Squeezing-enhanced communication without a phase reference
1NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
2Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) Spain
Published: | 2021-12-23, volume 5, page 608 |
Eprint: | arXiv:2006.06522v4 |
Doi: | https://doi.org/10.22331/q-2021-12-23-608 |
Citation: | Quantum 5, 608 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We study the problem of transmitting classical information using quantum Gaussian states on a family of phase-noise channels with a finite decoherence time, such that the phase-reference is lost after $m$ consecutive uses of the transmission line. This problem is relevant for long-distance communication in free space and optical fiber, where phase noise is typically considered as a limiting factor. The Holevo capacity of these channels is always attained with photon-number encodings, challenging with current technology. Hence for coherent-state encodings the optimal rate depends only on the total-energy distribution and we provide upper and lower bounds for all $m$, the latter attainable at low energies with on/off modulation and photodetection. We generalize this lower bound to squeezed-coherent encodings, exhibiting for the first time to our knowledge an unconditional advantage with respect to any coherent encoding for $m=1$ and a considerable advantage with respect to its direct coherent counterpart for $m>1$. This advantage is robust with respect to moderate attenuation, and persists in a regime where Fock encodings with up to two-photon states are also suboptimal. Finally, we show that the use of part of the energy to establish a reference frame is sub-optimal even at large energies. Our results represent a key departure from the case of phase-covariant Gaussian channels and constitute a proof-of-principle of the advantages of using non-classical, squeezed light in a motivated communication setting.

Featured image: Depiction of several communication strategies on phase-noise memory channels studied in the article. Covariant strategies employ a Haar-random passive interferometer U to increase the communication rate of any initial ensemble. The input ensembles we consider are discrete constellations comprising the vacuum state and one or more pulse signals: Fock, coherent and squeezed-coherent states.
Popular summary
This noise arises when the sender and the receiver cannot maintain a phase-reference, due to several possible mechanisms, including: non-linear effects in optical fiber, atmospheric effects in free space or simply the use of a photodetector, which cannot read phase information.
In this article we introduce communication strategies that allow to transfer information in a simple model of phase-noise, where the global phase is completely cancelled after $m$ signals are sent. Our strategies are based on two ingredients: linear-optical randomization and non-classical squeezed light. We show that in this way one can surpass the performance of classical communication strategies, proving the advantage of non-classical light in a motivated communication setting.
► BibTeX data
► References
[1] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007), arXiv:0610030 [quant-ph].
https://doi.org/10.1103/RevModPhys.79.555
arXiv:0610030
[2] C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66, 481 (1994).
https://doi.org/10.1103/RevModPhys.66.481
[3] A. S. Holevo and V. Giovannetti, Reports Prog. Phys. 75, 046001 (2012), arXiv:1202.6480.
https://doi.org/10.1088/0034-4885/75/4/046001
arXiv:1202.6480
[4] A. S. Holevo, Quantum Systems, Channels, Information (DE GRUYTER, Berlin, Boston, 2012).
https://doi.org/10.1515/9783110273403
[5] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, Phys. Rev. Lett. 92, 4 (2003), arXiv:quant-ph/0308012 [quant-ph].
https://doi.org/10.1103/PhysRevLett.92.027902
arXiv:quant-ph/0308012
[6] A. Mari, V. Giovannetti, and A. S. Holevo, Nat. Commun. 5 (2014), 10.1038/ncomms4826.
https://doi.org/10.1038/ncomms4826
[7] V. Giovannetti, R. García-Patrón, N. J. Cerf, and A. S. Holevo, Nat. Photonics 8, 796 (2014), arXiv:1312.6225.
https://doi.org/10.1038/nphoton.2014.216
arXiv:1312.6225
[8] V. Giovannetti, A. S. Holevo, and A. Mari, Theor. Math. Phys. 182, 284 (2015).
https://doi.org/10.1007/s11232-015-0262-6
[9] S. Guha, Phys. Rev. Lett. 106, 240502 (2011), arXiv:1101.1550.
https://doi.org/10.1103/PhysRevLett.106.240502
arXiv:1101.1550
[10] M. Rosati, A. Mari, and V. Giovannetti, Phys. Rev. A 94, 062325 (2016).
https://doi.org/10.1103/PhysRevA.94.062325
[11] K. Banaszek, L. Kunz, M. Jachura, and M. Jarzyna, J. Light. Technol. 38, 2741 (2020), arXiv:2002.05766.
https://doi.org/10.1109/JLT.2020.2973890
arXiv:2002.05766
[12] J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
https://doi.org/10.1364/ol.15.001351
[13] K. H. Wanser, Electron. Lett. 28, 53 (1992).
https://doi.org/10.1049/el:19920033
[14] L. Kunz, M. G. A. Paris, and K. Banaszek, J. Opt. Soc. Am. B 35, 214 (2018).
https://doi.org/10.1364/JOSAB.35.000214
[15] L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, Phys. Rev. A 89, 023805 (2014).
https://doi.org/10.1103/PhysRevA.89.023805
[16] E. Diamanti and A. Leverrier, Entropy 17, 6072 (2015), arXiv:1506.02888.
https://doi.org/10.3390/e17096072
arXiv:1506.02888
[17] B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Phys. Rev. X 5, 041009 (2015).
https://doi.org/10.1103/PhysRevX.5.041009
[18] S. Olivares, S. Cialdi, F. Castelli, and M. G. A. Paris, Phys. Rev. A - At. Mol. Opt. Phys. 87, 1 (2013), arXiv:1305.4201.
https://doi.org/10.1103/PhysRevA.87.050303
arXiv:1305.4201
[19] M. Jarzyna, K. Banaszek, and R. Demkowicz-Dobrzański, J. Phys. A Math. Theor. 47, 275302 (2014).
https://doi.org/10.1088/1751-8113/47/27/275302
[20] M. Jarzyna, V. Lipińska, A. Klimek, K. Banaszek, and M. G. A. Paris, Optics Express (2016), 10.1364/oe.24.001693, arXiv:1509.00009.
https://doi.org/10.1364/oe.24.001693
arXiv:1509.00009
[21] H. Adnane, B. Teklu, and M. G. A. Paris, J. Opt. Soc. Am. B 36, 2938 (2019), arXiv:1909.07138.
https://doi.org/10.1364/josab.36.002938
arXiv:1909.07138
[22] M. T. DiMario, L. Kunz, K. Banaszek, and F. E. Becerra, npj Quantum Inf. 5 (2019), 10.1038/s41534-019-0177-4, arXiv:1907.12515.
https://doi.org/10.1038/s41534-019-0177-4
arXiv:1907.12515
[23] G. Chesi, S. Olivares, and M. G. Paris, Phys. Rev. A 97, 032315 (2018), arXiv:1710.09577.
https://doi.org/10.1103/PhysRevA.97.032315
arXiv:1710.09577
[24] F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014), arXiv:1207.5435.
https://doi.org/10.1103/RevModPhys.86.1203
arXiv:1207.5435
[25] H. P. Yuen and J. H. Shapiro, IEEE Transactions on Information Theory (1978), 10.1109/TIT.1978.1055958.
https://doi.org/10.1109/TIT.1978.1055958
[26] B. E. Saleh and M. C. Teich, Phys. Rev. Lett. 58, 2656 (1987).
https://doi.org/10.1103/PhysRevLett.58.2656
[27] A. Vourdas and J. R. Da Rocha, J. Mod. Opt. 41, 2291 (1994).
https://doi.org/10.1080/09500349414552141
[28] H. P. Yuen, in Quantum Squeezing, edited by P. D. Drummond and Z. Ficek (Springer, Berlin, Heidelberg, 2004) pp. 227–261.
https://doi.org/10.1007/978-3-662-09645-1_7
[29] G. Cariolaro, R. Corvaja, and G. Pierobon, Phys. Rev. A - At. Mol. Opt. Phys. 90, 042309 (2014).
https://doi.org/10.1103/PhysRevA.90.042309
[30] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 117, 110801 (2016).
https://doi.org/10.1103/PhysRevLett.117.110801
[31] Y. Zhang, M. Menotti, K. Tan, V. D. Vaidya, D. H. Mahler, L. G. Helt, L. Zatti, M. Liscidini, B. Morrison, and Z. Vernon, Nat. Commun. 12, 2233 (2021).
https://doi.org/10.1038/s41467-021-22540-2
[32] J. H. Shapiro and S. R. Shepard, Physical Review A (1991), 10.1103/PhysRevA.43.3795.
https://doi.org/10.1103/PhysRevA.43.3795
[33] D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).
https://doi.org/10.1103/PhysRevLett.85.5098
[34] L. Wang and G. W. Wornell, IEEE Trans. Inf. Theory 60, 4299 (2014).
https://doi.org/10.1109/TIT.2014.2320718
[35] M. Cheraghchi and J. Ribeiro, IEEE Transactions on Information Theory 65, 4052 (2019).
https://doi.org/10.1109/TIT.2019.2896931
[36] M. B. Hastings, Nat. Phys. 5, 255 (2009).
https://doi.org/10.1038/nphys1224
[37] M. Rosati and V. Giovannetti, J. Math. Phys. 57, 062204 (2015), arXiv:1506.04999.
https://doi.org/10.1063/1.4953690
arXiv:1506.04999
[38] M. Rosati, A. Mari, and V. Giovannetti, Phys. Rev. A 96, 012317 (2017), arXiv:1703.05701.
https://doi.org/10.1103/PhysRevA.96.012317
arXiv:1703.05701
[39] K. Korzekwa, Z. Puchała, M. Tomamichel, and K. Życzkowski, (2019), arXiv:1911.12373.
arXiv:1911.12373
[40] H. P. Yuen and M. Ozawa, Physical Review Letters 70, 363 (1993).
https://doi.org/10.1103/PhysRevLett.70.363
[41] A. Serafini and G. Adesso, J. Phys. A Math. Theor. 40, 8041 (2007).
https://doi.org/10.1088/1751-8113/40/28/S13
[42] A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972), arXiv:0203002 [math-ph].
https://doi.org/10.1007/BF01645091
arXiv:0203002
[43] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
https://doi.org/10.1103/RevModPhys.62.867
[44] A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC Press, 2017).
[45] H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
https://doi.org/10.1103/PhysRevA.13.2226
[46] J. J. Gong and P. K. Aravind, Am. J. Phys. 58, 1003 (1990).
https://doi.org/10.1119/1.16337
[47] A. Martinez, J. Opt. Soc. Am. B 24, 739 (2007).
https://doi.org/10.1364/josab.24.000739
[48] A. Lapidoth, L. Wang, J. H. Shapiro, and V. Venkatesan, in IEEE Conv. Electr. Electron. Eng. Isr. Proc. (2008) pp. 654–658, arXiv:0810.3564.
https://doi.org/10.1109/EEEI.2008.4736614
arXiv:0810.3564
[49] A. Lapidoth and S. M. Moser, IEEE Trans. Inf. Theory 55, 303 (2009).
https://doi.org/10.1109/TIT.2008.2008121
[50] W. R. Inc., ``Mathematica, Version 12.3.1,'' Champaign, IL, 2021.
https://www.wolfram.com/mathematica
[51] J. A. Adell, A. Lekuona, and Y. Yu, IEEE Transactions on Information Theory (2010), 10.1109/TIT.2010.2044057.
https://doi.org/10.1109/TIT.2010.2044057
[52] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
https://doi.org/10.1103/PhysRevD.23.1693
[53] A. Monras, Phys. Rev. A - At. Mol. Opt. Phys. 73, 033821 (2006).
https://doi.org/10.1103/PhysRevA.73.033821
[54] H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, H. M. Wiseman, E. H. Huntington, and A. Furusawa, Science (80-. ). 337, 1514 (2012).
https://doi.org/10.1126/science.1225258
[55] D. Šafránek, M. Ahmadi, and I. Fuentes, New J. Phys. 17 (2015), 10.1088/1367-2630/17/3/033012, arXiv:1404.6421.
https://doi.org/10.1088/1367-2630/17/3/033012
arXiv:1404.6421
[56] C. Sparaciari, S. Olivares, and M. G. A. Paris, J. Opt. Soc. Am. B 32, 1354 (2015).
https://doi.org/10.1364/josab.32.001354
[57] R. J. Glauber, Phys. Rev. 131, 2766 (1963), arXiv:Phys. Rev. Letters 10, 84 (1963).
https://doi.org/10.1103/PhysRev.131.2766
arXiv:Phys. Rev. Letters 10, 84 (1963)
[58] M. Hayashi, Quantum Information Theory, edited by Springer, Graduate Texts in Physics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2017).
https://doi.org/10.1007/978-3-662-49725-8
[59] X.-x. Xu, L.-y. Hu, and H.-y. Fan, Optics communications 283, 1801 (2010).
Cited by
[1] Milajiguli Rexiti, Laleh Memarzadeh, and Stefano Mancini, "Discrimination of dephasing channels", Journal of Physics A: Mathematical and Theoretical 55 24, 245301 (2022).
[2] Ludovico Lami and Mark M. Wilde, "Exact solution for the quantum and private capacities of bosonic dephasing channels", Nature Photonics 17 6, 525 (2023).
[3] Liu Wang, Fang Xie, Yong Zhang, Min Xiao, and Fang Liu, "Adaptive optical phase estimation for real-time sensing of fast-varying signals", Scientific Reports 12 1, 21745 (2022).
[4] Simon Morelli, David Sauerwein, Michalis Skotiniotis, and Nicolai Friis, "Metrology-assisted entanglement distribution in noisy quantum networks", Quantum 6, 722 (2022).
[5] Masahito Hayashi and Kun Wang, "Dense Coding with Locality Restriction on Decoders: Quantum Encoders versus Superquantum Encoders", PRX Quantum 3 3, 030346 (2022).
[6] Arturo Arvizu-Mondragón, Francisco J. Mendieta-Jiménez, César A. López-Mercado, and Ramón Muraoka-Espíritu, "Detection of polarization shift-keyed/switched/multiplexed quantum coherent states in M-ary photonic communication systems", Quantum Information Processing 21 10, 345 (2022).
[7] Woochang Shin, Changsuk Noh, and Jiyong Park, "Quantum Rényi-2 entropy power inequalities for bosonic Gaussian operations", Journal of the Optical Society of America B 40 8, 1999 (2023).
[8] Wojciech Górecki, Alberto Riccardi, and Lorenzo Maccone, "Quantum Metrology of Noisy Spreading Channels", Physical Review Letters 129 24, 240503 (2022).
[9] Michael Hippke, "Searching for Interstellar Quantum Communications", The Astronomical Journal 162 1, 1 (2021).
[10] Quntao Zhuang, "Quantum-Enabled Communication without a Phase Reference", Physical Review Letters 126 6, 060502 (2021).
[11] Changhun Oh, Kimin Park, Radim Filip, Hyunseok Jeong, and Petr Marek, "Optical estimation of unitary Gaussian processes without phase reference using Fock states", arXiv:2006.09976, (2020).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-28 06:40:28) and SAO/NASA ADS (last updated successfully 2023-09-28 06:40:28). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.