Squeezing-enhanced communication without a phase reference

Marco Fanizza1,2, Matteo Rosati2, Michalis Skotiniotis2, John Calsamiglia2, and Vittorio Giovannetti1

1NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
2Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We study the problem of transmitting classical information using quantum Gaussian states on a family of phase-noise channels with a finite decoherence time, such that the phase-reference is lost after $m$ consecutive uses of the transmission line. This problem is relevant for long-distance communication in free space and optical fiber, where phase noise is typically considered as a limiting factor. The Holevo capacity of these channels is always attained with photon-number encodings, challenging with current technology. Hence for coherent-state encodings the optimal rate depends only on the total-energy distribution and we provide upper and lower bounds for all $m$, the latter attainable at low energies with on/off modulation and photodetection. We generalize this lower bound to squeezed-coherent encodings, exhibiting for the first time to our knowledge an unconditional advantage with respect to any coherent encoding for $m=1$ and a considerable advantage with respect to its direct coherent counterpart for $m>1$. This advantage is robust with respect to moderate attenuation, and persists in a regime where Fock encodings with up to two-photon states are also suboptimal. Finally, we show that the use of part of the energy to establish a reference frame is sub-optimal even at large energies. Our results represent a key departure from the case of phase-covariant Gaussian channels and constitute a proof-of-principle of the advantages of using non-classical, squeezed light in a motivated communication setting.

When using light signals to transfer information, the effect known as phase-noise can disrupt typical communication methods that encode information in the optical phase of the signals.
This noise arises when the sender and the receiver cannot maintain a phase-reference, due to several possible mechanisms, including: non-linear effects in optical fiber, atmospheric effects in free space or simply the use of a photodetector, which cannot read phase information.

In this article we introduce communication strategies that allow to transfer information in a simple model of phase-noise, where the global phase is completely cancelled after $m$ signals are sent. Our strategies are based on two ingredients: linear-optical randomization and non-classical squeezed light. We show that in this way one can surpass the performance of classical communication strategies, proving the advantage of non-classical light in a motivated communication setting.

► BibTeX data

► References

[1] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007), arXiv:0610030 [quant-ph].

[2] C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66, 481 (1994).

[3] A. S. Holevo and V. Giovannetti, Reports Prog. Phys. 75, 046001 (2012), arXiv:1202.6480.

[4] A. S. Holevo, Quantum Systems, Channels, Information (DE GRUYTER, Berlin, Boston, 2012).

[5] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, Phys. Rev. Lett. 92, 4 (2003), arXiv:quant-ph/​0308012 [quant-ph].

[6] A. Mari, V. Giovannetti, and A. S. Holevo, Nat. Commun. 5 (2014), 10.1038/​ncomms4826.

[7] V. Giovannetti, R. García-Patrón, N. J. Cerf, and A. S. Holevo, Nat. Photonics 8, 796 (2014), arXiv:1312.6225.

[8] V. Giovannetti, A. S. Holevo, and A. Mari, Theor. Math. Phys. 182, 284 (2015).

[9] S. Guha, Phys. Rev. Lett. 106, 240502 (2011), arXiv:1101.1550.

[10] M. Rosati, A. Mari, and V. Giovannetti, Phys. Rev. A 94, 062325 (2016).

[11] K. Banaszek, L. Kunz, M. Jachura, and M. Jarzyna, J. Light. Technol. 38, 2741 (2020), arXiv:2002.05766.

[12] J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).

[13] K. H. Wanser, Electron. Lett. 28, 53 (1992).

[14] L. Kunz, M. G. A. Paris, and K. Banaszek, J. Opt. Soc. Am. B 35, 214 (2018).

[15] L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, Phys. Rev. A 89, 023805 (2014).

[16] E. Diamanti and A. Leverrier, Entropy 17, 6072 (2015), arXiv:1506.02888.

[17] B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Phys. Rev. X 5, 041009 (2015).

[18] S. Olivares, S. Cialdi, F. Castelli, and M. G. A. Paris, Phys. Rev. A - At. Mol. Opt. Phys. 87, 1 (2013), arXiv:1305.4201.

[19] M. Jarzyna, K. Banaszek, and R. Demkowicz-Dobrzański, J. Phys. A Math. Theor. 47, 275302 (2014).

[20] M. Jarzyna, V. Lipińska, A. Klimek, K. Banaszek, and M. G. A. Paris, Optics Express (2016), 10.1364/​oe.24.001693, arXiv:1509.00009.

[21] H. Adnane, B. Teklu, and M. G. A. Paris, J. Opt. Soc. Am. B 36, 2938 (2019), arXiv:1909.07138.

[22] M. T. DiMario, L. Kunz, K. Banaszek, and F. E. Becerra, npj Quantum Inf. 5 (2019), 10.1038/​s41534-019-0177-4, arXiv:1907.12515.

[23] G. Chesi, S. Olivares, and M. G. Paris, Phys. Rev. A 97, 032315 (2018), arXiv:1710.09577.

[24] F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014), arXiv:1207.5435.

[25] H. P. Yuen and J. H. Shapiro, IEEE Transactions on Information Theory (1978), 10.1109/​TIT.1978.1055958.

[26] B. E. Saleh and M. C. Teich, Phys. Rev. Lett. 58, 2656 (1987).

[27] A. Vourdas and J. R. Da Rocha, J. Mod. Opt. 41, 2291 (1994).

[28] H. P. Yuen, in Quantum Squeezing, edited by P. D. Drummond and Z. Ficek (Springer, Berlin, Heidelberg, 2004) pp. 227–261.

[29] G. Cariolaro, R. Corvaja, and G. Pierobon, Phys. Rev. A - At. Mol. Opt. Phys. 90, 042309 (2014).

[30] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 117, 110801 (2016).

[31] Y. Zhang, M. Menotti, K. Tan, V. D. Vaidya, D. H. Mahler, L. G. Helt, L. Zatti, M. Liscidini, B. Morrison, and Z. Vernon, Nat. Commun. 12, 2233 (2021).

[32] J. H. Shapiro and S. R. Shepard, Physical Review A (1991), 10.1103/​PhysRevA.43.3795.

[33] D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).

[34] L. Wang and G. W. Wornell, IEEE Trans. Inf. Theory 60, 4299 (2014).

[35] M. Cheraghchi and J. Ribeiro, IEEE Transactions on Information Theory 65, 4052 (2019).

[36] M. B. Hastings, Nat. Phys. 5, 255 (2009).

[37] M. Rosati and V. Giovannetti, J. Math. Phys. 57, 062204 (2015), arXiv:1506.04999.

[38] M. Rosati, A. Mari, and V. Giovannetti, Phys. Rev. A 96, 012317 (2017), arXiv:1703.05701.

[39] K. Korzekwa, Z. Puchała, M. Tomamichel, and K. Życzkowski, (2019), arXiv:1911.12373.

[40] H. P. Yuen and M. Ozawa, Physical Review Letters 70, 363 (1993).

[41] A. Serafini and G. Adesso, J. Phys. A Math. Theor. 40, 8041 (2007).

[42] A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972), arXiv:0203002 [math-ph].

[43] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).

[44] A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC Press, 2017).

[45] H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

[46] J. J. Gong and P. K. Aravind, Am. J. Phys. 58, 1003 (1990).

[47] A. Martinez, J. Opt. Soc. Am. B 24, 739 (2007).

[48] A. Lapidoth, L. Wang, J. H. Shapiro, and V. Venkatesan, in IEEE Conv. Electr. Electron. Eng. Isr. Proc. (2008) pp. 654–658, arXiv:0810.3564.

[49] A. Lapidoth and S. M. Moser, IEEE Trans. Inf. Theory 55, 303 (2009).

[50] W. R. Inc., ``Mathematica, Version 12.3.1,'' Champaign, IL, 2021.

[51] J. A. Adell, A. Lekuona, and Y. Yu, IEEE Transactions on Information Theory (2010), 10.1109/​TIT.2010.2044057.

[52] C. M. Caves, Phys. Rev. D 23, 1693 (1981).

[53] A. Monras, Phys. Rev. A - At. Mol. Opt. Phys. 73, 033821 (2006).

[54] H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, H. M. Wiseman, E. H. Huntington, and A. Furusawa, Science (80-. ). 337, 1514 (2012).

[55] D. Šafránek, M. Ahmadi, and I. Fuentes, New J. Phys. 17 (2015), 10.1088/​1367-2630/​17/​3/​033012, arXiv:1404.6421.

[56] C. Sparaciari, S. Olivares, and M. G. A. Paris, J. Opt. Soc. Am. B 32, 1354 (2015).

[57] R. J. Glauber, Phys. Rev. 131, 2766 (1963), arXiv:Phys. Rev. Letters 10, 84 (1963).
arXiv:Phys. Rev. Letters 10, 84 (1963)

[58] M. Hayashi, Quantum Information Theory, edited by Springer, Graduate Texts in Physics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2017).

[59] X.-x. Xu, L.-y. Hu, and H.-y. Fan, Optics communications 283, 1801 (2010).

Cited by

[1] Milajiguli Rexiti, Laleh Memarzadeh, and Stefano Mancini, "Discrimination of dephasing channels", Journal of Physics A: Mathematical and Theoretical 55 24, 245301 (2022).

[2] Ludovico Lami and Mark M. Wilde, "Exact solution for the quantum and private capacities of bosonic dephasing channels", Nature Photonics 17 6, 525 (2023).

[3] Liu Wang, Fang Xie, Yong Zhang, Min Xiao, and Fang Liu, "Adaptive optical phase estimation for real-time sensing of fast-varying signals", Scientific Reports 12 1, 21745 (2022).

[4] Simon Morelli, David Sauerwein, Michalis Skotiniotis, and Nicolai Friis, "Metrology-assisted entanglement distribution in noisy quantum networks", Quantum 6, 722 (2022).

[5] Masahito Hayashi and Kun Wang, "Dense Coding with Locality Restriction on Decoders: Quantum Encoders versus Superquantum Encoders", PRX Quantum 3 3, 030346 (2022).

[6] Arturo Arvizu-Mondragón, Francisco J. Mendieta-Jiménez, César A. López-Mercado, and Ramón Muraoka-Espíritu, "Detection of polarization shift-keyed/switched/multiplexed quantum coherent states in M-ary photonic communication systems", Quantum Information Processing 21 10, 345 (2022).

[7] Janis Nötzel and Matteo Rosati, "Operating Fiber Networks in the Quantum Limit", Journal of Lightwave Technology 41 22, 6865 (2023).

[8] Woochang Shin, Changsuk Noh, and Jiyong Park, "Quantum Rényi-2 entropy power inequalities for bosonic Gaussian operations", Journal of the Optical Society of America B 40 8, 1999 (2023).

[9] Wojciech Górecki, Alberto Riccardi, and Lorenzo Maccone, "Quantum Metrology of Noisy Spreading Channels", Physical Review Letters 129 24, 240503 (2022).

[10] Bin Lu, Yaoyao Wang, and Xiaoguang Chen, "Detection of polarization multiplexing by quantum squeezed states in communication systems", Quantum Information Processing 23 1, 10 (2024).

[11] Zixin Huang, Ludovico Lami, and Mark M. Wilde, "Exact Quantum Sensing Limits for Bosonic Dephasing Channels", PRX Quantum 5 2, 020354 (2024).

[12] Michael Hippke, "Searching for Interstellar Quantum Communications", The Astronomical Journal 162 1, 1 (2021).

[13] Quntao Zhuang, "Quantum-Enabled Communication without a Phase Reference", Physical Review Letters 126 6, 060502 (2021).

[14] Changhun Oh, Kimin Park, Radim Filip, Hyunseok Jeong, and Petr Marek, "Optical estimation of unitary Gaussian processes without phase reference using Fock states", arXiv:2006.09976, (2020).

[15] Matteo Rosati and Albert Solana, "Optical decoder learning for fiber communication at the quantum limit", arXiv:2312.13693, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 04:50:49) and SAO/NASA ADS (last updated successfully 2024-06-22 04:50:50). The list may be incomplete as not all publishers provide suitable and complete citation data.