Discrete-variable quantum key distribution with homodyne detection

Ignatius William Primaatmaja1, Cassey Crystania Liang2, Gong Zhang2, Jing Yan Haw2, Chao Wang2, and Charles Ci-Wen Lim1,2

1Centre for Quantum Technologies, National University of Singapore, 117543, Singapore
2Department of Electrical & Computer Engineering, National University of Singapore, 117583, Singapore

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Most quantum key distribution (QKD) protocols can be classified as either a discrete-variable (DV) protocol or continuous-variable (CV) protocol, based on how classical information is being encoded. We propose a protocol that combines the best of both worlds – the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD. Our proposed protocol has two highly practical features: (1) it does not require the honest parties to share the same reference phase (as required in CV-QKD) and (2) the selection of decoding basis can be performed after measurement. We also prove the security of the proposed protocol in the asymptotic limit under the assumption of collective attacks. Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over metropolitan distances.

Quantum key distribution (QKD) is an emerging cryptography technology that provides provably-secure keys between two remote users. Based on the physical degrees-of-freedom used to encode and decode the secret key, QKD protocols are classified under two broad classes, i.e., discrete-variable (DV) or continuous-variable (CV). They each have their own unique advantages, in that quantum state preparation in DV-QKD protocols feature the simplicity of discrete modulation, while CV-QKD protocols enjoy the cost-effectiveness and practicality of homodyne detection. Here, we propose a protocol that combines the best of both world – the simplicity of DV-QKD source as well as the appeals of homodyne detection. Furthermore, unlike typical CV-QKD protocols, there is no need for the legitimate parties to share a common phase reference – a feature that greatly simplifies the practical implementation of the protocol. Our protocol thus paves the way towards a secure and high-speed practical key distribution over metropolitan distances.

► BibTeX data

► References

[1] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav Dušek, Norbert Lütkenhaus, and Momtchil Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81: 1301–1350, Sep 2009. 10.1103/​RevModPhys.81.1301. URL https:/​/​doi.org/​10.1103/​RevModPhys.81.1301.

[2] Feihu Xu, Xiongfeng Ma, Qiang Zhang, Hoi-Kwong Lo, and Jian-Wei Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92: 025002, May 2020. 10.1103/​RevModPhys.92.025002. URL https:/​/​doi.org/​10.1103/​RevModPhys.92.025002.

[3] Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo Ottaviani, et al. Advances in quantum cryptography. Advances in Optics and Photonics, 12 (4): 1012–1236, 2020. 10.1364/​AOP.361502. URL https:/​/​doi.org/​10.1364/​AOP.361502.

[4] A. I. Lvovsky and M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys., 81 (1): 299–332, 2009. 10.1103/​RevModPhys.81.299. URL https:/​/​doi.org/​10.1103/​RevModPhys.81.299.

[5] Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84 (2): 621–669, 2012. 10.1103/​RevModPhys.84.621. URL https:/​/​doi.org/​10.1103/​RevModPhys.84.621.

[6] G. Zhang, J. Y. Haw, H. Cai, F. Xu, S. M. Assad, J. F. Fitzsimons, X. Zhou, Y. Zhang, S. Yu, J. Wu, W. Ser, L. C. Kwek, and A. Q. Liu. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics, 13: 839–842, 2019. 10.1038/​s41566-019-0504-5. URL https:/​/​doi.org/​10.1038/​s41566-019-0504-5.

[7] Francesco Raffaelli, Giacomo Ferranti, Dylan H. Mahler, Philip Sibson, Jake E. Kennard, Alberto Santamato, Gary Sinclair, Damien Bonneau, Mark G. Thompson, and Jonathan C. F. Matthews. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol., 3 (2): 025003, 2018. 10.1088/​2058-9565/​aaa38f. URL https:/​/​doi.org/​10.1088/​2058-9565/​aaa38f.

[8] Joel F Tasker, Jonathan Frazer, Giacomo Ferranti, Euan J Allen, Léandre F Brunel, Sébastien Tanzilli, Virginia D’Auria, and Jonathan CF Matthews. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light. Nature Photonics, 15: 11–15, 2020. 10.1038/​s41566-020-00715-5. URL https:/​/​doi.org/​10.1038/​s41566-020-00715-5.

[9] Cédric Bruynsteen, Michael Vanhoecke, Johan Bauwelinck, and Xin Yin. Integrated balanced homodyne photonic–electronic detector for beyond 20 GHz shot-noise-limited measurements. Optica, 8 (9): 1146, September 2021. ISSN 2334-2536. 10.1364/​OPTICA.420973. URL https:/​/​doi.org/​10.1364/​OPTICA.420973.

[10] Frédéric Grosshans, Gilles Van Assche, Jérôme Wenger, Rosa Brouri, Nicolas J. Cerf, and Philippe Grangier. Quantum key distribution using Gaussian-modulated coherent states. Nature, 421: 238–241, 2003. 10.1038/​nature01289. URL https:/​/​doi.org/​10.1038/​nature01289.

[11] Eneet Kaur, Saikat Guha, and Mark M. Wilde. Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution. Phys. Rev. A, 103: 012412, Jan 2021. 10.1103/​PhysRevA.103.012412. URL https:/​/​doi.org/​10.1103/​PhysRevA.103.012412.

[12] Yi-Bo Zhao, Matthias Heid, Johannes Rigas, and Norbert Lütkenhaus. Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks. Phys. Rev. A, 79: 012307, Jan 2009. 10.1103/​PhysRevA.79.012307. URL https:/​/​doi.org/​10.1103/​PhysRevA.79.012307.

[13] Kamil Brádler and Christian Weedbrook. Security proof of continuous-variable quantum key distribution using three coherent states. Phys. Rev. A, 97: 022310, Feb 2018. 10.1103/​PhysRevA.97.022310. URL https:/​/​doi.org/​10.1103/​PhysRevA.97.022310.

[14] Anthony Leverrier and Philippe Grangier. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett., 102: 180504, May 2009. 10.1103/​PhysRevLett.102.180504. URL https:/​/​doi.org/​10.1103/​PhysRevLett.102.180504.

[15] Shouvik Ghorai, Philippe Grangier, Eleni Diamanti, and Anthony Leverrier. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X, 9: 021059, Jun 2019. 10.1103/​PhysRevX.9.021059. URL https:/​/​doi.org/​10.1103/​PhysRevX.9.021059.

[16] Jie Lin, Twesh Upadhyaya, and Norbert Lütkenhaus. Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. Phys. Rev. X, 9: 041064, Dec 2019. 10.1103/​PhysRevX.9.041064. URL https:/​/​doi.org/​10.1103/​PhysRevX.9.041064.

[17] Jie Lin and Norbert Lütkenhaus. Trusted detector noise analysis for discrete modulation schemes of continuous-variable quantum key distribution. Phys. Rev. Applied, 14: 064030, Dec 2020. 10.1103/​PhysRevApplied.14.064030. URL https:/​/​doi.org/​10.1103/​PhysRevApplied.14.064030.

[18] Twesh Upadhyaya, Thomas van Himbeeck, Jie Lin, and Norbert Lütkenhaus. Dimension reduction in quantum key distribution for continuous- and discrete-variable protocols. PRX Quantum, 2: 020325, May 2021. 10.1103/​PRXQuantum.2.020325. URL https:/​/​doi.org/​10.1103/​PRXQuantum.2.020325.

[19] Takaya Matsuura, Kento Maeda, Toshihiko Sasaki, and Masato Koashi. Finite-size security of continuous-variable quantum key distribution with digital signal processing. Nature Communications, 12 (252), 2021. 10.1038/​s41467-020-19916-1. URL https:/​/​doi.org/​10.1038/​s41467-020-19916-1.

[20] Aurélie Denys, Peter Brown, and Anthony Leverrier. Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation. Quantum, 5: 540, September 2021. ISSN 2521-327X. 10.22331/​q-2021-09-13-540. URL https:/​/​doi.org/​10.22331/​q-2021-09-13-540.

[21] Panagiotis Papanastasiou, Cosmo Lupo, Christian Weedbrook, and Stefano Pirandola. Quantum key distribution with phase-encoded coherent states: Asymptotic security analysis in thermal-loss channels. Phys. Rev. A, 98: 012340, Jul 2018. 10.1103/​PhysRevA.98.012340. URL https:/​/​doi.org/​10.1103/​PhysRevA.98.012340.

[22] Panagiotis Papanastasiou and Stefano Pirandola. Continuous-variable quantum cryptography with discrete alphabets: Composable security under collective Gaussian attacks. Phys. Rev. Research, 3: 013047, Jan 2021. 10.1103/​PhysRevResearch.3.013047. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.3.013047.

[23] Eleni Diamanti and Anthony Leverrier. Distributing secret keys with quantum continuous variables: Principle, Security and Implementations. Entropy, 17 (12): 6072–6092, 2015. 10.3390/​e17096072. URL https:/​/​doi.org/​10.3390/​e17096072.

[24] Anthony Leverrier, Romain Alléaume, Joseph Boutros, Gilles Zémor, and Philippe Grangier. Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A, 77: 042325, Apr 2008. 10.1103/​PhysRevA.77.042325. URL https:/​/​doi.org/​10.1103/​PhysRevA.77.042325.

[25] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing. In Proc. of IEEE Int. Conf. on Comp., Syst. and Signal Proc., Bangalore, India, Dec. 10-12, 1984, 1984.

[26] Charles H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68: 3121–3124, May 1992. 10.1103/​PhysRevLett.68.3121. URL https:/​/​doi.org/​10.1103/​PhysRevLett.68.3121.

[27] Valerio Scarani, Antonio Acín, Grégoire Ribordy, and Nicolas Gisin. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett., 92: 057901, Feb 2004. 10.1103/​PhysRevLett.92.057901. URL https:/​/​doi.org/​10.1103/​PhysRevLett.92.057901.

[28] Damien Stucki, Nicolas Brunner, Nicolas Gisin, Valerio Scarani, and Hugo Zbinden. Fast and simple one-way quantum key distribution. Applied Physics Letters, 87 (19): 194108, 2005. 10.1063/​1.2126792. URL https:/​/​doi.org/​10.1063/​1.2126792.

[29] Kyo Inoue, Edo Waks, and Yoshihisa Yamamoto. Differential phase shift quantum key distribution. Phys. Rev. Lett., 89: 037902, Jun 2002. 10.1103/​PhysRevLett.89.037902. URL https:/​/​doi.org/​10.1103/​PhysRevLett.89.037902.

[30] Bing Qi. Bennett-Brassard 1984 quantum key distribution using conjugate homodyne detection. Phys. Rev. A, 103: 012606, Jan 2021. 10.1103/​PhysRevA.103.012606. URL https:/​/​doi.org/​10.1103/​PhysRevA.103.012606.

[31] Bing Qi, Pavel Lougovski, Raphael Pooser, Warren Grice, and Miljko Bobrek. Generating the local oscillator ``locally'' in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X, 5: 041009, Oct 2015. 10.1103/​PhysRevX.5.041009. URL https:/​/​doi.org/​10.1103/​PhysRevX.5.041009.

[32] Daniel B. S. Soh, Constantin Brif, Patrick J. Coles, Norbert Lütkenhaus, Ryan M. Camacho, Junji Urayama, and Mohan Sarovar. Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X, 5: 041010, Oct 2015. 10.1103/​PhysRevX.5.041010. URL https:/​/​doi.org/​10.1103/​PhysRevX.5.041010.

[33] Xiang-Chun Ma, Shi-Hai Sun, Mu-Sheng Jiang, and Lin-Mei Liang. Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A, 88: 022339, Aug 2013. 10.1103/​PhysRevA.88.022339. URL https:/​/​doi.org/​10.1103/​PhysRevA.88.022339.

[34] Paul Jouguet, Sébastien Kunz-Jacques, and Eleni Diamanti. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A, 87: 062313, Jun 2013. 10.1103/​PhysRevA.87.062313. URL https:/​/​doi.org/​10.1103/​PhysRevA.87.062313.

[35] Jing-Zheng Huang, Sébastien Kunz-Jacques, Paul Jouguet, Christian Weedbrook, Zhen-Qiang Yin, Shuang Wang, Wei Chen, Guang-Can Guo, and Zheng-Fu Han. Quantum hacking on quantum key distribution using homodyne detection. Phys. Rev. A, 89: 032304, Mar 2014. 10.1103/​PhysRevA.89.032304. URL https:/​/​doi.org/​10.1103/​PhysRevA.89.032304.

[36] Duan Huang, Peng Huang, Dakai Lin, Chao Wang, and Guihua Zeng. High-speed continuous-variable quantum key distribution without sending a local oscillator. Optics Letters, 40 (16): 3695, 2015. 10.1364/​OL.40.003695. URL https:/​/​doi.org/​10.1364/​OL.40.003695.

[37] Tao Wang, Peng Huang, Yingming Zhou, Weiqi Liu, Hongxin Ma, Shiyu Wang, and Guihua Zeng. High key rate continuous-variable quantum key distribution with a real local oscillator. Opt. Express, 26 (3): 2794–2806, Feb 2018. 10.1364/​OE.26.002794. URL http:/​/​doi.org/​10.1364/​OE.26.002794.

[38] Sebastian Kleis, Max Rueckmann, and Christian G. Schaeffer. Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals. Opt. Lett., 42 (8): 1588–1591, Apr 2017. 10.1364/​OL.42.001588. URL http:/​/​doi.org/​10.1364/​OL.42.001588.

[39] Adrien Marie and Romain Alléaume. Self-coherent phase reference sharing for continuous-variable quantum key distribution. Phys. Rev. A, 95 (1): 012316, January 2017. ISSN 2469-9926, 2469-9934. 10.1103/​PhysRevA.95.012316. URL https:/​/​doi.org/​10.1103/​PhysRevA.95.012316.

[40] Fabian Laudenbach, Bernhard Schrenk, Christoph Pacher, Michael Hentschel, Chi-Hang Fred Fung, Fotini Karinou, Andreas Poppe, Momtchil Peev, and Hannes Hübel. Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator. Quantum, 3: 193, October 2019. ISSN 2521-327X. 10.22331/​q-2019-10-07-193. URL https:/​/​doi.org/​10.22331/​q-2019-10-07-193.

[41] Emilien Lavie, Ignatius William Primaatmaja, Wen Yu Kon, Chao Wang, and Charles Ci Wen Lim. Estimating the photon-number distribution of photonic channels for realistic devices and applications in photonic quantum information processing. Phys. Rev. Applied, 16: 034020, Sep 2021. 10.1103/​PhysRevApplied.16.034020. URL https:/​/​doi.org/​10.1103/​PhysRevApplied.16.034020.

[42] Hoi-Kwong Lo, Xiongfeng Ma, and Kai Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94: 230504, Jun 2005. 10.1103/​PhysRevLett.94.230504. URL https:/​/​doi.org/​10.1103/​PhysRevLett.94.230504.

[43] Gong Zhang, Ignatius William Primaatmaja, Jing Yan Haw, Xiao Gong, Chao Wang, and Charles Ci Wen Lim. Securing practical quantum communication systems with optical power limiters. PRX Quantum, 2: 030304, Jul 2021a. 10.1103/​PRXQuantum.2.030304. URL https:/​/​doi.org/​10.1103/​PRXQuantum.2.030304.

[44] Margarida Pereira, Marcos Curty, and Kiyoshi Tamaki. Quantum key distribution with flawed and leaky sources. npj Quantum Information, 5 (62), 2019. 10.1038/​s41534-019-0180-9. URL https:/​/​doi.org/​10.1038/​s41534-019-0180-9.

[45] Margarida Pereira, Go Kato, Akihiro Mizutani, Marcos Curty, and Kiyoshi Tamaki. Quantum key distribution with correlated sources. Science Advances, 6 (37), 2020. 10.1126/​sciadv.aaz4487. URL https:/​/​doi.org/​10.1126/​sciadv.aaz4487.

[46] Hao Qin, Rupesh Kumar, Vadim Makarov, and Romain Alléaume. Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A, 98 (1): 012312, July 2018. 10.1103/​PhysRevA.98.012312. URL https:/​/​doi.org/​10.1103/​PhysRevA.98.012312.

[47] Igor Devetak and Andreas Winter. Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461 (2053): 207–235, 2005. 10.1098/​rspa.2004.1372. URL https:/​/​doi.org/​10.1098/​rspa.2004.1372.

[48] Werner Vogel and Dirk-Gunnar Welsch. Quantum Optics. John Wiley & Sons, 2006. ISBN 9783527608522. 10.1002/​3527608524. URL https:/​/​doi.org/​10.1002/​3527608524.

[49] René Schwonnek, Koon Tong Goh, Ignatius W Primaatmaja, Ernest Y-Z Tan, Ramona Wolf, Valerio Scarani, and Charles C-W Lim. Device-independent quantum key distribution with random key basis. Nature Communications, 12 (2880), 2021. 10.1038/​s41467-021-23147-3. URL https:/​/​doi.org/​10.1038/​s41467-021-23147-3.

[50] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019. URL http:/​/​docs.mosek.com/​9.0/​toolbox/​index.html.

[51] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. http:/​/​cvxr.com/​cvx, March 2014.

[52] Jürgen Appel, Dallas Hoffman, Eden Figueroa, and A. I. Lvovsky. Electronic noise in optical homodyne tomography. Phys. Rev. A, 75: 035802, Mar 2007. 10.1103/​PhysRevA.75.035802. URL https:/​/​doi.org/​10.1103/​PhysRevA.75.035802.

[53] Yanbao Zhang, Patrick J. Coles, Adam Winick, Jie Lin, and Norbert Lütkenhaus. Security proof of practical quantum key distribution with detection-efficiency mismatch. Phys. Rev. Research, 3: 013076, Jan 2021b. 10.1103/​PhysRevResearch.3.013076. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.3.013076.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-01-23 04:44:04). On SAO/NASA ADS no data on citing works was found (last attempt 2022-01-23 04:44:06).