Dynamical second-order noise sweetspots in resonantly driven spin qubits

Jordi Picó-Cortés1,2 and Gloria Platero1

1Instituto de Ciencia de Materiales de Madrid (CSIC) 28049, Madrid, Spain.
2Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum dot-based quantum computation employs extensively the exchange interaction between nearby electronic spins in order to manipulate and couple different qubits. The exchange interaction, however, couples the qubit states to charge noise, which reduces the fidelity of the quantum gates that employ it. The effect of charge noise can be mitigated by working at noise sweetspots in which the sensitivity to charge variations is reduced. In this work we study the response to charge noise of a double quantum dot based qubit in the presence of ac gates, with arbitrary driving amplitudes, applied either to the dot levels or to the tunneling barrier. Tuning with an ac driving allows to manipulate the sign and strength of the exchange interaction as well as its coupling to environmental electric noise. Moreover, we show the possibility of inducing a second-order sweetspot in the resonant spin-triplet qubit in which the dephasing time is significantly increased.

Quantum dots are one of main proposals to develop platforms for quantum computation. In this type of nanostructure, the number of electrons can be controlled with extreme precision, so that their spin can be manipulated for quantum operations. Solid state quantum computation has the benefit of employing the same materials (e.g. Silicon) and potentially similar manufacturing techniques as current microchips. However, electromagnetic noise from the surroundings severely affects the performance of quantum dot-based qubits. In this work, we propose a mechanism that employs a time-dependent electric gate in particular configurations to reduce significantly the effect of electric noise in singlet-triplet qubits, one of the most well known and studied proposals for a solid-state qubit.

► BibTeX data

► References

[1] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature 408, 339 (2000).

[2] J. Levy, Phys. Rev. Lett. 89, 147902 (2002).

[3] R. Li, X. Hu, and J. Q. You, Phys. Rev. B 86, 205306 (2012).

[4] M. P. Wardrop and A. C. Doherty, Phys. Rev. B 90, 045418 (2014).

[5] M. Stopa, Phys. B: Condens. Matt. 249-251, 228 (1998).

[6] X. Hu and S. Das Sarma, Phys. Rev. Lett. 96, 100501 (2006).

[7] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003).

[8] D. Culcer and N. M. Zimmerman, Appl. Phys. Lett. 102, 232108 (2013).

[9] I. V. Yurkevich, J. Baldwin, I. V. Lerner, and B. L. Altshuler, Phys. Rev. B 81, 121305 (2010).

[10] O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, Phys. Rev. Lett. 110, 146804 (2013).

[11] Z. Qi, X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble, R. T. Mohr, Z. Shi, D. E. Savage, M. G. Lagally, M. A. Eriksson, M. Friesen, S. N. Coppersmith, and M. G. Vavilov, Phys. Rev. B 96, 115305 (2017).

[12] J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63, 085311 (2001).

[13] S. D. Barrett and C. H. W. Barnes, Phys. Rev. B 66, 125318 (2002).

[14] P. Rebentrost and F. K. Wilhelm, Phys. Rev. B 79, 060507 (2009).

[15] T. Chasseur and F. K. Wilhelm, Phys. Rev. A 92, 042333 (2015).

[16] S. Mehl, H. Bluhm, and D. P. DiVincenzo, Phys. Rev. B 91, 085419 (2015).

[17] J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, and A. Yacoby, npj Quantum Inf. 3, 3 (2017).

[18] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, and A. S. Dzurak, Nature 569, 532 (2019).

[19] C. Kloeffel and D. Loss, Ann. Rev. Condens. Matt. Phys. 4, 51 (2013), https:/​/​doi.org/​10.1146/​annurev-conmatphys-030212-184248.

[20] Y.-P. Shim and C. Tahan, Phys. Rev. B 93, 121410 (2016).

[21] M. Russ and G. Burkard, J. Phys.: Condens. Matt. 29, 393001 (2017).

[22] A. Sala and J. Danon, Phys. Rev. B 95, 241303 (2017).

[23] A. Pan, T. E. Keating, M. F. Gyure, E. J. Pritchett, S. Quinn, R. S. Ross, T. D. Ladd, and J. Kerckhoff, Quantum Sci. Technol. 5, 034005 (2020).

[24] A. Sala, J. H. Qvist, and J. Danon, Phys. Rev. Research 2, 012062 (2020).

[25] A. Gómez-León and G. Platero, Phys. Rev. Research 2, 033412 (2020).

[26] H. Qiao, Y. P. Kandel, J. S. V. Dyke, S. Fallahi, G. C. Gardner, M. J. Manfra, E. Barnes, and J. M. Nichol, Nat. Commun. 12, 2142 (2021).

[27] M. Benito, A. Gómez-León, V. M. Bastidas, T. Brandes, and G. Platero, Phys. Rev. B 90, 205127 (2014).

[28] A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039 (2015).

[29] T. Oka and S. Kitamura, Ann. Rev. Condens. Matt. Phys. 10, 387 (2019).

[30] B. Pérez-González, M. Bello, G. Platero, and A. Gómez-León, Phys. Rev. Lett. 123, 126401 (2019).

[31] G. Platero and R. Aguado, Phys. Rep. 395, 1 (2004).

[32] F. Gallego-Marcos, R. Sánchez, and G. Platero, J. Appl. Phys. 117, 112808 (2015).

[33] R. Sánchez, F. Gallego-Marcos, and G. Platero, Phys. Rev. B 89, 161402 (2014).

[34] P. Stano, J. Klinovaja, F. R. Braakman, L. M. K. Vandersypen, and D. Loss, Phys. Rev. B 92, 075302 (2015).

[35] D. Klauser, W. A. Coish, and D. Loss, Phys. Rev. B 73, 205302 (2006).

[36] D. Kim, D. R. Ward, C. B. Simmons, J. K. Gamble, R. Blume-Kohout, E. Nielsen, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Nat. Nanotechnol. 10, 243 (2015).

[37] Y. Song, J. P. Kestner, X. Wang, and S. Das Sarma, Phys. Rev. A 94, 012321 (2016).

[38] D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta, Phys. Rev. Applied 6, 054013 (2016).

[39] M. D. Shulman, S. P. Harvey, J. M. Nichol, S. D. Bartlett, A. C. Doherty, V. Umansky, and A. Yacoby, Nat. Commun. 5, 5156 (2014).

[40] K. Takeda, A. Noiri, J. Yoneda, T. Nakajima, and S. Tarucha, Phys. Rev. Lett. 124, 117701 (2020).

[41] A. C. Doherty and M. P. Wardrop, Phys. Rev. Lett. 111, 050503 (2013).

[42] J. M. Taylor, V. Srinivasa, and J. Medford, Phys. Rev. Lett. 111, 050502 (2013).

[43] M. Russ and G. Burkard, Phys. Rev. B 91, 235411 (2015).

[44] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta, Science 359, 439 (2017).

[45] M. Russ, D. M. Zajac, A. J. Sigillito, F. Borjans, J. M. Taylor, J. R. Petta, and G. Burkard, Phys. Rev. B 97, 085421 (2018).

[46] J. Jing, P. Huang, and X. Hu, Phys. Rev. A 90, 10.1103/​physreva.90.022118 (2014).

[47] Y.-C. Yang, S. N. Coppersmith, and M. Friesen, Phys. Rev. A 95, 062321 (2017).

[48] A. Frees, S. Mehl, J. K. Gamble, M. Friesen, and S. N. Coppersmith, npj Quantum Inf. 5, 73 (2019).

[49] P. S. Mundada, A. Gyenis, Z. Huang, J. Koch, and A. A. Houck, Phys. Rev. Appl. 14, 054033 (2020).

[50] Z. Huang, P. S. Mundada, A. Gyenis, D. I. Schuster, A. A. Houck, and J. Koch, Phys. Rev. Appl. 15, 034065 (2021).

[51] Y. Makhlin and A. Shnirman, Phys. Rev. Lett. 92, 178301 (2004).

[52] J. Fei, J.-T. Hung, T. S. Koh, Y.-P. Shim, S. N. Coppersmith, X. Hu, and M. Friesen, Phys. Rev. B 91, 205434 (2015).

[53] J. Picó-Cortés, F. Gallego-Marcos, and G. Platero, Phys. Rev. B 99, 155421 (2019).

[54] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, Nat. Mater. 11, 143 (2011).

[55] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, Nat. Nanotechnol. 9, 981 (2014).

[56] J. Truong and X. Hu, Decoherence of coupled flip-flop qubits due to charge noise (2021), arXiv:2104.07485.

[57] C. Zhang, X.-C. Yang, and X. Wang, Phys. Rev. A 97, 042326 (2018).

[58] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby, Nat. Phys. 7, 109 (2010).

[59] G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and R. Hanson, Science 330, 60 (2010).

[60] D. Culcer, L. Cywiński, Q. Li, X. Hu, and S. Das Sarma, Phys. Rev. B 80, 205302 (2009).

[61] Q. Li, L. Cywiński, D. Culcer, X. Hu, and S. Das Sarma, Phys. Rev. B 81, 085313 (2010).

[62] S. Goswami, K. A. Slinker, M. Friesen, L. M. McGuire, J. L. Truitt, C. Tahan, L. J. Klein, J. O. Chu, P. M. Mooney, D. W. van der Weide, R. Joynt, S. N. Coppersmith, and M. A. Eriksson, Nat. Phys. 3, 41 (2006).

[63] C. H. Yang, A. Rossi, R. Ruskov, N. S. Lai, F. A. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. S. Dzurak, Nat. Commun. 4, 2069 (2013).

[64] C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A. Lupascu, Phys. Rev. Lett. 115, 133601 (2015).

[65] A. Gandon, C. L. Calonnec, R. Shillito, A. Petrescu, and A. Blais, Engineering, control and longitudinal readout of floquet qubits (2021), arXiv:2108.11260 [quant-ph].

[66] F. Martins, F. K. Malinowski, P. D. Nissen, E. Barnes, S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, and F. Kuemmeth, Phys. Rev. Lett. 116, 116801 (2016).

[67] G. Burkard, Phys. Rev. B 79, 125317 (2009).

[68] M. M. Ali, P.-Y. Lo, and W.-M. Zhang, New J. Phys. 16, 103010 (2014).

[69] M. Russ, F. Ginzel, and G. Burkard, Phys. Rev. B 94, 165411 (2016).

[70] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schön, Phys. Rev. B 72, 134519 (2005).

[71] J. M. Taylor and M. D. Lukin, Quantum Inf. Process. 5, 503 (2006).

[72] J. C. Abadillo-Uriel, M. A. Eriksson, S. N. Coppersmith, and M. Friesen, Nat. Commun. 10, 10.1038/​s41467-019-13548-w (2019).

[73] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys. Rev. Lett. 105, 246804 (2010).

[74] Y. Goldin and Y. Avishai, Phys. Rev. B 61, 16750 (2000).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-01-23 12:53:32). On SAO/NASA ADS no data on citing works was found (last attempt 2022-01-23 12:53:32).