

∫
dλ eiλ(Q̂(a′)

ϕ −q) = 1
2π

∫
dλ eiλ(√ηdetQ̂

(a)
ϕ −q) 〈v| eiλ

√
1−ηdetQ̂

(b)
ϕ |v〉 (45)

by tracing over the mode b̂. After using spectral decomposition again (for quadrature operators in mode â and
b̂), we have

Πϕ
ηdet

(q) = 1
2π

∫
dλ
∫

dx eiλ(√ηdetq
′−q) |q′(ϕ)〉〈q′(ϕ)|

∫
dy eiλ

√
1−ηdety|ψ0(y)|2, (46)

where the projector |q′(ϕ)〉〈q′(ϕ)| is the quadrature projection for mode â and ψ0(y) is the wavefunction of the
vacuum state. Performing the integration over y, we have∫

dy eiλ
√

1−ηdety|ψ0(y)|2 = exp
[
−λ

2(1− ηdet)
2

]
. (47)

Now, performing the integration over λ, we have∫
dλ eiλ(√ηdetq

′−q)e−λ
2(1−ηdet)/2 =

√
2π

1− ηdet
exp

[
−

(√ηdetq
′ − q)2

2(1− ηdet)

]
. (48)

Hence, finally we obtain

Πϕ
ηdet

(q) =
∫

dq′ 1√
2π(1− ηdet)

exp
[
−

(q −√ηdetq
′)2

2(1− ηdet)

]
|q′(ϕ)〉〈q′(ϕ)| , (49)

i.e., a convolution of the ideal POVM element with a Gaussian function.
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A.2 Block-diagonal structure
A crucial element of our security proof is the argument that Bob’s measurement is block-diagonal in the photon
number basis. Here, we will show that the same structure is still preserved when we have imperfect detector.

Given the expression for the POVM element derived in the previous section, we can also obtain the POVM
element for the quadrature measurement in the early and late time-bins

Πϕ
ηdet

(q0, q1) = 1
2π(1− ηdet)

∫
dq′0 exp

[
−

(q0 −
√
ηdetq

′
0)2

2(1− ηdet)

]
|q′0(ϕ)〉〈q′0(ϕ)| ⊗∫

dq′1 exp
[
−

(q1 −
√
ηdetq

′
1)2

2(1− ηdet)

]
|q′1(ϕ)〉〈q′1(ϕ)| . (50)

Taking into account phase randomisation, we have

Πηdet(q0, q1) = 1
2π

∫
dϕ Πϕ

ηdet
(q0, q1). (51)

To see that the block-diagonal structure is preserved, observe that only the projectors depend on ϕ while the
exponential terms do not. As such, we could switch the order of the integration and perform the integration
over ϕ before performing the convolutions. However, the integration over ϕ is exactly the same as the one we
did in (9) and hence the block-diagonal structure is preserved.

A.3 Energy measurement
Our model for imperfect homodyne detector (41) allows us to relate the observed homodyne measurement Q̂(a′)

ϕ

to an ideal quadrature measurement in the signal mode Q̂(a)
ϕ . If one is interested in the number of photons in

the signal mode, we have to calculate the expectation value of the number operator in mode â, i.e., N̂ (a) = â†â.
To that end, consider the number operator in mode â′

N̂ (a′) = â′†â′ = (√ηdetâ+
√

1− ηdetb̂)†(
√
ηdetâ+

√
1− ηdetb̂)

= ηdetâ
†â+ (1− ηdet)b̂†b̂+

√
ηdet(1− ηdet)(â†b̂+ âb̂†).

(52)

Since the input state in mode b̂ is the vacuum state, we have

〈N̂ (a′)〉 = ηdet〈N̂ (a)〉 (53)

and since

〈N̂ (a′)〉µ=µi =
〈q 2
β 〉µ=µi − 1

2 , (54)

we have

ωi := 〈N̂ (a)〉µ=µi =
〈q 2
β 〉µ=µi − 1

2ηdet
, (55)

where
〈q 2
β 〉µ=µi =

〈∫ dϕ
2π

(
Q̂(a′)
ϕ

)2
〉
µ=µi

(56)

is the observed mean-square quadrature measurement when Alice chooses intensity µ = µi.

A.4 Probability distribution of the discretised quadrature measurement
Finally, the imperfect detection efficiency would affect the probability distribution of the discretised quadrature
measurement of Fock states |m〉. Suppose Bob receives the Fock state |m〉 in the signal mode â′β , for each β,
the observed probability distribution would be given by

Cβν|m =
∑
k≤m

(
m

k

)
(1− ηdet)m−kηkdetC

β,ideal
ν|k , (57)

where

Cβ,ideal
ν|k =

∫ (ν+1)δ

νδ

dq|ψk(q)|2 (58)

is the probability of the outcome of the ideal quadrature measurement on the Fock state |k〉 to be inside interval
Iν .
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B Postselection map and pinching channel
In this section, we will derive the expression for the postselected state and the pinched state which are needed
to apply the refined Pinsker’s inequality. To define the postselection map G(n) and pinching channel T , it is
convenient to implement the channels in terms of isometries. Note that all the calculations done in this section
are conditioned on Alice preparing N = n photons as well as her choosing the signal intensity µ = µ0.

First, the untrusted quantum channels can be thought of as isometries UA′→BEM that maps the system A′

to B and E where E is held by Eve and M is the classical register that stores the number of photons that Bob
receives

UA′→BEM : |ax〉nA′ →
∑
m

√
qm|n

∣∣φma,x,n〉BE |m〉M , (59)

where a ∈ {0, 1}, x ∈ {X,Z} and qm|n is the probability that Bob receives m photons conditioned on Alice
sending n photons. The state {

∣∣φma,x,n〉BE}a,x,n,m are entangled states shared by Bob and Eve. In passing, we
remark that by tracing out the systems E and M, we should recover the completely-positive and trace-preserving
(CPTP) map E(n)

A′→B
Now, using Naimark’s dilation, Bob’s measurement can also be thought of as an isometry VXBEM→XRBEM

VXBEM→XRBEM : |x〉X
∣∣φma,x,n〉BE |m〉M → |x〉X∑

b

|b〉R
∣∣Ω̃b,ma,x,n〉BE |m〉M , (60)

where the measurement outcome B can be obtained by performing projective measurements {|b〉〈b|}b on the
ancilla system R. The sub-normalised states

{∣∣Ω̃b,ma,x,n〉BE}a,x,n,m,b are given by

∣∣Ω̃b,ma,x,n〉BE =
√
M

(m)
b|x ⊗ 1E

∣∣φma,x,n〉BE , (61)

with M (m)
b|x is the POVM element of Bob’s measurement in the m-photon subspace.

For the postselection process, we consider the isometryWXR→XRC where the system C is the classical register
that indicates whether the state will be kept or discarded in the postselection process

WXR→XRC :


|X〉X |b〉R → |X〉X |b〉R |discard〉C ∀b
|Z〉X |b〉R → |Z〉X |b〉R |discard〉C if B ∈ {∅, ?}
|Z〉X |b〉R → |Z〉X |b〉R |keep〉C if B ∈ {0, 1}

. (62)

Note that applying the isometries and then projecting to the projector |keep〉〈keep|C and
∑
m≤n |m〉〈m|M and

followed by tracing out the irrelevant systems is equivalent to the postselection map G(n). Doing the projection,
we get

∑
m≤n

qm|npZ |Z〉〈Z|X ⊗

1
2
∑
a,a′

∑
b,b′∈{0,1}

|a〉〈a′|A ⊗ |b〉〈b
′|R ⊗

∣∣∣Ω̃b,ma,Z,n〉〈Ω̃b
′,m
a′,Z,n

∣∣∣
BE


⊗ |m〉〈m|M ⊗ |keep〉〈keep|C ,

(63)

and tracing out the systems that are either held by Eve or announced during the protocol, namely E, X, C and
M, the final state is given by

σ̃
(n)
ABR =

∑
m≤n

∑
b,b′∈{0,1}

(
1A ⊗

√
M

(m)
b|Z

)
ρ̃

(m,n)
Z

(
1A ⊗

√
M

(m)
b′|Z

)
⊗ |b〉〈b′|R , (64)

where
ρ̃

(m,n)
Z = TrX

[
(|Z〉〈Z|X ⊗ 1AB) ρ̃(m,n)

XAB (|Z〉〈Z|X ⊗ 1AB)
]

(65)

is the (sub-normalised) state conditioned on Z-basis and m photons are received by Bob and Alice prepares n
photons. To normalise the final state, we need to divide σ̃(n)

ABR by the appropriate factor, namely

p
(n)
PS =

∑
m≤n

pZ · qm|n · Pr[b ∈ {0, 1}|M = m,N = n,X = Z]. (66)
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Then, denoting

σ
(n)
ABR = σ̃

(n)
ABR

p
(n)
PS

(67)

as the normalised postselected state, we have

G(n)
[
ρ

(n)
XAB

]
= σ̃

(n)
ABR = p

(n)
PS · σ

(n)
ABR, (68)

and since the measurement on R is projective, the pinched state can be obtain by

T
[
σ

(n)
ABR

]
= (1AB ⊗ |0〉〈0|R)σ(n)

ABR (1AB ⊗ |0〉〈0|R)

+ (1AB ⊗ |1〉〈1|R)σ(n)
ABR (1AB ⊗ |1〉〈1|R) .

(69)
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